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Microalgae offer a great potential to contribute significantly as renewable fuels and
documented as a promising platform for algae-based bio refineries. They provide
solutions to mitigate the environmental concerns posed by conventional fuel sources;
however, the production of microalgal biofuels in large scale production system
encounters few technical challenges. High quantity of nutrients requirements and water
cost constrain the scaling up microalgal biomass to large scale commercial production.
Crop protection against biomass losses due to grazers or pathogens is another stumbling
block in microalgal field cultivation. With our existing technologies, unless coupled with
high-value or mid-value products, algal biofuel cannot reach the economic target. Many
microalgal industries that started targeting biofuel in the last decade had now adopted
parallel business plans focusing on algae by-products application as cosmetic
supplements, nutraceuticals, oils, natural color, and animal feed. This review provides
the current status and proposes a framework for key supply demand, challenges for cost-
effective and sustainable use of water and nutrient. Emphasis is placed on the future
industrial market status of value added by products of microalgal biomass. The cost factor
for biorefinery process development needs to be addressed before its potential to be
exploited for various value-added products with algal biofuel.
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INTRODUCTION

The development of renewable energy resources has become a priority due to climate change and
dwindling fossil fuel reserves. Algae holds much promise as a potential feedstock for biofuels because
of their higher capacity for productivity per unit land area than conventional terrestrial feedstocks
(Chisti, 2007; Wijffels et al., 2010; Georgianna and Mayfield, 2012; Khrunyk et al., 2020). Algal
biofuel is immediately compatible with our existing transportation infrastructures like refineries, fuel
stations, and the engines of cars (Hannon et al., 2010). If a profitable and sustainable algal biofuel
process can be developed, the potential benefits of the technology are compelling including the use of
non-arable land, recycling wastewater, and carbon dioxide.

An extensive research program on algal biofuels was sponsored more than 40 years ago by the US
Department of Energy (DoE) at the National Renewable Energy Laboratory during the oil crisis of
the 1970s. Despite being a successful demonstration of the feasibility of algal biomass as a source of
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oil, this Aquatic Species Program (1978–1996) was discontinued
due to the decreasing federal budget and lower crude oil market
(Hu et al., 2008). In the last decade, microalgae reemerged as a
source of biofuel and concerted effort has been made towards
isolating potential microalgal strain, strain improvement,
elucidating biosynthesis pathways, optimize growth and
cultivation parameter, harvesting, coproduct development, fuel
extraction, refining and residual biomass utilization (Garrido-
Cardenas et al., 2018; Wood, 2021). Like academic research, huge
claims about the promise of algal biofuel (Chisti, 2007) and the
high crude oil price at that time motivated a large number of
companies to take an interest in microalgal biofuel, investing
significant amounts of money to pursue that objective. Recent
technoeconomic analysis has demonstrated that with existing
technological readiness, algal biofuel is cost competitive with
fossil fuel if combined with the production of high-value co-
products (Ruiz et al., 2016; Cruce and Quinn, 2019). Today, most
algae based companies have adopted parallel business plans that
focus more on the expensive algae byproducts such as cosmetic
supplements, nutraceuticals, specialty oils, natural color, and
animal feed.

In this review, we provide a perspective on developing
sustainable algal cultivation practices and bioproducts from
microalgae to make the process of algal biofuel efficient and
economically competitive. We have restricted this review to the
photoautotrophic microalgal biomass production and to
process them into biodiesel or converting them into biocrude
at high temperature and pressure through hydrothermal
liquefaction but does not include any other form of algal
biofuel like bioethanol, biogas, or biohydrogen. The
worldwide commercial production of microalgal products is
also discussed.

CHOICE OF THE MICROALGAE
PRODUCTION SYSTEM

Large capital investment in microalgae cultivation still limits
economic biomass production (Acién et al., 2012; Ruiz et al.,
2016; Kaur Nagi et al., 2021). Microalgae are not growing at a
scale (<5 ha) that is required for the level of cost economy analysis
of biofuels. To make “high-volume, low-cost” product like
biofuel, microalgal production system must be increased
several orders of magnitude, and it demand strategies to
reduce the capital expenditure. A considerable variety of
systems are available for photoautotrophic production of
microalgal biomass, and they are broadly categorized into
open raceway ponds and closed photobioreactor systems.
Despite the challenge of biological contamination and water
loss, raceway ponds are the major commercial production
systems of algae biomass because of their large scalability,
lower capital, and operational costs (Borowitzka and Vonshak,
2017; Schipper et al., 2021). To balance the strengths and
weakness of open and closed systems, algae is cultivated in
combined setup of photobioreactor and raceway, called as
hybrid system. For production of microalgal biodiesel, two-
stage hybrid system could be suitable where exponentially

growing algal biomass is transferred from photobioreactor to
open raceway ponds under nutrients replete condition to induce
higher lipid yield (Liyanaarachchi et al., 2021).

Various research attempted to reduce the capital as well as the
expenditure cost of the production systems (Table 1). Capital
investment although about one order magnitude lower in an open
pond than photobioreactor and again, the construction costs can
be reduced by 24–75% if self-sealing layers are developed, rather
than using synthetic liners, at the soil-water interface by
microalgae and associated organisms through bioclogging
process (Coleman et al., 2014; Pattullo et al., 2019). Sapphire
Energy demonstrated stable microalgal productivity in an unlined
pond (2,000 m2 surface area, 500,000 L volume, 10 cms−1 flow
rate) at the Las Cruces test facility, New Mexico without any
issues with suspended materials or major water loss through soil
(McBride and Merrick, 2014). High-value products like
eicosapentaenoic acid (EPA) and omega-3 fatty acid are
produced in the unlined pond of Qualitas Health in Imperial,
Texas (Efroymson et al., 2020). Greenhouse gas emissions
associated with synthetic pond liner manufacture and
transportation could be eliminated by using unlined ponds
and which eventually will make technology more sustainable
(Canter et al., 2014; Greene et al., 2020). Closed raceway ponds
were also designed by enclosing a normal raceway ponds with
transparent cover that prevents escaping supplied CO2 into
atmosphere and consequently reduce the expenditure of CO2.
Instead of using paddle wheel, airlift-driven raceway can reduce
around 80% power consumption for algal production (Kumar
Singh et al., 2021).

A considerable variation exists in data in literature and
opinions among experts about the selecting the suitable
production system for algal bioenergy. However, a general
consensus of several life cycle assessment (LCA) studies
indicates raceway ponds are better than photobioreactor in
terms of net energy ratio and global warming potential (Ketzer
et al., 2018; Herrera et al., 2021). The use of expensive
photobioreactor system can be justified for making high-value
products. Furthermore, the location of the production facility is
one of the divers for selecting a commercial production system.
For instance, astaxanthin is produced in raceway ponds in
Hawaii, United States by Cyanotech Corporation, but it is not
feasible under the sun of the Arava desert due to high water
evaporation. Therefore, Algatech in Israel uses photobioreactors
for the same product. However, substantial energy is used for
cooling the photobioreactor. To minimize the cost associated
with temperature control, reactor design or strain improvement
should be considered in future research. Similar to NASA’s
OMEGA (Offshore Membrane Enclosures for Growing Algae)
system, microalgae can be grown in floated plastic tubes in
seawater which functions as a temperature buffer (Wiley et al.,
2013).

An alternative to the traditional cultivation systems, biofilm-
based systems have tested for biofuel production as summarized
by Gross et al., in 2015 (Gross et al., 2015). Algal biofilm-based
technology was first developed byWalter Adey in the 1980s called
Algal Turf Scrubber™ (ATS) in which naturally seeded
filamentous algae grow on a screen in a shallow basin through
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which water is pumped (Adey et al., 2011). This is used to treat
wastewater and was commercialized it through a company
Hydromentia based in Florida. Rather than in suspension,
algae are attached to the surface and harvested through
scraping and thus avoid the expensive harvesting procedures
in traditional microalgal cultivation. Although ATS is a robust
system for algal biomass production and its productivity

comparable to the raceway ponds, higher ash (30–50%) and
lower lipid in algal biomass are major challenges to use them
for biofuel (DeRose et al., 2019). ATS could be a viable option for
biofuel production coupling with wastewater treatment if the ash
content can be reduced by growing desired algal communities
especially by avoiding silica containing diatoms which contribute
up to 65% of the total ash (Adey et al., 2011; Kim et al., 2021).

TABLE 1 | Comparison of cost analysis of microalgal cultivation systems.

Cost factor Photobioreactor Raceway
ponds

Hybrid system Unlined pond OMEGA (Offshore Membrane
Enclosures for Growing

Algae) system

Algal turf
scrubber

Capital cost Land cost Land
occupation low

High Moderate High Low High

Building cost High Low Moderate Low (linear cost is
eliminated)

High Low

Operation
cost

CO2 purging
efficiency

High (CO2

loss low)
Low Moderate Low High Not applicable

Energy input for
mixing

High (High) Low Moderate Low High Low

Energy for
maintaining
temperature

High Nil Moderate Nil Nil Nil

Water cost (water
evaporation lost)

Low High (water
evaporation high)

Modarate Very high (chances of
water leaking through
soil)

Low High

Productivity High Low High Low High Moderate
Biomass quality Reproducible Variable Reproducible Variable Reproducible Variable (ash

content high)

(Chisti, 2007; Adey et al., 2011; Wiley et al., 2013; Narala et al., 2016; Borowitzka and Vonshak, 2017; Efroymson et al., 2020; Liyanaarachchi et al., 2021)

FIGURE 1 | Integrated pest management process for microalgae cultivation.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7351413

Nagi et al. Algal Biofuel Cost-Effective Approach

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


SUSTAINABLE CULTIVATION PRACTICES

Maintaining long-term, stable, and highly productive algal
biomass production in large scale outdoor conditions is the
most significant barrier in algal biofuel commercialization.
Much like terrestrial crops, microalgal cultivation systems are
invaded by weeds, pests, and pathogens, making crop protection a
major challenge in the commercialization effort. It is estimated
that 30–40% of annual algal crop production is lost to pond
crashes (Newby et al., 2016). In this section, we discuss integrated
pest management practices (IPM) for healthy algal crop
cultivation and a sustainable crop protection process against
undesirable biomass losses (Figure 1).

IPM uses proactive strategies rather than controlling the pests
in the production system. Selection of robust strain in terms of
adaptability in varying water chemistry, tolerant to a wide range
of field temperature is an essential criterion for any successful
algal field cultivation (Lee and White, 2019; Harmon et al., 2021).
A robust stain can withstand the variation of water quality
parameters that is common in industrial effluents. Selection of
suitable microalgal candidates is crucial for recycling flue gases
that has high temperatures, fluctuating gas composition, and the
presence of toxic chemicals (Kondaveeti et al., 2020). It is often
argued that indigenous strains have better fitness to grow in that
local environment (Winckelmann et al., 2015; Mutanda et al.,
2020). Sero and colleagues reported that the microalgal strains
isolated from extreme urban wastewater environments have
inherent biological traits to proliferate in stress and capable of
producing high biomass yield using wastewater (Sero et al., 2021).
Adaptive evolution, mutagenesis, genetic engineering, and
systems biology approaches have been used now for
microalgal strain improvement with desired traits (Arora and
Philippidis, 2021; Kumar Singh et al., 2021; LaPanse et al., 2021).
Growing extremophilic microalgae have a successful commercial
history. For example, Dunaliella is used for commercial
β-carotene production in extreme salinity, and widely
cultivated microalgal species Spirulina is grown in a highly
alkaline solution. Extreme conditions help in reducing
contaminations from other algal weeds or pests (Varshney
et al., 2015; Lafarga et al., 2021). Alkaliphilic Chlorella used for
biofuel also showed resistance to grazers in high alkaline cultures
(Vadlamani et al., 2017). In addition to pest management,
alkaliphilic microalgae can grow efficiently without external
sparging of CO2 as alkaline solutions scavenge atmospheric
CO2 at high rates. If a direct air capture technology is
established with those microalgae, the capital expenditure, as
well as around 65% of total operational cost associated with the
recovery of CO2 from flue gases and delivery to the production
unit, can be eliminated (Davis et al., 2016).

Amoeba, ciliates, rotifers, flagellates and crustaceans are the
commonly found grazers inmicroalgal cultivation (Rajvanshi and
Sayre, 2020). Infections from fungi like chytrid, bacteria and virus
may affect productivity (Grivalský et al., 2021). Crop rotation
over the year is quite essential to prevent pest population buildup.
The development of amicroalgal cell line resistant to pests is another
preventive approach that was demonstrated in Synechococcus
elongatus against amoeba attack (Simkovsky et al., 2012).

Pesticides or chemicals are often used to mitigate the challenges
of contamination like traditional agriculture. Extensive application of
insecticide to maintain productivity causes burden of the
maintenance cost, development of insecticide resistant pest and
water quality loss of nature. More than 550 species of insects
were found resistant to insecticide in agriculture, albeit there is
no report from algal cultivation (Whalon et al., 2008; Smith and
Crews, 2014). However, commercial production of microalgae has
the capacity to repeat the same environmental damage if we do not
follow the IPM practice. Thus, identification of pests and
understanding their life cycle are primary steps to develop a
controlling measure. It is possible to forecast pest attacks and
take preventive measures if we have clear knowledge about pest
biology and their interactions with algae and the environment.
Pest monitoring through microscopy is a common practice in
algae cultivation. On several occasions, algae crashes were
reported within 2–5 days after detection of pests. Thus,
increasing the detection sensitivity and developing early
detection tools are essential for algal crop protection
techniques. Besides monitoring pests through molecular
techniques, algal phenotypic response to pests was employed
for early detection. For example, rapid decline in quantum yield
(Fv/Fm) and non-photochemical quenching in microalgae
were reported prior to pond crashes due to parasitic and
grazers attack, respectively (McBride et al., 2014; Deore
et al., 2020). Infochemicals released by Microchloropsis
salina due to the grazers attack was used as a marker for
pond health monitoring (Reese et al., 2019; Roccuzzo et al.,
2020).

The use of mechanical or biological control rather than
conventional chemical treatment is the essential component of
IPM strategy (Lee andWhite, 2019; Al-Jabri et al., 2021). The pest
types and their density often determine control operation.
Mechanical treatments like pump cavitation or filtering
through plankton net are applied to remove larger grazers like
rotifers (Kim et al., 2017). Selective feeding of invertebrate
consumers can be used to control grazers in algal ponds.
Smith and colleagues experimentally demonstrated that
introducing zooplanktivorous fish can control the negative
impact of grazers and increase lipid productivity in open
raceway ponds (Smith et al., 2010). This concept stems from
the trophic cascade principle of ecology, which posits that the
biomass of primary producers can be maintained by top
predators that reduce the population density of primary
consumers (Shurin et al., 2014). Invasion of undesired algal
strains affects the community structure and alters the biomass
productivity and composition that have an impact on the
biorefinery process. Maintaining high density cultures in the
field is an effective approach to protect against invading algal
weed in field cultivation (Richmond et al., 1990). Like pest
prevention, biological control was applied to treat small
unicellular contaminants such as Chlorella vulgaris and
Monoraphidium minutum in Spirulina culture. Herbivorous
rotifer Brachionus plicatilis that can selectively ingest only
small single-celled algae because of their small mouth opening
were introduced in long filamentous Spirulina culture (Mitchell
and Richmond, 1987).
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Microalgal consortia have the potential to offer crop
protection and increase the stability of yields (Smith et al.,
2010; Newby et al., 2016; Mattsson et al., 2021). The use of
consortia makes the biorefinery process more complex for
extracting any species-specific product, however, managing
microbial consortia could be a viable industrial practice for
biofuel with higher productivity and stability. Consortia
benefit from the “portfolio effect”, whereby some species
populations will increase in response to pest or environmental
fluctuations even if others decline (Shurin et al., 2014). Algal
consortia could enhance the nutrients-use efficiency, eventually
reducing the fertilizer cost of algal biomass production (Mandal
et al., 2018b). In addition, consortia increase productivity in the
field through niche partitioning, facilitation, and
complementarity (Cardinale et al., 2007; Mandal et al., 2018a).
However, random inclusion of species in algal consortia showed
success or failures in previous algal biofuel studies. We urge here
to design consortia based on the algal complementary traits.
Whether it is intentional or nuisance, microbial consortia is the
reality for open pond raceway and even in a photobioreactor.
Molecular 16S and ITS2 regions analysis of year-long cultivation
of industrial microalgal cultivation showed how the diversity of
prokaryotic and eukaryotic communities changes over time, and
pond productivity and stability positively linked with eukaryotic
species diversity of the pond (Beyter et al., 2016). Analogous to
rhizosphere in plants, phycosphere is proposed, but it is not
studied systematically in commercial production (Wirth et al.,
2020). Besides parasitic microbes, many microbes observed in the
cultivation have a mutualistic relationship with microalgae and
provide essential vitamins for microalgal growth (Kazamia et al.,
2012; Yao et al., 2019; Kaur Nagi et al., 2021). Thus, careful
management of microbial food-web structure can maximize crop
protection and improve crop yield for industrial algal biofuels
production (Yun et al., 2016).

In IPM, strong record-keeping and making a correlation of
data between yield and operational activities over seasons is a
common practice. The factors that determine pest pressure must
be identified to predict the pest development time in future
operations. The evaluation of the effectiveness of pest control
treatments guides selecting the best crop protection strategy.
Importantly, translating laboratory-scale results to farm-scale
production is a shortcoming in the scaling up of algae
cultivation. Field cultivation faces different selection pressures
like variable irradiance, temperature, and additional biological
challenges—most of which are not seen in the bench-scale
studies. To close the lab-to-field yield gap for reliable biomass
production, those variables can be tested at a small laboratory
scale in more controlled environments before tested at a
pilot scale.

WASTEWATER RECYCLING AND
NUTRIENT UTILIZATION

Considering the large amounts of wastewater generated globally,
around 28–38% of wastewater is treated in developing countries
and it became down to almost 8% in underdeveloped ones

(Sato et al., 2013). Nitrogen, phosphorus, other macro or
micronutrients, the organic carbon in wastewaters is being
used for the growth of microalgae. To produce each metric
tonne of dry algal biomass requires around 88 kg of elemental
N and 12 kg of elemental P, which in turn puts a significant
impact on the economy of algal biomass production (Pate
et al., 2011). Algal cultivation and wastewater treatment can be
integrated to accomplish improved environmental and
economic stability. This will not only save the cost of the
nutrients of algal biomass production but also surplus the
wastewater treatment cost. Techno-economic suggests the
production cost can be reduced to more than five times
when coupled with wastewater treatment (Acién et al., 2012).

The concept of treating municipal wastewater using
microalgae was initiated in the 1950s by Oswald and
colleagues at the University of California, Berkeley using high-
rate algal ponds with shallow depth and paddlewheel mixed
(Oswald and Golueke, 1960; Benemann, 1980; Benemann
et al., 1980). Later, it advanced to different types of
cultivations systems like photobioreactors, earthen lagoons,
concrete tanks, corrugated raceway ponds, biocoils, for use
(Craggs et al., 1997; Park et al., 2011; Posadas et al., 2015;
Randrianarison and Ashraf, 2017). The advantages and
limitations of using an algal turf scrubber system for treating
wastewater and biofuel production were described in earlier
section. The nutrient removal efficiency of different microalgal
strains and their productivities varied in different cultivation
systems and wastewater types as illustrated in Table 2. The
treatment efficiency of algae-based system and biomass
productivity can be improved by operating parameters such as
mode of cultivation (batch or continuous), aeration, changing
water chemistry (pH, adding require nutrients) (González-
Camejo et al., 2021). Further, different stresses like pH,
temperature, salinity changes or nutrients reduction in growth
media have been suggested to increase lipid yield for biofuel
production (Bélanger-Lépine et al., 2018).

The essentials for evaluation of wastewater treatment schemes
involving algae include a clear understanding of the standard
steps of treatment to justify the expense of such developmental
efforts and more importantly, the characteristics of the
wastewater with large flows (Laurens, 2017). These
wastewaters are highly turbid, often polluted by algal growth
inhibitors like organic compounds in highly toxic concentrations,
salt accumulations, and allelopathic agents excreted by algae
themselves (Bacellar Mendes and Vermelho, 2013). Be it a
monoculture or polyculture of microalgal strains, efficient pilot
harvesting of biomass is vital, especially when the treated
wastewater must be brought to re-use. Leaving back the
traditional concept of drying, solvent extraction of lipids, and
transesterification for the production of fatty acid methyl esters,
all the time more interest is being directed towards the
hydrothermal liquefaction (HTL) process for bio-oil
productions (Al-Jabri et al., 2021; Chen and Quinn, 2021).
This aqueous phase from the HTL process contains high
concentrations of nutrients like nitrogen, phosphorus, and
other elements that can be recycled for microalgal growth.
While varying compositions of the algal biomass in wastewater
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is a shortcoming in the refinery process, converting the
carbohydrates, proteins, and lipids agnostically to bio-oil
would be a feasible choice.

POSSIBLE CO-PRODUCTS WITH BIOFUEL
AND THEIR MARKET

Amongst various non-conventional sources, microalgae are
promising microorganisms that play a key role in the biobased
economy, since they serve as a continuous and reliable source of
several bioactive natural products (Fabris et al., 2020). Microalgae
are factories for producing various compounds other than the
only lipid for making biofuel. Lipid is converted into biodiesel
through transesterification process in which triglycerides react
with alcohol in the presence catalyst. In thermochemical process

like pyrolysis, gasification, combustion or hydrothermal
liquefaction biomass is thermally breakdown into organic
chemicals which reform into various types of biofuels
(Figure 2). The biochemical conversion involves the hydrolysis
of biomass by bacteria into fermentable sugars which is converted
into bioethanol, biogas and biohydrogen (Saad et al., 2019). As
shown in Figure 2, the algal biomass residue after high-value co-
products and biodiesel production can be route into
thermochemical or biochemical process for maximal
valorization of algal materials. However, most microalgal
companies focus on single product development. Recently, the
focus of microalgae biomass delivering a single product is shifting
towards delivering multiple products along with lipid derived
biofuels in a biorefinery approach (Wijffels et al., 2010; Ansari
et al., 2017). The current production of microalgae derived
products (more than 75%) are finding their way towards food,

TABLE 2 | Microalgal nutrients removal efficiency and biomass productivity in different wastewater treatment.

Algal species Wastewater
source

Algal cultivation
system

Uptake/Removal
efficiency

Biomass
productivity

Commodity (Product/
Co-product)

Reference

Scenedesmus sp. Domestic
wastewater

Pilot scale study (20 days) NH4-N: 80% NO2-N:
99% NO3-N: 86%
PO4-P: 66% SO4:
76% Ca: 84%

0.68 g/L–0.84 g/L 43.3% SFA, 44.4%
MUFA, 12.3% PUFA

Baldev et al.
(2021)

Chlorella vulgaris,
Chlorococcum vitiosum,
Chroococcus turgidus,
Desmococcus olivaceus,
Scenedesmus acutus,
Scenedesmus dimorphus
and Oocystis solitaria

Coke plant waste
water

Bioreactor in lab scale
semi-continuous mode
(5 L—1,400 rpm)

NH4-N: 42.7%
(46 mg L−1) Total
CN: 47.83%
(3.73 mg L−1) TDS:
22.1% (1896 mg
L−1 O2)

NR NR Kaur Nagi
et al. (2021)

Isochrysis sp. Sewage discharge 500 ml flasks operating as
photo bioreactor

TN: 5.57% TP:
84–94% COD:
89–93% NH4-
N: 9.31%

55.5 ×
105 cells ml−1

63.0, 16.92% MUFA,
20.00% PUFA

Kumar Singh
et al. (2021)

Desmodesmus sp. PW1 Piggery wastewater Laboratory scale 30 L
photobioreactor

TN: 79.2%
TP: 65.3%

0.81 g
L−1–1.76 g L−1

Total fatty acid/dry
weight (%): 29.4 ± 0.17
28.3 ± 0.21 SFA 39.9 ±
0.93 MUFA 31.3 ± 1.74
PUFA

Chen et al.
(2020)

Scenedesmus obliquus
FACHB-276

Municipal
wastewater

1 L Erlenmeyer flasks TN: 96% TP: 80%
COD: 85%

0.83 g L−1 Lipid content: 56% Qu et al.
(2020)

Chlorella sorokiniana CY-1 Palm oil mill effluent
(POME)

5 L Novel-designed
photobioreactor (NPBR)
and glass-made vessel
photobioreactor

COD: 93.7% TN:
98.6% TP: 96.0%

NPBR: 408.9 mg
L−1 d−1

Lipid content: 14.43%
(NPBR)

Cheah et al.
(2020)

Tetraselmis indica BDU 123 Pharmaceutical
wastewater

250 ml flasks COD: 66.30% TOC:
78.14% NO3-N:
67.17% PO4-P:
70.03%

46.85–61.25 mg
L−1 d−1

Lipid Productivity (mg
L−1 d−1): 15.69–17.15

Amit and
Ghosh.,
(2020)

Dunaliella FACHB-558 Anaerobically
digested poultry
litter wastewater

500 ml flasks operating as
photo bioreactor

TN: 63.8% TP:
87.2% TOC: 64.1%

678 mg L−1 7.26 mg L−1 β-carotene Han et al.
(2019)

Hindakia tetrachotoma ME03 Municipal
wastewater

Flat airlift photobioreactor
(PBR) (1 L)

NR 0.72 ± 0.01 g L−1 0.11 g of bioethanol/g of
microalgal Biomass

Onay (2019)

Chlorella vulgaris Dairy wastewater
effluent

Photobioreactor set-
up (10 L)

BOD: 85.61% COD:
80.62% SS: 29.10%
TP: 65.96% TN:
85.47%

1.232 dry weight
g L−1

22.65% SFA
77.35% UFA

Choi (2016)

(NR—Not Reported, TDS—Total Dissolved Solids, COD—Chemical Oxygen Demand, BOD—Biological Oxygen Demand, TN- Total Nitrogen, TP—Total Phosphorus, TOC—Total
Organic Carbon, SS- Suspended solids, SFA—Saturated Fatty Acids, UFA—Unsaturated Fatty Acids, PUFA—Polyunsaturated Fatty Acids, MUFA—Monounsaturated Fatty Acids).

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7351416

Nagi et al. Algal Biofuel Cost-Effective Approach

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


feed, nutraceutical, and cosmetic industries (Nethravathy et al.,
2019; Rahman, 2020). Thus, if algal biofuel is combined with the
production of bulk chemicals, food, and feed ingredients, the cost
gap between biofuel and fossil fuel would be closed (Shukla and
Kumar, 2018). The proposed biorefinery approach, on other
hand, may cause the market saturation of high-value products.
Thus, the market niche and demand of such algal high-value
products must be analyzed critically. However, nowadays people
are trending towards natural products, especially in the COVID
era. In the following section, we analyzed the algal products that
can zeal with algal biofuel, their potential, current industrial
situation, future market (Table 3).

Pigments
Microalgal pigments is a profitable business nowadays. Pigments
from algae such as Dunaliella, Scenedesmus, Nannochloropsis,
Haematococcus, Muriellopsis, Chlorella, Phaeodactylum,
Spirulina, Porphyridium have gained more popularity in the
health food industry as they produce carotenoids, chlorophylls,
and phycobiliproteins in high amounts (Noreña-Caro and
Benton, 2018; Arashiro et al., 2020; Silva et al., 2020).
Currently, the global demand for pigments produced from
natural sources is growing rapidly with great health benefits to
humans (“BCC Research: Market Research., 2021 Reports and
Industry Analysis”). In terms of commercialization, pigments
from microalgae have a high revenue generation > USD 1 billion
(selling price—USD 400/kg) and the global carotenoid market is
expected to be USD 2.0 billion by 2026. The lutein and zeaxanthin
eye health care market from microalgae crosses USD250 million
per year. The market for canthaxanthin and zeaxanthin is still in
its developing stages (Lin et al., 2015; Pereira et al., 2021). On

other hand, the average market size of astaxanthin and β-carotene
from Dunaliella for food supplements is in the range of 2,500
USD per kilograms and 75 million USD (Hejazi and Wijffels,
2004; BIOPRO, 2013; Levasseur et al., 2020). Astaxanthin is
considered the leading molecule propelling microalgal
biorefinery (Dawidziuk et al., 2017; Khoo et al., 2019) with
production costs shifting between 300 and 3600 USD/kg
depending upon the purity (Li et al., 2011; Dawidziuk et al.,
2017). Algae Health Science, Yunnan, China is one of the biggest
producers of astaxanthin fromHaematococcus pluvialis (Schultz.,
2020). Numerous pigments such as astaxanthin from marine
algae, xanthophylls, and phycobiliproteins from red algae, have a
great potential in cosmetic application (Morocho-Jácome et al.,
2020).

According to a recent study, mainly Spirulina and Chlorella
are the key algal strains that top the algal market worldwide in
health and nutrition with a production of 12,000 tons per year
and 5,000 tons per year, respectively (Koyande et al., 2019;
Nethravathy et al., 2019; Wang et al., 2020). Chlorophyll and
phycobiliproteins have been widely used as coloring agents and
fluorescent markers in both strains due to their high stability
(Pulz and Gross, 2004; Dasgupta, 2016). Fucoxanthin product
named fücoTHIN® was used as a supplement in body weight
products (Liu J., 2016; Liu Q., 2016). Moreover, this valuable
pigment can be used in animal feed products as it is regarded as
safe (Yi et al., 2015). Algal Technologies Ltd., Israel (2018)
reported the fucoxanthin production from microalgae with a
growing global market of approximately USD 600 million during
2018–2025 (Global Fucoxanthin Market, 2020). The effective use
of microbial pigments depends on high productivity, production
costs, pigment characterization, and stability at a broader range of

FIGURE 2 | Integrated algal biorefinery process for biofuels and other value added co-products.
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TABLE 3 | Microalgal products and their commercialization potential.

Compound Marketed
products

Microalgae
species

Production
cultivation scale

Productivity Price Global market Industrial
importance

Producer/Suppliers References

β-Carotene Betatene,
Spray dried
powder

Dunaliella salina Closed PBRs and
open raceway,
1,200 tons/year

27 mg/g
β-carotene

US $
300–3,000/kg

280 million US$ USD
618.94 million by 2026

Health food Dietary
supplement
Pharmaceuticals
and Cosmetics

Cognis Nutrition and
Health Co. (Australia);
Nature Beta
Technology ltd.
(Israel); Aquacarotene
ltd. (Australia)

Figueroa-Torres
et al. (2020),
Harvey and
Ben-Amtoz. (2020)

Carotenoids Whole-cell
dietary
supplements,
Biomass,
pigments

Chlorella vulgaris Closed PBR,
4,000 tons/year

51–58% protein,
22.6 mg/g total
chlorophyll
2.7 mg/g total
carotenoid,
10–12% EPA

$10–20/kg
(Health food)

USD 210.15 million by
2024

Health food and
Nutritional
supplement

Chlorella
manufacturing and
Co. (Taiwan); Ocean
Nutrition (Canada);
Chlorella
manufacturing and
Co. (Taiwan)
BlueBiotech
International GmbH
(Germany)

Bhattacharya and
Goswami. (2020),
Figueroa-Torres
et al. (2020),
Market Data
Forecast, (2021)

Astaxanthin Bioastia®

extract,
Naturose
Powder
Astafactor®

(meal extract)
AstaPure®

Haematococcus
pluvialis

Closed and semi-
closed
photobioreactors,
Open raceway,
300 tons/year

23.2 mg/g
astaxanthin
2.8 mg/g beta-
carotene 10.2 mg/
g lutein

Nutraceutical
grade
astaxanthin
originating from
Haematococcus
pluvialis can
reach
6000 USD/kg

770 million USD by
2024 and reach 800
million by the end of
2026

Human Dietary,
supplement (Sports
nutrition, Suncare,
general health);
Aquaculture and
feed;
nutraceuticals;
antioxidant

Cyanotech
Corporation
(United States); Mera
Pharmaceuticals
Inc.(United States);
BioReal. Inc.
(United States);
Aquasearch
agatechnologies
(Israel)

Bhattacharya and
Goswami. (2020),
ALGATECH
(2020), Niizawa
et al. (2018)

Fucoxanthin FucoVital™ Phaeodactylum
tricornutum

PBR, flat-panel airlift
(FPA) reactor

42.0% protein;
C20:5 30.2%;
Fucoxanthin,0.18

168.62 USD/kg Fucoxanthin: USD
600 million during
2018–2025

Food supplement,
Antioxidant, feed

Algatech (Israel)
(ALGATECH 2020)

Figueroa-Torres
et al. (2020), Global
Fucoxanthin
Market. (2020),
Mutanda et al.
(2020),
Branco-Vieira et al.
(2018)

Allophycocyanin Spirulysat®

Electric Sky®

Bloo Tonic®

Arthrospira
platensis

Open raceway
pond and
photobioreactor,
10,000 tonnes/year

62.0% protein;
90 mg/g
phycocyanin
67 mg/g

200 to $2.2
million per
kilogram

Phycocyannin232.9
million USD by 2025
(Mu et al., 2019);
Spirulina USD 779
million by 2026

Food supplement
or bio colorant
application,
beverages (Food/
cosmetic industry)

Nature Beta
Technologies Cognis
(Australia); Panmol/
Madaus (Austria);
yanmar Spirulina
Factory (Myanmar);
ikken Sohonsha Corp.
(Japan)

www.spirain.com;
AlgoSource.,
(2020),
Bachchhav, et al.
(2020),
Bioeconomy.
(2020), Horizon.
(2020)

Phycoerythrin Fluorescent
label

Porphyridium
spp.

Closed PBR 47.1% protein;
15% EPA

$10000/kg
(Phycoerythrin)
$15/mg
(Fluorescent
label)

10–50 million USD in
2019

Food supplement;
Food additives,
Nutrition

BlueBiotech
International GmbH
(Germany);
Cyanotech (Hawaii,
United States);
InnovalG (France)

Figueroa-Torres
et al. (2020),
Nwoba et al.
(2020), Li, et al.
(2019)
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temperature and light (Morales-Oyervides et al., 2017). Being the
most revenue generating compounds in algal biorefinery
pigments can play a major role in the economy of biofuel
production (Ruiz et al., 2016; Mutanda et al., 2020).

Proteins
Microalgae are known for producing proteins with a healthy
balance of essential amino acids and widely used for decades as a
feedstock in the pharma and nutrition sectors. In past years,
proteins from microalgae have now been investigated thoroughly
in food sciences as a cheap and more sustainable source,
qualifying as proven alternatives to conventional ones, thus
meeting the global demands of protein in nutrition (Kay and
Barton, 1991; Becker, 2007). Several microalgal strains have a
protein content higher than conventional plant or animal sources.
For example, protein content in Spirulina platensis is 65%, higher
than that in meat (45%), soy flour (37%), milk (24%), or fish
(24%) (Younes et al., 2011; Barka and Blecker, 2016; Ritala et al.,
2017).

Algal proteins from Chlorella and Spirulina are recognized as
safe for human consumption. The market for algae protein has
witnessed a huge upsurged demand, due to their high nutritional
value, exploration by the vegan population, and being a
sustainable source. Currently, among the algal sources of
protein, blue-green algae hold the largest market share with
revenue surpassing USD 300 million in 2019. Asia- Pacific
algal protein market is expected to witness 6.5% CAGR till
2026. In 2019, Swiss food manufacturer Nestle made a
strategic partnership with Corbion for the development of
commercial microalgae-based protein products. The
microalgae proteins and peptides hold anticancer,
immunosuppressive, anti-hypertensive, and antioxidant
properties (Wang and Zhang, 2013). Microalgal proteins are
mostly being used as supplements, and are available in the
market in form of tablets, capsules, or liquid. The use of
microalgae as a bulk commodity in human food is rare
because of their unfavorable sensory attributes like the smell,
color, and texture; a smaller part is applied as an ingredient in
pasta, baked goods, snacks (Ritala et al., 2017). Microalgal protein
is now used as an ingredient of meat analogs through modifying
texture and flavor in food processing techniques (Fu et al., 2021).
Microalgae or protein are proven feedstock for the animal. For
instance, Scenedesmus obliquus protein extracted from a
sequential refinery process was used as an alternative to a fish
meal before converting biomass into biodiesel (Patnaik et al.,
2019).

Extracting the protein from algal biomass before processing it
into biofuel canmake the microalgal biofuels economically viable.
Several researchers have reported the production of proteins
along with advanced biofuels from Chlorella and Scenedesmus
(Illman et al., 2000). However, a technoeconomic analysis of the
algal biorefinery process revealed the extraction and purification
of soluble protein with chemical extraction followed by
diafiltration membrane purification encompassed about 75% of
refinery cost (Suarez Ruiz et al., 2018). Thus, developing a suitable
technology for this refinery cost reduction is one of the critical
challenges in the bioprocess.T
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Polyunsaturated Fatty Acid
Microalgae are well known for being the source of PUFA such as
γ-linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA) (Ratledge, 2010). Although,
both EPA and DHA from fish oil dominate the market, the
demand for microalgal sources is increasing because of the
vegan characteristic of algal oil. The presence of persisting
contaminants such as dioxins, heavy metals such as methyl
mercury, and polychlorinated bisphenols in fish oil is also a
challenge (Ruiz-Rodriguez et al., 2010; Ryckebosch et al., 2014).
Advantages of fatty acids from microalgae were also observed
against inflammation and cardiac related disease such as
myocardial infarction, hypertension, thrombosis, etc.
(Nauroth et al., 2010; Adarme-Vega et al., 2014). PUFAs,
particularly DHA and EPA, are reported to have a
therapeutic role in a variety of inflammatory pathologies, for
instance, arthritis, Alzheimer’s disease, and lupus (Yates et al.,
2014). There is an increasing market potential for long chain
polyunsaturated fatty acids (LC-PUFAs) due to their intense
application in health (Saini and Keum, 2018). PUFA market is
likely to expand at an annual growth rate of 13.5% globally
(Rahman, 2020). Several microalgal species like Schizochytrium,
Crypthecodinium, and Ulkenia have been cultivated
heterotrophically for DHA production at an industrial scale.
The company, DSM which is the major driver in this particular
oil market, commercialized a DHA rich oil from
“Crypthecodinium cohnii”. called DHASCO™ (Wynn et al.,
2010). This is popularly used in infant formula, supplements,
and products for pregnancy and nursing. DSM commercialized
another DHA and EPA rich algal oil, Life’s TM OMEGA, which is
approved for use as a novel food ingredient in specific food
categories and dietary supplements. Martek Biosciences
commercialized DHA production from the microalgae
Crypthecodinium.

Green alga Parietochloris incisa (Bigogno et al., 2002)
comprises a higher amount of arachidonic acid content;
though, the total content of lipid is lower when compared to
other existing commercialized fungus for arachidonic acid
production. Spirulina platensis is the best source for linolenic
acid production (Tanticharoen et al., 1994). EPA producing
microalgal strains, in particular, Nitzchia, Nannochloropsis,
and Phaeodactylum tricornutum are widely cultivated
(Spolaore et al., 2006). Almega PL™, an EPA-rich product is
marketed by Qualitas Health by using autotrophic production of
microalgal biomass. In a sustainable biorefinery approach,
omega-3 fatty acids can be separated from microalgal lipids,
while the rest of the lipid or other components of the biomass
could be used for making food, fuel, or other valuables. For
example, after the separation of omega-3 fatty acids from
Nannochloropsis salina oil, the waste oils were used to produce
flexible polyurethane foam (Phung Hai et al., 2020). This
biodegradable polyurethane foam is an alternative to
petroleum-based polymer and showed its application in
making footwear and surfboard. In recent years, concurrent
production of fucoxanthin and docosahexaenoic acid from
Isochrysis strain has been examined with encouraging effects
(Sun et al., 2019).

Cosmetics
Next to pigments and fatty acids, microalgae have long been of
interest as sources of bioactive compounds to use in cosmetics.
Bioactive compounds from microalgae have potential applications
like water-binding, thickening, and antioxidant agents, prevention
of hyperpigmentation, stimulation of bleaching, modulation of
melanogenesis in hair, melanocyte proliferation, improvement and
stimulation of keratinocyte differentiation, growth of human hair
follicles, improvement or maintenance of skin’s barrier function,
improvement of aged skin appearance, collagen stimulation, and
improving skin’s firmness and elasticity (Levasseur et al., 2020;
Randhir et al., 2020; Chouhan et al., 2021). Several protective and
efficient systems against the free radicals and reactive oxygen
species are developed in algae because of the natural exposure
to oxidative stress. This, in turn, produces compounds that can be
used to replace the currently employed organic and inorganic filters
against the damaging effects of UV radiation (Wheeler et al., 2008;
Gouveia et al., 2009).

Both Nannochloropsis and Isochrysis have been found effective
against UVA and UVB transmissions with the same profile as any
formulation containing SPF15 fighting organic and inorganic filters
(Lotan, 2012). Compared to the sunscreen formulations used
commercially, cyanobacteria showed better absorption in the visible
spectral region and UV A, UVB region as well, i.e., 290–650 nm
(Ariede et al., 2017). Mycosporine-like amino acids such as asterina,
palythene, palythine, and porphyra have been reportedly produced by
cyanobacteria of Nostoc sp. R76Dm and have shown in-vivo reactive
oxygen species (ROS) scavenging potential and in-vitro dose-
dependent antioxidant potential (Rastogi et al., 2016).

Pentapharm in Basel, Switzerland launched a commercial
product called Pepha-Tight using a compound from
Nannochloropsis oculata for short-term and long-term skin-
tightening properties and other called Pepha-Ctive using
extracts from Dunaliella salina to positively influence the energy
metabolism of the skin and to stimulate cell proliferation (Spolaore
et al., 2006). The cosmetic industry is growing worldwide with a
market size was valued at $380.2 billion in 2019, and is projected to
reach $463.5 billion by 2027, registering a compound annual
growth rate of 5.3% from 2021 to 2027 (Chouhan et al., 2021).
Rapid growth in this industry can make a market niche for algal
cosmetics when combined with biofuel.

Microalgae are also a source of several minerals and vitamins
like vitamin A, vitamins of the B group like B1, B2, B3, B5, B6,
B8, B9, B12, vitamin C and E. Phytohormones like abscisic acid,
gibberellins, auxin, cytokinin, ethylene, polyamines, salicylates,
signal peptides, and brassinosteroids are produced by most of
the microalgal lineages (Bajguz and Piotrowska-Niczyporuk,
2013; Galasso et al., 2019; Levasseur et al., 2020). Algae
derived bioactive compounds have been suggested for
treating COVID-19 disease (Chia et al., 2021). Approximately
73,000 algal species have been identified but few reached the
commercial scale (Guiry, 2012). However, there is numerous
germplasm that need to be explored for the production of
valuable products. Despite the suitability of algae for
biorefining, holding the functionality of the different
compounds in the refinery process is a challenge. Research is
needed to explore the compatibility of the compounds in down
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streaming processing and to reduce the materials and energy
consumption in the process. Economics of microalgal
downstream processing including cell disruption, extraction,
purification, and biomass conversion must be evaluated for the
sustainability of biorefinery process.

ALGAL BIOFUEL COMMERCIALIZATION
EFFORT

Commercial microalgae production was started with the
cultivation Chlorella for the single-cell protein in the early
1960s in Japan, followed by Spirulina in the US, and then in
China and Thailand (Lee, 1997; Borowitzka, 2013). In the 1980s,
efforts were initiated to produce microalgal pigments,
predominantly beta-carotene and astaxanthin, through the
cultivation of Dunaliella sp. and Haematococcus sp. In the
1980s, commercial production of PUFAs, especially EPA and
DHA, was started for nutraceuticals application. In the early of
this century around 2005, a number of companies like Algenol,
Cellana, Origin Oil, Aurora Biofuel, PetroAlgae, PowerFuel.de,
Shell Oil, Solix Biofuel, Sapphire Energy, and Solazyme raised
remarkable private sector investment with a promise of
producing algal biofuel competitive with the fossil fuel
(Waltz, 2009). In India, Reliance Industries invested with
Algenol, United States to recycles carbon dioxide into fuels
through its direct-to-ethanol process near Jamnagar petroleum
refinery. Sapphire Energy used hydrothermal liquefaction
technology to make “crude-like oil” that can be refined into
gasoline or jet fuel. The estimated minimum price for algae
biofuel was $2.1 per liter which weighs high than regular
gasoline (Gu et al., 2020). Today, most algae companies
except for ExxonMobil and Synthetic Genomics shifted their
business model into high-value products. ExxonMobil and
Synthetic Genomics reported the doubling of lipid
production without compromising growth through genetic
modification in Nannochloropsis gaditana using
CRISPR–Cas9 genome editing techniques (Ajjawi et al.,
2017). Their joint algae biofuel research program targets to
produce 10,000 barrels of algae biofuel per day by 2025 using
genetically modified strain. However, the phenotype stability of
engineered strain in the field along with the concern of
environmental risk growing often raised the question of the
genetically engineering approach for microalgal biofuel
research. The finding of the first field trial of genetically
modified algae by researchers from the University of
California San Diego and Sapphire Energy, United States was
encouraging as genetically modified Acutodesmus dimorphus
conserved the genetically modified phenotypes in field
cultivation without impacting the phytoplankton
communities in native lakes (Szyjka et al., 2017).

After few years from 2005 when microalgae did not reach the
economic target, the potential of microalgae for biofuel was
debated and called “hype” (Waltz, 2009). In a reply to the
news feature “Biotech’s green gold?” in Nature Biotechnology
(Waltz, 2009), Stephens and colleagues demonstrated microalgae
are capable of producing ∼60–100 kl oil ha−1 y−1 on a practical

conservative scale (Stephens et al., 2010). Algae-based
transportation fuels have already demonstrated their ability to
drive personal automobiles, fly commercial planes, and power
Navy ships. In our view, it not about the potential of algae, it is all
about technological readiness to compete with fossil fuel.

Although algal biofuel didn’t reach yet the economic target, Life
cycle assessment (LCA) of algal biofuel from the pilot-scale facility
of Sapphire Energywas found to have lower greenhouse gas (GHG)
emissions than corn ethanol and petroleum fuels (Liu et al., 2013).
Interestingly, Energy Return on Energy Investment (EROI) which
is the key for measuring the sustainability of any energy technology
was above one in their pilot-scale analysis and varied between one
and four depending on the scale of production.

CONCLUSION AND FUTURE
PERSPECTIVES

Microalgal biofuel remains in an early stage of development. In
our view, we invested only a few years from capital injection to
demonstrating large-scale commercial production. Venture
capitalists should consider the challenges and barriers that
need to be overcome before this technology is
commercialized. Even, the demonstration plants (at <5 ha)
that were used for estimating the cost analysis were well
weighed below the size threshold for economic viability. To
make “high volume, low-cost product” like biofuel, scaling up
microalgal cultivation system to a commercial level is a key in
the process development. Although microalgae are an excellent
feedstock of multiple products, maintaining the stability of all
chemicals with their bioavailability is critical challenge in
adapting biorefinery approach. A substantial innovation is
required in downstream processing steps like milder cell
disruption technologies, solvents or supercritical fluid
extraction to ensure the functionality of the products reserve
in the process. Research should be carried out to find the
appropriate sequence of products extraction from microalgal
biomass in refinery process. As of now, current market values
of algal nutraceutical are quite high when the global
production of microalgae is inadequate. Apparently
integrating biofuel systems with industrial commodities
production looks economically sustainable but replacing only
a part of fossil fuel with biofuel can make a surge of high-value
products in the market and affect product prices. Awareness
among people about algal products must be improved to reach a
sustainable biorefinery. Improving downstream processing
certainly is an essential step, but to produce enough biomass
to feed the process is more critical in algal biofuel
commercialization. Successful algae cultivation in the field
demands a more ecological approach rather than industrial
microbiology. Algae need to be considered as an agricultural
crop, and robust agronomic and integrated pest management
practices must be developed as cheaply as possible. Indeed, the
2018 Farm Bill classified algae as a crop in US policy and support
the algae program. Research investment, policy development,
and new scientific discoveries will pave the way for the
development of viable microalgal biofuel platforms in the
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near future. In the meantime, valorizing high-value co-products
is a feasible option for microalgal biofuel commercialization.
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