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V2G (Vehicle to Grid) technology can adjust the grid load through the unified control of the
charging and discharging of electric vehicles (EVs), and achieve peak shaving and valley
filling to smooth load fluctuations. Aiming at the random and uncertain problem of EV users
travel and behavior decision-making, this paper proposes a V2G multi-objective
dispatching strategy based on user behavior. First, a V2G behavior model was
established based on user behavior questionnaire surveys, and the effective effect of
EV load was simulated through Monte Carlo simulation. Then, combined with the regional
daily load curve and peak-valley time-of-use electricity prices, with the goal of stabilizing
grid load fluctuations and increasing the benefits of EV users, a multi-objective optimal
dispatching model for EV clusters charging and discharging is established. Finally,
Considering the needs of EV users and the operation constraints of the microgrid, the
genetic algorithm is used to obtain the Pareto optimal solution. The results show that when
dispatching with the maximum benefit of users, the peak-to-valley ratio of the grid side can
be reduced by 2.99%, and the variance can be reduced by 9.52%. The optimization
strategy can use peak and valley time-of-use electricity prices to guide the intelligent
charging and discharging of EVs while meeting user needs, so as to achieve the optimal
multi-objective benefit of V2G participation in power response.
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INTRODUCTION

Electric vehicles (EVs) have the dual attributes of transportation and energy storage, with great
potential and value in the application of energy Internet. According to the US National Household
Travel Survey, EVs are idle 96% of the time (Kempton and Tomić, 2005; Yonghua et al., 2012). On
the one hand, EVs can be used as distributed energy storage on the user side of the power system after
they are connected to the grid on a large scale, helping to connect distributed renewable energy power
generation and regulating the power load of the grid under low inertia and high intermittency
circumstances (Xiong et al., 2020a). On the other hand, EVs can be used as distributed power sources
to provide power in the opposite direction to the grid, play the role of peak shaving and valley filling
as auxiliary services, i.e., frequency modulation and backup energy storage. Vehicle-to-Grid (V2G)
technology embraces the two aforementioned purposes as one:a technology that enables energy to be
pushed back to the power grid from the battery of EVs (Soares et al., 2016; Wei and Li, 2017; Xing
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et al., 2021; Xue et al., 2021; Zeng et al., 2021). According to the
report “Research on the Potential and Economics of Electric
Vehicle Energy Storage Technology” issued by the National
Development and Reform Commission’s Energy Research
Institute, China’s electric vehicle ownership will exceed 80
million in 2030, and the theoretical energy storage potential of
V2G will exceed 5000 GWh (Jian, 2020). The application and
development of V2G technology has huge potential.

V2G adjusts the available capacity when the grid load reaches
the peak or valley. Through the large-scale charging and
discharging behavior to perform peak shaving and valley
filling, the grid load will be uniformed and further stabilized,
which is of great importance to the modern power systems (Xiong
et al., 2020b). However, as an EV cluster is an integration of
multiple transportation units, its charge and discharge control are
affected by factors such as user behavior, remaining battery
capacity, and access time. Electric vehicle load has a high
degree of randomness and volatility in time and space. Multi-
factor variables such as driving rules, user preferences, and access
duration have brought great challenges to the orderly adjustment
of V2G. Meanwhile, there are still many technical and policy
issues in the application and promotion of V2G technology.
When participating in V2G, it is first necessary to meet its
travel needs, and secondly, regarding the impact of V2G on
battery consumption as an economic consideration. An electric
vehicle cluster is composed of multiple individual users. How to
balance the grid-side regulation needs and the personal needs of
electric vehicle users is a difficult problem to be solved.

Up to date, researches on the driving behavior of EVs and V2G
regulation of grid load have been widely conducted (Li et al., 2020;
Zhou et al., 2020; Leonori et al., 2021; Sangob and
Sirisumrannukul, 2021). The MIT Energy Research Institute
team established a Trip Energy model by tracking EV energy
consumption data to analyze the impact of EV expansion caused
by the improvement of charging facilities (Wei et al., 2021).
Literature (Wu et al., 2018) introduced multi-agent integrated
modeling based on experimental economics, and established a
travel willingness model for EV users. Literature (Salehpour and
Tafreshi, 2020) introduces a stochastic model for uncertainty
handling in the interaction between a smart micro grid and EVss.
To further describe the driving behaviors, researches on the
statistical data upon National Household Vehicle Survey
(NHTS) by considering EVs as equilibrium energy storage
aggregator (Qian et al., 2011; Toquica et al., 2020). In terms of
the V2G optimal dispatching, literature (Wu et al., 2018; Toquica
et al., 2020) proposed an orderly charging control strategy for EVs
guided by time-of-use electricity prices. Under the premise of
considering user satisfaction, this strategy effectively smoothed
the grid peak-valley difference, but did not study the probabilistic
distribution of EV discharging to the grid. Literature (Dong et al.,
2021) directly regulates the access of EVs to the grid from the
perspective of the grid side to construct an economic dispatch
model of the power system, with the satisfaction of the load-side
car owners unconsidered, adversely promoting the enthusiasm of
the V2G participation. Literature (Mahmud et al., 2018) uses the
cross-entropy algorithm to solve the constructed load fluctuation
model, which remains a single-objective optimization problem,

ignoring the economic benefits of EV users and the load peak-
valley difference after adjustment.

The above analysis indicates that most of the current research
on the evaluation of the effect of V2G participation only considers
traffic travel statistics and the response of the power grid separately,
and it is difficult to accurately reflect the interaction between the
EVs users and the power grid. Existing research has not
comprehensively investigated multiple factors such as EVs user
behaviors, preferences, and charging/discharging methods. V2G
research based on EV user behavior and comprehensive
consideration of grid-side load demand, user-side travel
preferences and economic demand is rarely reported.

In order to solve the problem of the lack of accurate
description of user behavior, this paper primarily collects EV
driving data by conducting questionnaire surveys and searching
for historical data. The impact of cluster charging/discharging on
grid load is consequently analyzed. The EV charging/discharging
behavior is simulated by Monte Caro method, and the influence
of V2G on the original load curve under different scenarios is
studied. The optimization model is established with the goal of
minimizing the grid load variance and maximizing the charging/
discharging revenues of EV users. Meanwhile, dispatching
constraints are carried out according to the travel
characteristics of EV users, and users are guided to discharge
during peak periods of grid load and charge during valley periods.
Finally, V2G under the microgrid in Shanghai is used as a case for
verification. The genetic algorithm is used to obtain the Pareto
optimal solution, and the optimization strategy of the electric
vehicle cluster charging and discharging control is obtained. The
behaviorally realistic model proposed for analyzing the effect of
V2G participation essentially coordinates the user willingness
and friendly operation of the power grid as a novel inspiration for
future EV based energy storage systems. The structure of this
paper is shown in Figure 1.

Figure 1 shows the research content and structure, including
the V2G modeling solution based on user behavior and the V2G
cluster scheduling platform under the regional microgrid An EV
cluster refers to all EVs connected to the grid in a certain area as a
whole. The dispatching platform summarizes the power status,
power constraints and other information of all EVs through the
monitoring system, and coordinates the load status dispatch of
the regional microgrid. While considering the individual
differences of users, the unified charge/discharge control of the
EVs connected to the grid is carried out, and the power regulation
tasks are consequentially allocated to the EVs. Meanwhile, the
platform judges the charging/discharging behavior based on the
feedback signal, so that the EV energy storage coordinately
participates in the energy dispatching.

The research steps of this paper are: behavior investigation-
simulation modeling-case verification. Introduction Section
includes background and research background and literature
review. Electric Vehicle Load Analysis Based on User Behavior
Section establishes a V2G model that considers the behavior and
energy characteristics of EVs through user investigation and data
analysis. The V2G model includes behavior model and energy
model, which reflect influencing factors such as user behavior,
user preferences, and charging and discharging characteristics.
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Finally, in Vehicle to Grid Multi-objective Optimal Dispatching
Considering Demand Response Section, Monte Carlo simulation
and multi-objective evolutionary algorithm are used to optimize
the V2G dispatching strategy.

ELECTRIC VEHICLE LOAD ANALYSIS
BASED ON USER BEHAVIOR

User Behavior Survey
The user behavior model of EVs mainly needs to consider
factors such as daily driving mileage, initial departure time,

driving-parking duration, mileage anxiety boundary and
expected SOC. The parameter variable demand table is shown
in Table 1.

At the same time, consider that EV users will face more
specific scenarios, such as the travel time under different
modes of weekday and weekend, V2G participation in
decision-making under the psychological influence of mileage
anxiety, and consideration of uncertain charging/discharging
boundaries and so on, these factors will affect the
characteristics of the user behavior (Dong et al., 2021).
Therefore, uncertain descriptions of different user groups in
different scenarios will have certain difficulties. For example,
the estimation of charging time depends on the user’s mileage
anxiety. Existing statistical information doesn’t provide data for
users to participate in decision-making in the face of V2G, and it
is impossible to know user preferences (Wolinetz et al., 2018).

In order to solve these problems, it is necessary to introduce
preference survey in questionnaire design and data mining. The
questionnaire survey method is also a research method based on
experimental psychology (Wu et al., 2018). In order to study the
willingness of EVs to participate in V2G, a questionnaire-based
survey method was used to overcome the limitations of statistical
methods (Geske and Schumann, 2018). At the same time,

FIGURE 1 | Research structure of V2G dispatching strategy based on behaviour model.

TABLE 1 | Behaviour Model Variable factor.

Parameter type Variable factor

User driving variable Daily driving mileage
Initial departure time
Driving -parking duration

Human factor variable Willingness to participate in V2G
Mileage anxiety boundary
Expected SOC
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through the evaluation of psychological factors, the decision-
making tendency of users is judged, and a behavior model
reflecting the willingness of EV users to participate in grid
operation is established. The establishment method of EV
Behavior Model is shown in Figure 2.

The questionnaire will mainly investigate the parameter
variables required for model and simulation, including two
parts: User Driving Variable and Human Factor Variable. Set
the usage scenarios as weekday (home-company-home) and
weekend (home-shopping mall-scenic area-home). The content
of the questionnaire is shown in Table 2.

Survey Results and Behavioral Models
A total of 380 questionnaires were distributed this time, including
320 valid questionnaires. The ratio of men to women in the
questionnaire is close to 1:1, 52% are from Beijing, Shanghai,
Shenzhen and other first-tier cities, and more than 94% have a
university degree or above, which meets the needs of this survey
on EVs. The quality of the survey is of reference value.

The survey mainly focuses on four parts: daily mileage, SOC
psychological threshold, departure time and parking time, and
expected SOC. Combined with NHTS traffic statistics, we can get
the user behavior pattern model and the EV access probability
model.

1) Daily mileage

Figure 3 shows the distribution of weekday and weekend
mileage. The average weekday mileage is 35km, and the weekend
average mileage is 126 km.

Compared with NHTS statistics, the survey data is relatively
insufficient. It can be known that 14% of household vehicles in a
single day are not used, 43.5% of them have a daily mileage of less
than 30 km, 83.7% of them have a daily mileage of less than
100 km (Wei and Li, 2017). The daily mileage can be
approximated to a lognormal distribution using the maximum
likelihood estimationmethod. The probability density function of
weekday-weekend mileage distribution is as follows:

FIGURE 2 | EV Behaviour Model based on questionnaire survey.

TABLE 2 | EV user behaviour questionnaire.

Type Questions

User Driving Variable a. What is your average mileage on a weekday or weekend?
b. What time do you usually departure or park?
c. When do you charge the EV and how long does it take to charge?

Human Factor Variable d. If V2G has low-carbon and economic benefits, what is your willingness to participate in V2G for electric vehicles?
e. How much EV SOC will make you feel “mileage anxiety” or “mileage sufficient”?
f. When participating in V2G on weekdays or weekend, what is the minimum remaining power you allow after discharge?
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fm(x) � 1

xσm

���
2π

√ exp[ − (ln x − μm)2
2σ2

m

] (1)

The daily mileage model can estimate the parameters and η of the
driving distribution of a single user based on the sample mean M
and sample variance S.

μm � M � 1
n
∑n
l�1

lnx (2)

σ2m � S2 � 1
n − 1

∑n
l�1

(lnx − μm)2 (3)

In the weekdaymode, themean μm1 � 38 and the variance σm1 � 18
can be taken, while in the weekend mode, μm2 � 125; σm2 � 60.

After obtaining the probability distribution of the daily
mileage, according to the assumption of power consumption
and the assumption that the battery is full at the departure time,
the probability distribution of the initial battery SOC of the EVs at
the end of the trip can be further obtained (Lu et al., 2020).

2) SOC psychological threshold

In view of the different psychological factors of users facing
different SOC levels, the questionnaire investigated the two

variables of “mileage anxiety” and “mileage sufficient”, and
obtained the charging and discharging choices that users tend
to make at a certain SOC. It can be seen from Figure 4 that when
the average SOC < 31.14%, the user will feel “mileage anxiety” and
choose to look for charging; when the average SOC > 72.87%, the
user will feel “mileage sufficient” and willing to participate in
V2G. When the SOC is around 50%, it is in the critical stage of
charging/discharging psychology, and SOC � 50% can be used as
the critical judgment value for V2G participation, that is, when
EV SOC >�50%, the discharge behavior can be selected.

3) Departure time and parking time

According to the survey of departure time and parking time, it
can be known that 22:00–6:00, 10:00–18:00 are EV stay periods, and
6:00–9:00 and 18:00–21:00 are EV travel periods, the distribution of
departure time and parking time is shown in Figure 5.

According to the literature (Ahmadi et al., 2020), the initial
charging and discharging moments all follow a normal distribution,
and the potential charging/discharging time period of users is
consistent with the survey results. The specific option will be
based on the user’s behavior decision. The probability density
function at the beginning of charging - discharging is as follows:

ft1(x) � 1

σ t1

���
2π

√ exp[ − (x − μt1)2
2σ2t1

] (4)

With μt1 � 2; σt1 � 0.5

ft2(x) � 1

σ t2

���
2π

√ exp[ − (x − μt2)2
2σ2t2

] (5)

With μt2 � 12; σt2 � 0.5.

4) Expected SOC

At present, users’ willingness to participate in V2G cannot be
obtained. Most of the previous studies have adopted the method
of directly assuming the preset boundary, which is not completely
consistent with the real situation. Therefore, this paper conducted
a questionnaire survey on the lack of willingness to discharge
boundaries and obtained the expected SOC distribution.

Analyzing the expected SOC, it can be concluded that the
distribution law is shown in Figure 6. After inspection, it obeys
the normal distribution. Among them, the weekday travel
trajectory is simple and has a large discharge margin, which
obeys the normal distribution near 47%; the weekend obeys the
normal distribution near 52%. The probability density function of
Expected SOC is as follows.

fe1(x) � 1

σe1
���
2π

√ exp[ − (x − μe1)2
2σ2e1

] (6)

With μe1 � 47.2; σe1 � 1.65

fe2(x) � 1

σe2
���
2π

√ exp[ − (x − μe2)2
2σ2e2

] (7)

With μe2 � 52.0; σe2 � 1.61.

FIGURE 3 | Distribution of mileage during weekday-weekend.
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Electric Vehicle Charging and Discharging
Model
1) EV travel characteristics

The travel characteristics of EVsmainly include travel mileage,
travel time, charging and discharging time, etc. This paper mainly
according to the electric vehicle travel law, set 6:00 in the morning
as the travel time, 17:00 in the afternoon as the return time,
driving distance is equal. The random array of mileage is obtained
from the statistical data. According to the data of national
household travel survey (NHTS) (González-Garrido et al.,
2019), the daily driving distance of EVs meets the lognormal
distribution. Then the probability density function of daily
driving distance is taken as follows.

fm(x) � 1

xσm

���
2π

√ exp[ − (ln x − μm)2
2σ2

m

] (8)

Where: μm � 4.2; σm � 0.75.
After obtaining the probability distribution of daily mileage,

according to the assumption of power consumption
R � 15kWh/100km and the driving energy consumption

efficiency η � 90% of EVs, the driving power consumption per
unit time can be calculated ΔEtravel � ViRη � 6.75kWh.

2) EV cluster load

The load curve of cluster EVs in the region can be obtained by
accumulating the charging and discharging behaviors of all EVs.

FIGURE 4 | Psychological threshold of “mileage anxiety” or “mileage sufficient”.

FIGURE 5 | Distribution of departure time and parking time.

FIGURE 6 | Remaining SOC distribution after discharge.
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The time interval was set as 1 hour, and the load curve of 1 day
was observed. The total power of charging and discharging at
time t can be expressed by the following formula:

PTevi(t) � ∑n
i�1

Pevi(t) (9)

Where: PTevi(t) is the charging load of all EVs in t hours, i � 1, 2,
. . . ,24; n is the total number of EVs; Pevi(t) is the charging and
discharging power of the ith vehicle at time t.

3) State of charge (SOC)

The state of charge (SOC) of EV refers to the current state of
residual power of its power battery. The SOC of electric vehicle
is an important parameter to evaluate the V2G load capacity of
electric vehicle. It can have starting or ending power to
calculate the real-time residual power of battery. The real-
time SOC change of electric vehicle battery can be expressed as
follows:

SOCi(t) � Eevi(t)
Eev

× 100% (10)

SOCi(t) is the state of charge of the ith vehicle at t, and Eevi(t) is
the remaining power of the ith vehicle at t.

Eevi(t) � Eevi(ts1) +∑t
t�0

[λv2gPevi i(t)Δt − λtravel iΔEtravel] (11)

Where: Eevi(ts1) is the full power state at the starting travel time,
i.e. 6:00 am. Parameters λtravel and λv2g distribution represent EV
driving coefficient and V2G coefficient, which are used to judge
EV real-time state (driving or charging discharging).

{λtravel � 1, λv2g � 0, t ∈ (ts1, tp1] ∪ (ts2, tp2]
λv2g � 0, λv2g � 1, t ∈ (tp1, ts2] ∪ (tp2, tend] (12)

Where: EV state coefficient is determined by the time,
considering the EV user’s daily driving law, morning:
residential commercial area, afternoon: commercial residential
area; ts1 and ts2 are the travel time of EV in the morning and
return time in the afternoon, tp1 and tp2 are the travel time of two
trips, and tend is the deadline of the next day at 6:00.

Vehicle to Grid Load Analysis Based on
Monte Carlo
Monte Carlo Simulation
This paper uses the V2G Model and Monte Carlo method to
simulate grid operation under the charging and discharging of
EVs with V2G in Shanghai. Assuming that the charging and
discharging time and power of each EV are not affected by other
EVs. Based on the Monte Carlo sampling method, according to
the random probability distribution of each electric vehicle’s
driving conditions, battery characteristics, and expected SOC
preferences (González-Garrido et al., 2019; Lu et al., 2020).
Generate the corresponding random number to get the daily
load curve of a single electric vehicle, and add up the electric

vehicle load curve to get the total load curve, the Monte Carlo
simulation flow chart is shown in Figure 7.

Case Analysis
Taking Shanghai EV load regulation as an example, the scale of
EVs in Shanghai in 2020 will be 300,000. The influence of regional
load curve charging behavior on load is analyzed: the influence of
different V2G scales and conditions on the grid load is compared.
According to the EV driving data statistics and user behavior
questionnaire survey, the peak load time distribution during the
day coincides with the vehicle travel time. Therefore, if orderly
controlled charging behavior is not adopted, large-scale
disorderly charging will bring more pressure to the grid load.
Further expanding the peak-to-valley load difference is not
conducive to the economic and stable operation of the power
grid. However, if the residence time of the EV is effectively used,
the cluster V2G control mode is adopted to uniformly regulate
the charging and discharging behavior of the connected EV. Set
the EV to charge in an orderly manner during the low load at
night after returning home, and during the daytime peak period,
make full use of the energy of the EV battery and reverse

FIGURE 7 | Monte Carlo simulation flow chart.
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discharge the expected SOC to the grid under the premise of
meeting subsequent travel and user preferences, which support
peak load operation and realize the purpose of peak shaving and
valley filling.

The EVwill be equipped with a 60 kWh battery, which consumes
15 kWh per hundred kilometers. Set the parameter R to be the
participation rate of electric vehicle V2G, and take the participation
rate R to be 0, 0.3, and 0.7, respectively. The remaining parameters
are determined by the research results in Table 3.

Simulation Results
According to Monte Carlo simulation of the cluster charging and
discharging behavior of 300,000 EVs, EVs in the region are
connected to the V2G platform, which can perform unified
charging and discharging control of the connected vehicles,
and adjust the peak and valley load of the Shanghai regional
power grid. The control strategy will be determined according to
the actual state information of the vehicle. The user travels at 8:00
and goes home at 17:00. The charging and discharging can be
carried out when not driving. The depth of discharge is obtained
from the expected SOC distribution investigated in the previous
section. By superimposing the charge and discharge power of all
vehicles, the total V2G load can be calculated, and finally the
comparison of the grid load curves before and after EV
participation is obtained. In addition, setting V2G participation

rates of different scales can achieve the effect of load regulation by
EVs of different scales.

For the different modes of workdays and weekends, the load
regulation after the participation of V2G is simulated, and the
optimization curve effect is as Figure 8, Figure 9 shows.

It can be seen from Figure 8 that in the working day mode,
when the V2G participation rate R � 70%, the peak load during
the day is 27685.73 MW, which is a decrease of 326.34MW, and
the valley load at night is 19607.23 MW, which is an increase of
2007.41 MW, and the peak and valley load throughout the day
The difference has been changed from 37.17 to 29.18%, a decrease
of 7.99%, and the daily load rate increased by 3.02–87.63%

It can be seen from Figure 9 that in the weekend mode, when
the V2G participation rate R � 70%, the peak load during the day
is 14140.67 MW, the valley load at night is 10,974.57MW, an
increase of 975.79 MW, and the peak-to-valley load difference
changes from 29.29 to 29.29%. 22.39%, a decrease of 6.9%, and a
daily load rate of 88.75%, an increase of 1.83% compared to before
the regulation.

The results show that in the load regulation, in the working
daymode, the peak-to-valley load difference can be reduced by up
to 7.99%, and the daily load utilization rate can be increased by
3.02%. When the V2G participation rate increased from 30 to
70%, the increase of 40% participation rate reduced the peak-to-
valley load difference by 6 and 5.4%, and the daily load utilization
rate also increased by 2.27 and 1.27%, respectively.

From the above simulation results, it can be seen that after
V2G regulation, the grid load at night is more evenly distributed
under the adjustment of the cluster charging, and the EV cluster
during the day peak period reduces the pressure on the grid
through discharge, which can stabilize the load fluctuation effect.
Therefore, it can be stated when the charging and discharging of
electric vehicle clusters are under unified control andmanagement,
it can effectively smooth the daytime load peaks and valleys of the
power grid.

TABLE 3 | V2G simulation parameters and variables.

Parameter Variable

Driving mileage 25–45 km, 110–140 km
V2G rate R 0、30%、70%
Remaining SOC 30%–50%, 40%–60%
EV charge and discharge duration Charging: 22:00–6:00, 24:00–8:00

Discharging: 9:00–12:00 and 14:00–17:00
Discharging:10:00–14:00 and 17:00–21:00

FIGURE 8 | Load curve of different V2G participation rates in workday
mode.

FIGURE 9 | Load curves of different V2Gparticipation rates in holidaymode.
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VEHICLE TO GRID MULTI-OBJECTIVE
OPTIMAL DISPATCHING CONSIDERING
DEMAND RESPONSE

Multi-Objective Optimization Model
Multi-Objective Function
1) Objective 1: Minimum load variance

The objective of grid side optimization mainly considers the
fluctuation of daily load curve. Load mean square deviation
can be used to characterize the fluctuation of grid load. The
smaller the mean square deviation is, the more stable the load
change is. One day is divided into 24 time periods, and the
charge and discharge power of each electric vehicle in each
period is the control variable. When EVs participate in peak
load reduction and valley filling, they should focus on
discharging at peak load and charging at low load to reduce
peak valley difference. The objective function is to minimize
the variance of daily load curve:

minF1 � ∑T
t�0

⎛⎝PL(t) +∑n
i�1
Pevi(t) −∑T

t�1(PL(t) +∑n
i�1 Pevi(t))

24
⎞⎠2

(13)

Where: PL(t) represents the power of the original power
grid without electric vehicle load; Pevi(t) represents the power
of electric vehicle I at time t, which is a positive value for charging
and a negative value for discharging; n represents the number of
EVs, and the time t is taken as 24.

2) Objective 2: Maximum revenue for EV users

The user side optimization target mainly considers the
economy of EV users. Considering the loss cost of V2G to
battery attenuation, users can obtain profits by charging at low
price and discharging at high price (González-Garrido et al., 2019;
Wei et al., 2021). The overall objective is determined by the profits
of all users. The objective function of maximizing the profits of
single day users participating in V2G response is as follows:

maxF2 � ∑n
i�1

∑T
t�0
[λdPevi(t)(rb − rp) − λcPevi(t)rp]Δt (14)

Where: rp is the charge and discharge price of the electric vehicle
in t period. When Pevi(t)≥ 0, λc � 1, λd � 0 means charging,
otherwise, when Pevi(t)≤ 0, λc � 0, λd � 1 means discharge.

At the same time, considering the cost loss caused by the
attenuation of the battery capacity, the damage cost rb needs to be
taken into consideration. The battery capacity Eev is 60 kW, k is
the number of cycles that can be used when the battery decays
to 80% of its life (3,000 times), and the influence coefficient
ξ � 0.8. Therefore, from the formula rb � M/ξk, the loss cost
rb � 0.62 yuan/kWh.

Constraint Conditions
1) Load fluctuation constraints of power grid

Considering that the fluctuation of power system is controlled by
various indicators, excessive load fluctuation in a short time will
affect the system frequency, which is not conducive to the stability of
the system.When the sampling point of 0.5Δt time interval is set, the
load fluctuation rate should meet the following constraints:

Wmin ≤
[PL(t + 1) +∑n

i�1
Pevi(t + 1)] − [PL(t) +∑n

i�1
Pevi(t)]

0.5Δt ≤Wmax

(15)

Where:PL(t) represents the power of the original power gridwithout
electric vehicle load, and the load fluctuation rate W is ±8%.

2) EV charging and discharging power constraint

−Pevmt ≤Pevi(t)≤Pevmt (16)

Where: Pevmt is the maximum charging and discharging power of
all EVs that can be dispatched at the t stage, taking 20kW.

3) SOC constraint

SOCmin ≤ SOCi(t)≤ SOCmax (17)

Where: SOCmax and SOCmin is the maximum and minimum
value of all EVs that can be dispatched, taking 0.2–0.9.

4) V2G termination constraints

In this paper, the user travel demand is specially restricted, so
that the electric vehicle can meet the user’s return demand after
participating in V2G discharge. Then the discharge state SOCdi(t)
should satisfy:

SOCdi(t)≥ SOCiexp (18)

SOCiexp � SOCmin + di/2 × R × δ

Eev
(19)

Where: SOCdi(t) represents the remaining power of the ith vehicle
at time t in the discharge state, SOCiexpis the discharge termination
power, indicating that the minimum remaining power should
meet the power consumption required for the home mileage. di/2
represents the return mileage of the vehicle i, R represents the
power consumption per 100 km of the EV, and δ represents
the conversion rate of EV power consumption when driving,
taking 0.9.

Genetic Algorithm Optimization
This paper presents a multi-objective optimization method for
EVs to participate in V2G with the consideration of user demand
response, so as to minimize the load variance and maximize the
user profits. Usually, this kind of multi-objective optimization
problem is to make multiple objective functions tend to be
optimal under a set of constraints (Geske and Schumann,
2018; Wolinetz et al., 2018).

minf (x) � [f1(x), f2(x),/, fm(x)]
{ hi(x) � 0, i � 1, 2,/,Q
gj(x)#0, j � 1, 2,/, J

(20)
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Where: n is the number of objective functions; Q and J are the
number of equality constraints and inequality constraints
respectively.

When the multi-objective genetic optimization algorithm is
used to solve the charging and discharging power of EVs in an
1 hour period (i.e., the day time is split as 24 points for each EV to
charge/discharge), the charging and discharging power of each
EV in each period is taken as the position coordinate, and the
dimension is 24*n (n is the number of EVs):

XI �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1(1) P2(1) / Pn(1)
P1(2) P2(2) / Pn(2)
« 1 / «
« « 1 «
P1(23) P2(23) / Pn(23)
P1(24) P2(24) / Pn(24)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

The mutation and crossover manipulation are implemented
by using built-in function mutationadaptfeasible and
crossoverintermediate in MATLAB (2021a, MATHWORKS,
MA, USA), respectively. The population size, evolutionary
generation, constraint tolerance and objective function
tolerance is 200, 1,000, 10−3 and 10−6, respectively. When the
iteration comes to 515 generation, objective function tolerance
converges to 10−6, where the set of result can be plotted as a
Pareto Front for both technical and economical analysis.

Analysis of Vehicle to Grid Multi-Object
Dispatching Cases
This paper takes the power load of a city and the participation
of EVs as an example, and then the optimization model is
simulated and solved by MATLAB platform. Considering the
random uncertainty of EV user characteristics, this paper
calculates the value according to five typical characteristics
of EV driving mileage, including daily short distance and
medium distance travel of 30–180 km. Case parameters are
shown in Table 4.

According to the electricity price of the Shanghai power grid,
the EV charging and discharging electricity price in this
simulation can be set,:The Peak time (8:00–12:00, 18:00–21:00)
price is 1.074 yuan/kWh, the Valley time (23:00–6:00) price is
0.316 yuan/kWh, and the Normal time (6:00–8:00, 12:00–18:00,
21:00–13:00) price is 0.671 yuan/kWh. Meanwhile, Considering
the random uncertainty of EV user characteristics, this paper
selects five typical travel distance types as the research objects,
including daily short distance and long-distance travel of
30–180 km, sets the number of EV participating in V2G as
500, and the mileage and quantity parameters are shown
in Table 5.

Through the simulation calculation of the multi-objective genetic
optimization algorithm, the optimization result Pareto distribution is
shown in Figure 10. Pareto distribution represents the coordination
of the two objective functions of grid load variance and electric
vehicle user income. It can be seen that the distribution is uniform
and stable, which verifies the feasibility of Pareto optimization to
solve the multi-objective problem (Lu et al., 2020).

The optimization results are closer to the actual situation, because
the charging and discharging options of EVs can correspond to the
time-of-use electricity price. When the grid load peaks, the price of
electricity will increase, charging will decrease and discharge will
increase, and revenue will increase. When the grid load is low, the
price of electricity will decrease, charging will increase and discharge
will decrease, and profit will decrease.

It can be seen from the Pareto Front distribution curve that the
minimum variance of the grid load and the maximum revenue of
electric vehicle users are difficult to achieve the optimal at the
same time, and the revenue will decrease when the variance
decreases. However, the distribution of the optimal solution set is
relatively concentrated and the range of change is small, which
can explain themulti-objective optimization problem and achieve
consistency in overall regulating. There is a positive correlation
between the level of time-of-use electricity price and load peaks
and valleys. In the process of peak shaving and valley filling, the
variance is reduced and the income is maximized.

TABLE 4 | case parameters.

Parameter Value Parameter Value

Battery capacity Eevk 60 kWh SOC 0.2–0.9
Charge/discharge efficiency η 0.9 Maximum power 20 kW
Driving power consumption R 0.15 kWh/km Driving speed V 40 km/h

TABLE 5 | Typical value of EV mileage.

Types User driving characteristics

Mileage (km) Number of participants

EV cluster 1 30 100
EV cluster 2 60 175
EV cluster 3 90 100
EV cluster 4 120 75
EV cluster 5 180 50

FIGURE 10 | Pareto Front-Profit vs Variance.
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Therefore, it can be explained that after considering the needs
of both the grid side and the user side, the Pareto solution set is
obtained by the genetic algorithm to form a multi-objective
optimal charging and discharging regulating strategy for EVs.

The optimized result graph and table are as follows. Table 6 and
Figure 11 show the changes of grid load after EV participation. It can
be seen that when V2G participates in power grid load regulation, 1)
daytime peak load decreases by 0.7MW; nighttime valley load
increases by 0.2MW; 2) whole day peak valley load difference
changes from 34.24 to 31.25%, reducing by 2.99%; 3) daily load
rate increases by 1.49%; 4) while user income can reach 1630-yuan,
power grid load variance decreases by 9.52%.

Comparison of Vehicle to Grid Response
Under Different Electricity Price Modes
In the user-side load regulation of the power system, electricity
price response is an important form of demand response.
Research has shown that the use of time-of-use electricity
prices for off-peak power consumption can effectively reduce
the burden on the grid and greatly save costs for each EV user.
Due to the difference in electricity prices, the charging and
discharging preferences of vehicle users are also different, so it
is necessary to consider the impact of electricity price
fluctuations on the optimization results (Clairand et al.,
2020; Li et al., 2020). Therefore, in order to facilitate the
formation of a more complete electricity price policy
theory, sensitivity analysis of peak and valley electricity
price fluctuations is needed.

TABLE 6 | Comparison of power grid load changes with V2G participation.

User profits Load variance Peak
valley difference (%)

Daily load rate (%)

Original load 0 9.24e + 6 34.24 82.88
V2G regulation 1.63e + 3 8.36e + 6 31.25 84.37

FIGURE 11 | Comparison of power grid load changes with V2G
participation.

FIGURE 12 | The time-of-use electricity price model.
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Time-of-use price (time-of-use price) refers to the
establishment of three electricity price modes at different
times of peak, normal, and valley to the load conditions of
the power grid, so as to guide users’ charging-discharging
behavior and reduce the load on the grid. The time-of-use
electricity price model is shown in Figure 12. Mode 0 is the
current Time-of-use electricity price in Shanghai. The Peak time
price is 1.074 yuan/kWh, the Valley time price is 0.316 yuan/
kWh, and the Normal time price is 0.671 yuan/kWh. This
section compares the current tiered electricity prices in
Shanghai with the 30% (Mode 1) and 60% (Mode 2) increase
in V2G subsidized electricity prices, which is used as the
charging or discharging price for EV users.

After simulation verification, the following results can be
obtained. Figure 13 shows the charge and discharge power
distribution of EV users under different electricity price
modes. It can be seen from the optimization solution that the

correlation between electricity price and V2G participation is not
significant, but in the multi-objective game that solves the
minimum variance of grid load and the maximum user
economic benefit, the time-of-use electricity price guides users’
charging and discharging behaviors, realizing charging during the
low load period at night, and discharge during the peak load
period during the day. The optimal strategy for charging during
the trough period.

The economic sensitivity of EV users is different, so under a
variety of electricity price modes, there will be different charging
and discharging decisions. Figure 14 shows the optimization
results of electric vehicle user income and load variance under
different electricity price modes. The figure shows the changes in
user income and load variance in response to different electricity
price modes. With the increase in V2G subsidized electricity
prices, user income has increased significantly, from 800 yuan
under the original electricity price model response to 1,630 yuan
under the 60% subsidy. An increase of 50.92%. At the same time,
the load variance does not decrease linearly when the electricity
price increases. Compared with the response to Mode0, the
variance increases by 0.82% when the electricity price is
Mode1, while the variance is reduced by 1.76% when the
electricity price is Mode2.

The analysis shows that with the increase in the price of the
time-of-use electricity, the peak and valley electricity prices, the
user’s income will increase. Compared with the V2G response
under the existing tiered electricity price model in Shanghai, it
shows a positive correlation trend. However, the variance of the
grid load is not the same as the income. A slight increase
will increase the variance of the grid load, and after the
electricity price is raised again, the variance can be reduced.
Therefore, it can be shown that the charging and discharging
behaviours of electric vehicle users are affected by the
fluctuation of electricity prices, and their economic benefits
can be maximized during peak load periods and charging during
trough periods. At the same time, it can reduce the variance of
grid load through demand response and improve the goal of
stable grid operation.

CONCLUSION

In conclusion, this paper studies the V2Gmode based on the user
behavior characteristic by Monte Carlo simulation, the influence
of the charging and discharging process of EVs on the load
characteristics of the power grid is simulated and analyzed, finally
the V2G cluster dispatching strategy considering the demand
response of the grid side and the user side is obtained through
optimization calculation.Conclusion

The optimization of V2G dispatching strategy can get the
following results: When the V2G participation rate increases by
40%, the peak-to-valley load difference will be reduced by 6%
respectively, and the daily load utilization will increase by 2.27%.
After adding the time-of-use electricity price incentive method,
this strategy can stabilize grid load fluctuations and increase the
profit of EV users. It achieves the regulating effect of reducing the
peak-to-valley load difference of the whole-day grid by 2.99%,

FIGURE 13 | Grid load changes in response to different electricity
price modes.

FIGURE 14 | User revenue vs load variance under different electricity
price models.
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increasing the daily load rate by 1.49%, and reducing the variance
of the grid load by 9.52%. The goal of peak-shaving and valley-
filling under the balance between the power grid and the needs of
users on both sides is completed.

It can be seen that V2G participation in grid load dispatching
will be possible to effectively reduce the daily peak-to-valley
difference and increase the grid daily load rate while
suppressing load fluctuations, which will significantly stabilize
the grid daily load curve. At the same time, through the multi-
objective optimization algorithm, the simulation analysis of EV
charging and discharging participating in the grid load dispatching
is carried out. Finally, the optimal dispatch strategy can be
obtained, which can increase the income of electric vehicle users
while stabilizing the fluctuation of the grid load.

In this paper, in order to carry out quantitative comparative
analysis, some assumptions are used to make EV user data more
random and improve the authenticity of the model. The following
papers will enrich the model data and improve the optimization
algorithm to get higher quality results.
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