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The increasing demands on stretchable power supply for wearable electronics accelerate
the development of stretchable batteries. Zn-based batteries are promising to be applied in
wearable electronics due to their outstanding performance, intrinsic safety, low cost, and
environmental friendliness. Recently, stretchable Zn-based batteries are designed to
demonstrate the capability of delivering excellent electrochemical performance,
meanwhile maintaining their mechanical stability. This review provides an overview of
different strategies and designs to realize stretchability in different Zn-based battery
components. The general strategies to realize stretchability are first introduced,
followed by the specific designs on the cathode, anode, and electrolytes of Zn
batteries. Moreover, current issues and possible strategies are also highlighted.
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INTRODUCTION

With the rapid development of wearable smart devices, such as wearable displays, health-monitoring
devices, and active radio-frequency identification tags, many researchers have carried out in-depth
research on stretchable batteries for their use as compatible power supplies (Liang et al., 2017a;
Rogers et al., 2019; Lee et al., 2020). As for the stretchable batteries, they are required to continuously
output stable electrochemical performance, even under a large level of mechanical deformation
(Song et al., 2014; Mackanic et al., 2020b). The performance under stretchability should be reliable,
where the as-fabricated device should be capable of enduring mechanical strain and meanwhile
maintaining stable functionality. Such stretchability is challenging to achieve in conventionally layer-
stacked battery configurations, where multiple component layers are intrinsically made into a grid
(Zhang et al., 2015; Song et al., 2019). However, even a slight deformation can cause structural
damages to active materials and consequential battery failures (Zhou et al., 2018; Gu et al., 2019).
Thus, the first target to realize stretchable batteries is design stretchable frameworks to support the
stable functionality of each battery component.

Until now, stretchable batteries based on many different chemistries have been developed, where
safety is of paramount importance for human wearable electronics (Gaikwad et al., 2012; Song et al.,
2019). Generally, mature battery chemistries have been explored, especially based on aprotic Li-ion
batteries, while some corresponding severe safety issues of electrolytes, such as fire-catching and
flammable property (Chawla et al., 2019; Du et al., 2020), resulted in safety concerns especially
subjected to different mechanical manipulations. As alternative and promising systems, significant
developments in aqueous chemistries have been achieved for stretchable batteries, due to the intrinsic
safety of aqueous electrolytes (Zhang H. et al., 2021; Liang et al., 2021). The representative Zn-ion
batteries are the most promising systems due to the outstanding electrochemical performance of Zn-
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metal anodes with a lower reaction potential (−0.76 V versus
standard hydrogen reaction) and high theoretical
gravimetric capacity (820 mA h g−1). Battery reaction
chemistries regarding cathode materials are widely
studied, such as ion-insertion–type cathodes like MnO2

(Pan et al., 2016; Fang et al., 2019; Zhang T. et al., 2020),
V2O5 (Kundu et al., 2016; Xu et al., 2020), conversion-type
cathodes (Ag2O) (Kumar et al., 2017; Kumar et al., 2019), and air
cathodes (O2) (Stock et al., 2019; Zhang Y. et al., 2021),
where some detailed reviews have recently summarized
these cathode/anode chemistries of Zn battery (Fang et al.,
2018; Zhang W. et al., 2020; Hansen and Liu, 2021). On the
contrary, the Zn-anode reactions can be classified into
mild/neutral electrolytes and alkaline electrolytes, where
reactions can be elaborated as Zn # Zn2+ + 2e− for the
mild/neutral electrolytes and they can be elaborated as Zn
+ 4OH−# Zn(OH)4

2− + 2e− for alkaline cases (Zhou et al.,
2021). Considering all these Zn-based battery systems can

deliver outstanding energy density and power density,
combining the structural/configurational designs with
the aqueous Zn–based chemistry is necessary to develop
safe and stretchable batteries with stable performance.

In this review, we suddenly shift from the reaction chemistry
of the battery and first focus on the general designing strategies
of different components and integrated devices and then
move to discussing the specific designing strategies to enable
stretchability of Zn-based battery chemistries. To make battery
components stretchable, there are two general designing
strategies as material designs and structural designs.
According to these two points, the representative examples
are subsequently showcased from different components in
the Zn-based battery, i.e., electrodes and electrolytes.
Finally, we provide commentaries and perspectives on the
outstanding challenges that must be overcome to make
deformable batteries a reality.

FIGURE 1 | Illustration of one cycle of typical battery configurations with 5 stacked layers (A) and integrated battery configurations with 3 stacked layers (B) by
integrating the current collector with the electrochemical active materials. (C) Illustrations of the active materials embedded into stretchable polymer networks as a
composite electrode. (D) Schematics of battery configurations by embedding the current collector into stretchable PDMS (reproduced from Yan et al. (2014)). (E) The
wavy battery structure based on the wavy stretchable PDMS substrate (reproduced from Mackanic et al. (2020a)). (F) Three types of fiber-shaped batteries
(reproduced from Mo et al. (2020)). (G) Three types of kirigami-modified batteries (reproduced from Wang et al. (2021)).
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GENERAL MATERIAL AND STRUCTURAL
DESIGNING STRATEGIES FOR
STRETCHABLE BATTERIES
Material and structural designs are employed to impart robust
mechanical durability and conformity of stretchable batteries to
nonplanar surfaces (Qian et al., 2019; Chen et al., 2021). Targets
at realizing stretchable batteries would add mechanical
difficulties, since the stretchability must be the zoomed-in area
on a millimeter scale once subjected to different force forms and
directions (Mackanic et al., 2020b; Yin et al., 2020). Generally,
two methods are applied to enable stretchability as 1) material
innovations and 2) structural designs. Specifically, material
designs for stretchability focus on synthesizing novel
stretchable active materials and/or combining active materials
with stretchable hosting materials. On the contrary, structural
designing strategies focus on combining specially designed
stretchable shapes/structures to host rigid battery components.

Typical battery configurations are composed of four main
components, anode, cathode, separator, electrolyte, and current
collectors, as shown in Figure 1A. However, all of these
components are generally rigid, which cannot preserve their
structural integrity once subjected to forces exceeding their
plastic deformation limits (Say et al., 2020). When targeted at
endowing stretchability to these battery components, they are
generally divided into three layers by integrating the cathode
materials with their corresponding current collectors, the anode
materials with their corresponding current collectors, and the
electrolyte with the separator. Finally, stretchable batteries can be
integrated and fabricated at the device level (Mackanic et al.,
2020a). In other words, there would be three different layers of
active materials to build up the stretchable battery devices
(Figure 1B). Considering the electrode materials are generally
inorganic materials without intrinsic deformability, stretchable
polymer networks are generally introduced to endow
stretchability, by building up percolating networks composed
of conductive nanomaterials, electrochemical active materials,
and stretchable supporting polymers, taking the polymeric
cathode composite as an example in Figure 1C. Such strategy
generally correlates the reengineering to obtain a composite
electrode, where the polymeric ingredients are responsible for
the mechanical stretchability and other materials are responsible
for the conductive/electrochemical performance. A typical
example is shown as embedding the silver nanowires into the
stretchable polydimethylsiloxane (PDMS) substrate to obtain
stretchability (Figure 1D) (Yan et al., 2014). Regarding the
combination of the electrolyte and separator, stretchable
hydrogel-based polymers are applied with intrinsic
stretchability to act as the ion conductors, with more detailed
discussions elaborated in the following.

Despite endowing stretchability to individual battery
components, structural designs are also capable of enabling
stretchability of rigid battery components by transforming
them into stretchable configurations after adapting wavy
(Figure 1E) (Mackanic et al., 2020a), fiber-shaped (Figure 1F)
(Mo et al., 2020), or kirigami structures (Figure 1G) (Wang et al.,
2021), to redistribute the external forces on the specific

component unit. Of note, by applying these promising battery
configurations, stretchable batteries could be realized based on
the stretchability of supporting elastomers to redistribute force,
without strict requirements on the stretchability of the battery
components. One representative example is the stretchable
batteries built on island-bridge configurations (Yin et al.,
2018) with the battery components being rigid and connected
by stress-tolerant conductive networks. Not all the workable
structural designs schemed in Figure 1, such as the wavy
structure, are explored and demonstrated in stretchable Zn-
based battery systems, but these structures might be promising
to be applied in growing research. Strategies from material and
structural designing aspects to realize stretchable Zn-based
battery configurations are discussed in the following.

Material Designs for Stretchable Zn-Based
Batteries
In general, one representative strategy to obtain intrinsically
stretchable battery components is to mix the active material
with the precursor of the elastomer and then cure it. First, it
is necessary to first obtain a stretchable current collector and the
electrochemical active materials can be coated simultaneously
with the conductive materials and/or subsequently
electrodeposited in situ onto the current collector. For
example, Yan et al. (2014) have designed stretchable
rechargeable Zn–Ag batteries and then embedded conductive
AgNWs into stretchable PDMS. They could simultaneously act as
a stretchable composite current collector and cathode materials.
In addition, the Zn anode can also be electrodeposited onto the
stretchable AgNWs–based electrode to gain stretchability. The as-
obtained Ag–Zn battery could endure stretchability up to 80%
deformation and deliver a decent output voltage of ∼1.63 V at a
current density of 1 mA cm−2 under 80% deformation with an
energy density of 0.44 mW h cm−2.

Printing technologies can be applied by one-spot mixing of all
the active materials as ink (Guo et al., 2021), including conductive
materials, electrochemical active materials, and the elastomer
precursors, together (Figure 2A). Wang et al. have used Ag2O
and Zn as cathode and anode materials (Kumar et al., 2017),
respectively, which can deliver excellent capacity at a rate of
2.5 mA h cm−2 and preserving their structure can maintain
structural integrity after being subjected to 100% deformation
(Figures 2B–E). Such outstanding structural stability can be
assigned to the excellent resiliency of the applied elastomer
against severe battery stretching (Kumar et al., 2017; Song
et al., 2020). It should be emphasized that in a stretchable
device, the structure resiliency is an important performance
parameter to evaluate the structural stability of the stretchable
device, which should rely on the selected suitable elastomers to
support active materials. In addition, Li et al. (2020) have also
applied the analogous strategy with screen printing to embed the
conductive circuit into the elastomer and conformally deposited
the electrochemical active materials onto the stretchable
substrate, building the zinc-ion microbattery. Despite
embedding the active material into the stretchable substrate,
Zhu et al. (2018) have also developed more facile strategy by a
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FIGURE 2 | (A) Screen-printing steps of a Zn–Ag2O battery on a stretchable textile, exhibiting the cathode and anode reactions. Stretched states of the Zn anode
(B) and the Ag2O cathode (C), and recovered states of the Zn anode (D) and the Ag2O cathode (E), respectively; scale bar: 50 µm (reproduced from Kumar et al. (2019)).
(F) Schematic diagram of the fabrication process of the fiber-shaped batteries (reproduced from Li et al. (2020)). (G) Kirigami strategies to obtain Zn–polyaniline batteries
with 400% stretchability. (H) The stable capacity retention under different tensile strain values (reproduced from Yao et al. (2021)). (I) Kirigami strategies to realize
Zn–air batteries with 100% stretchability to power a fan (reproduced from Qu et al. (2020)). (J) The PAM hydrogel electrolyte for mild Zn battery systems with a
stretchability over 3,000% (reproduced from Li et al. (2020)). (K) The PANa hydrogel electrolyte for alkaline Zn battery systems with a stretchability over 1,100%
(reproduced from Ma et al. (2019)).
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dip-coating strategy to design a stretchable substrate that is
modified from commercial polyurethane sponge, to host the
cathode and anode materials. The bonding force between the
conductive AgNWs and the stretchable substrates can be further
enhanced by introducing interfacial chemical anchoring (Huang
et al., 2019).

Structural Designs for Stretchable
Zn-Based Batteries
There are two types of structural designs applied in stretchable
Zn-based batteries, namely, fiber-shaped batteries and kirigami
structure–modified batteries. Generally, these devices in planar
configurations are not intrinsically stretchable by themselves, but
stretchability was realized when the battery was built up into a
serpentine fiber shape or kirigami shape.

As for the fiber-shaped batteries, one representative example
in Zn-based batteries is as follows: Li et al. (2018) have first
utilized facile methods to coat/deposit the active cathode and
anode materials on two separate conductive yarns and then
wrapped them around an elastic fiber, finally obtaining
stretchable yarn–Zn–MnO2 batteries (Figure 2F). The as-
fabricated battery demonstrated an outstanding mechanical
stretchability of up to 300% deformation. The fiber-shaped
batteries also deliver good tailorability and outstanding energy
density (53.8 mW h cm−3). In addition, the fiber-shaped
Zn–Ag2O battery was also designed by sequentially depositing
the zinc anode, gel electrolyte, and Ag cathode onto a spring-like
copper current collector with remarkable rate 3.5 mA h cm−2,
where the battery could be stretched to 100% and could maintain
its capacity after 500 times of deformation (Zamarayeva et al.,
2017; Chu et al., 2021). Another example of the fiber-shaped Zn-
ion battery is fabricated by inserting the cathode (Mg0.23V2O5)
and anode (Zn wire) into a curled spring to obtain stretchability
(Xu et al., 2020). The prospect of the fiber-shaped battery is
promising that, despite being capable of withstanding large
stretching stresses, another important application scenario is
to be integrated into the energy fabric to realize a large area of
integrated energy storage cloth (Chen S. et al., 2020; Wang L.
et al., 2020).

Another workable approach was applying kirigami strategies
by cutting and folding planar batteries for strain-tolerant
configurations, while the strain was redistributed relying on
performing out-of-plane deformation at local positions and
reduced by the blank area. Kirigami-derived configurations
(e.g., cellular, pyramid, and basket patterns) have already been
explored for stretchable Li-ion batteries and supercapacitors (Fu
et al., 2016; Ning et al., 2018), while such configuration designs
have recently been demonstrated for stretchable Zn-based
batteries. One advantage of kirigami-shaped batteries is their
capability of maintaining planar geometries, which make them
ready to be integrated with other wearable electronics compared
to other mountainous structures. For example, Yao et al. (2021)
have demonstrated editable and cuttable polyaniline–Zn batteries
through different editing programs as a stretchable honeycomb-
like structure, which could deliver stable electrochemical
performance even enduring the tensile strain of up to 400%

(Figures 2G,H). In addition, the stretchable Zn–air battery was
also demonstrated by the kirigami-cutting strategy, obtaining a
160% stretchable serpentine-shaped battery (Qu et al., 2020)
(Figure 2I), where stretchable Zn–air battery can deliver
11.5 Wh L−1 and the performance was stable even subjected to
100% deformation with slight variation of the output voltage
compared to the initial state.

Stretchable Electrolytes for Stretchable
Zn-Based Batteries
After discussing the material and structural design, the main
strategy to realize stretchability of electrode materials is to
combine them with elastic substrates. Regarding aqueous
electrolytes as another significant component, polymer-based
electrolytes were designed and applied, which not only act as
ion conductors but also as separators (Lopez et al., 2019; Chen P.
et al., 2020; Wang Z. et al., 2020). The most attractive is the
designated properties from these polymer networks, such as
stretchability, antifreezing, and self-healing properties (Lu
et al., 2020). Specifically, to enhance the mechanical
stretchability of polymeric electrolytes, a dual-network strategy
can be applied by introducing two sorts of polymer networks to
disperse the external force (Ma et al., 2019). In addition, to endow
the functionality, modifications of foreign functional molecules,
such as antifreezing molecules (Mo et al., 2019), can be
introduced into polymeric networks to endow the whole
electrolyte with the antifreezing properties. Very recently, there
are some detailed reviews on the designing strategies on polymer
networks for aqueous batteries for specific hydrogel designing
chemistries (Wang Z. et al., 2020; Mohanta et al., 2020).

For Zn-based batteries, there are generally two types of
aqueous electrolytes, namely, mild electrolytes and alkaline
electrolytes, which have different requirements on stretchable
electrolytes. First, regarding the mild electrolytes, the highly
cross-linked polyacrylamide (PAM) hydrogel was
demonstrated with a high ionic conductivity of up to 17.3 ×
10−3 S cm−1 and remarkable stretchability of up to 3,000%
deformation (Figure 2J) (Li et al., 2018), which has
successfully been applied to different Zn-ion battery systems
in mild electrolytes, where the battery performance can
accommodate a high specific capacity of 302.1 mA h g−1 and a
volumetric energy density of 53.8 mWh cm−3. In addition, these
delivered a high capacity retention of 94.8% after cycling
100 times when subjected to a strain of 300%.

On the other hand, regarding the alkaline electrolytes, the
sodium polyacrylate (PANa) hydrogel was applied for
nickel–cobalt–based cathodes as well as air cathodes. However,
the stretchability of PANa polymer networks is not satisfying,
showing even decrease in the alkaline environment. Improving
strategies have been applied by introducing cellulose to build
dual-network hydrogel that can be stretched over 1,100% (Ma
et al., 2019). The as-obtained Zn–air batteries can be stretched up
to 800% deformation (Figure 2K). Apart from the realization of
stretchability, the as-fabricated Zn–air battery exhibits a high
power density of 108.6 mW cm−2, increasing to 210.5 mW cm−2

upon being 800% stretched, because of the increased contact areas
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between active materials and the hydrogel electrolyte. It should be
noted that the adhesion is one of the most significant factor to
determine the stability of flexible/stretchable batteries with
multiple layers, especially for the hydrogel electrolyte layer and
electrode layers. Introducing effective adhesives can solve this
issue, but it needs more delicate material designs to guarantee the
adhesion and resilience at the wet interface.

Improving Directions for Future Stretchable
Zn-Based Batteries
Through material and structural designs, stretchable zinc
batteries can be realized with remarkable stretchability and
good performance retention after cycled stretching. However,
there are still some aspects, from our point of view, that need to be
further strengthened from scientific and technical points.

The first is the low utilization of active materials. Generally,
high stretchability and high electrochemical performance trade
off with each other, because the system definitely needs the
introduction of extra dispersing materials to enable
stretchability and redundancy in volume to release strain in
batteries. Thus, careful calculations are needed to decrease the
gravimetric and volumetric capacity to improve corresponding
energy densities (Wang D. et al., 2020). The second is the poor
contacting and adhering forces at the interface of different layers.
Considering batteries are always layered structures with layer-by-
layer stacking of different materials based on weak physical
bonding, they are easy to delaminate under external stresses.
Thus, it is necessary to introduce chemical bonds at the interface
and simultaneously attempt to reduce the shearing force at the
interface of each specific spot. In addition, the configurational
designs to dilute the external applied forces are another type of
strategies to maintain the structural and performance stability
(Liao et al., 2019; Qian et al., 2019; Hansen and Liu, 2021). The
third is that more number of functionalities should be added into
the stretchability to realize the final application as wearable power
supplies. Material properties through the material design, such as
antifreeze, self-healing, waterproof, and degradable features, can
be introduced, especially through the applied electrolytes. The
fourth is that the stretchable batteries should be integrated into
the wearable electronic system (Liang et al., 2017b), and there
would be some derivative requirements on such stretchable
batteries, such as softness and skin conformability. Thus, a
more in-depth understanding of compatible integration of as-
fabricated stretchable Zn batteries is needed. The fifth is the
evaluation parameters on stretchability. Considering different
battery designs and that their performances are evaluated
under different variable parameters, such as the stretching
strain and thickness of the device, it would be informative and

helpful to compare the battery performance once the
evaluating parameters are unified. The sixth is the
scalability of stretchable batteries. Scalability is the final
target to developing the stretchable batteries. Developing
suitable materials compatible with the current fabrication
equipment is the primary issue, where the corresponding
scientific challenges correlate with the addition of
stretchable components into the battery configurations and
meanwhile guarantee the battery performance. Some
successful attempts for scalability have been demonstrated,
such as screen printing for Ag–Zn alkaline batteries (Kumar
et al., 2017), which can be applied for large-scale preparation
based on other battery material systems.

CONCLUSION

The field of stretchable Zn-based batteries has witnessed rapid
development in the past few years, showing huge potential for
practical wearable applications. We summarize the state-of-the-
art stretchable aqueous Zn-based batteries from aspects of
material designs and structural designs. It should be
emphasized that, even though batteries in rigid configurations
have received more attentions than stretchable/flexible batteries,
the developments of stretchable devices is beginning to catch up.
Continuous efforts will be devoted to pursuing higher energy
density, mechanical stability under stretched state, low-cost
fabrication strategies. We hope that this review can attract
more attentions on the rational designs on battery materials
and structures for stretchable aqueous Zn batteries to be well-
integrated into human’s daily life.
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