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To manage a large scale of distributed energy resources (DERs) dispersed geographically
and reduce the impact of DER uncertainties, this paper proposes a distributed two-stage
economic dispatch for virtual power plant (VPP) to track a specified VPP schedule curve. In
the look-ahead stage, a distributed economic dispatch strategy is proposed to optimally
allocate the scheduled power among DERs. In the real-time stage, a distributed VPP
schedule curve tracking problem is modeled to balance the fluctuation of wind farms and/
or PV stations. The two-stage distributed optimization problems are solved by an improved
exact diffusion algorithm which is proved to be robust to local communication failure. Case
studies validate the performance of the algorithm proposed.
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INTRODUCTION

In recent years, the penetration rate of renewable energy especially for wind and solar power is
rapidly increasing. However, the power fluctuation of wind and solar power pose great challenges for
the operation and control of the evolving power system, such as frequency control and peak-load
regulation (Bouffard and Galiana 2008). In reality, there are large number of DERs including wind
farms and PV parks, micro turbine generator, storage, different types of flexible demand resources
like EV, thermal pump load, air-conditioner, etc. (DING Yi 2016), dispersed geographically to
provide flexible power supply. Tomanage these DERs, the virtual power plant (VPP) is introduced as
an aggregator to manage and dispatch these DERs to achieve an resource sharing and overall benefit
target, which has attracted great attention in power industry (Koraki and Strunz 2018).

Usually, VPP manages DERs in two modes: centralized and distributed. In centralized way, DERs
in VPP are managed and dispatched by a central system operator (CSO). In this way, the most
challenging issue for the CSO is how to manage uncertainties from various DERs. There have been
massive efforts devoted to this issue. For example, in (Baringo, Baringo, and Arroyo 2019), a
combination of scenario-based stochastic programming and adaptive robust optimization is
developed for VPP to participate in the day-ahead energy and reserve electricity market, where
the wind power uncertainty is represented by confidence bounds. In (Vahedipour-Dahraie et al.,
2021) a two-stage risk-averse stochastic framework is proposed for optimal schedule of energy and
reserve services for VPP, in which a Monte Carlo method is developed considering the probability
distribution of the market prices, renewable energy power, flexible loads as well as the reserve
requirement. In addition to the uncertainty issue, due to the user privacy, some DER information
cannot be shared with CSO and thus how to model flexible loads with incomplete information and
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conduct decision-making is another issue in this centralized
framework. To overcome this problem, in (Zhou et al., 2021)
each DER is represented by an automatic response model based
on Markov decision process and an event-driven stimulus-
feedback control scheme is proposed to guide DERs with
limited information via self-approaching optimization.
However, since DERs are dispersed geographically, so in the
centralized mode there always exist some risk of communication
failure and transfer delay considering large scale of DER
communication network.

On the other hand, in a distributed VPP each DER has limited
information exchange with neighboring DERs and is less
dependent on communication compared with the centralized
VPP, and thus the VPP communication burden can be decreased.
In distributed VPP, a basic issue is how to realize each DER’s
distributed economic dispatch (DED) operation. In existing
works, there are mainly three strategies to solve the DED
problem (Yuan et al., 2019a): 1) the consensus strategy, 2) the
diffusion strategy and 3) the alternating direction method of
multipliers (ADMM). In these DED strategies, each DER exists an
independent iteration process to approach its own optimal
solution. The main differences are as follows: In the consensus
strategy, in each iteration every DER will exchange information
with neighboring DERs and then its incremental cost is updated,
and finally all DERs will reach consensus with a common the
incremental cost (Nedic and Ozdaglar 2009). In comparison, in
the diffusion strategy, the incremental cost is first updated and
then followed by the information exchange, i.e., the difference is
mainly on the procedure order, which has proved to be more
stable and effective (Tu and Sayed 2012). Furthermore, an
improved diffusion algorithm called the exact diffusion
algorithm (the standard EDA) is proposed in (Yuan et al.,
2019a) which can accelerate the convergence speed and can
approach to the exact optimal solution. A common point for
the former two methods is that each DER will finally approach to
the equal increment principle (EIP) consensus in mechanism. On
the other hand, the algorithm mechanism of ADMM is different
from the former two, in which the DER optimization problem is
decomposed into several subproblems including some primal and
dual problems, which are solved in sequence and coordinated to
find a global solution (Boyd 2010). (Xia et al., 2019) presented a
distributed hierarchical framework based on ADMM to manage
multiple DERs in an economic way.

The main contribution of this paper is summarized as follows:

1) A distributed two-stage economic dispatch is proposed to
track the generation schedule curve. During the economic
dispatch, DERs make determinations independently only with
the limited information from their neighboring DERs, which
can protect user privacy. The proposed two-stage distributed
economic dispatch can well adapt to the future power system
dispatch framework considering the rolling ultra-short-term
forecasting of renewable generation.

2) Local communication failure is carefully considered and the
treatment proposed enables each agent to react to the
communication failure independently and the algorithm
can still converge to the optimal point without interrupting

the optimization process. Compared with the existing works
that consider the communication failure treatment in system-
level, the treatment proposed is more practical in distributed
optimization.

3) An improved EDA is developed to solve the distributed
problem, which can accelerate the convergence speed with
the penalty term and reduce the communication burden
compared with the standard EDA. The penalty term only
involves the information from neighboring DERs which
doesn’t need extra effort to achieve global information and
can increase convergence efficiency.

The remaining part of the paper is organized as follows: The
Dispatch Framework of Virtual Power Plant introduces the
framework of VPP’s dispatch framework and its topology; in
The Two-Stage Distributed Economic Dispatch for VPP a
distributed two-stage economic dispatch optimization model
for VPP is formulated and an improved EDA is developed;
Case Study includes the case study to validate the effectiveness
of the algorithm proposed; Conclusion concludes the paper.

THE DISPATCH FRAMEWORK OF VIRTUAL
POWER PLANT

VPP is a network of decentralized, medium-scale DERs such as
wind farms, PV stations, micro turbine and flexible loads
(residential, commercial and industrial) and storage systems,
etc. The objective of introducing VPP is to relieve the load
requirement/capacity of the individual units during periods of
power generation shortage. In short, VPP can aggregate DERs
dispersed in various areas as a whole virtual generator unit
dispatched by the power system.

VPP is responsible for the generation scheduling and benefit
allocation among each DER. To reduce the impact of DER
uncertainty, the following two-stage VPP dispatch is
considered: 1) In the look-ahead dispatch, the initial VPP
schedule curve will be determined by the VPP aggregator
firstly and then be submitted to CSO. After executing the
system-level economic dispatch, CSO will issue the corrected
VPP schedule curve (considering transmission congestion, VPP
capacity limits, etc.) to VPP. Finally, VPP will allocate the
scheduled VPP power among all dispatchable DERs based on
the forecasting wind and solar power; 2) In the real-time stage,
VPP can further adjust each dispatchable DER power if there is
any update of wind and solar power information from the ultra-
short-term forecasting (i.e., the real-time forecasting) so that the
look-ahead VPP schedule curve can be well tracked.

For the purpose of managing a large scale of DERs dispersed
geographically and dealing with the uncertainty of DERs, in this
study the DER power schedule will be determined by a distributed
two-stage economic dispatch in a multi-agent communication
framework.

Multi-Agent Communication Framework
The distributed optimization of DERs in VPP in this study is
implemented in a multi-agent communication framework, as
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illustrated in Figure 1. Each DER is assigned to an agent who is
responsible for communication with the other agent, controlling
the DER power, and detecting the measurement changes (e.g.,
power deviation, changes in temperature). In this study, only five
kinds of DER/agents are considered, but the proposed method
can be easily extended to other DERs if any: wind power agent
(WPA), photovoltaic agent (PVA), micro turbine agent (MTA),
storage agent (SA), flexible load agent (FLA). What’s more,
among the agents mentioned above, one agent with reliable
communicate connection with CSO is specified as the
connection agent who takes extra responsibility for external
communication and internal information publishing.

For simplicity, in this paper the agent index system is identical
to the DER index system, i.e., each DER has the same index as its
corresponding DER agent as described below. The
communication network of the agents can be described using
an undirected graph G � {ϕN, ϕE, ϕW}, which is consisting of
three types of elements: 1) an agent index set ϕN � {1, 2,/n}, and
the 1st agent represents the connection agent 2) an edge set ϕE
where each edge (i, j) ∈ ϕE is an unordered pair of distinct agents,
and 3) the topology graph ϕW � {wij

∣∣∣∣i, j ∈ ϕN} andwij is the edge
weight. If agent i and agent j can communicate with each other,
i.e. (i, j) ∈ ϕE, then wij > 0, and they are considered neighboring.
If (i, j) ∉ ϕE, then wij � 0. In this study, wij is given by (Lin and
Boyd 2003):

wij �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

max(ni, nj), (i, j) ∈ ϕE, i≠ j

1 − ∑
(i,j)∈ϕE

wij, (i, j) ∈ ϕE, i � j
(1)

where ni and nj denotes the number of the neighboring agents of
agent i and agent j, respectively.

In the communication framework above, the agents have the
following characteristics (McArthur et al., 2007):

1) n agents in above definition means there are n DERs in VPP,
vice versa.

2) Each dispatchable DER is a controlled unit and assigned to an
agent that is responsible for communication and control. The
agents of non-dispatchable DERs (wind farms or PV stations)
only have the duty of communication.

3) Each agent has the functions of bidirectional communication,
self-determination and sensing the environment. All the
agents in VPP can coordinate and control DER through
mutual communication to achieve the optimization goal of
the whole system.

DER Economy Model
For the three typical dispatchable DERs in VPPmentioned above,
the classic quadratic function is adopted to define the DER
operation costs:

CMT(Pt
MT) � aMTP

t2

MT + bMTP
t
MT + cMT,

PMT ≤P
t
MT ≤PMT

(2a)

CS(Pt
S) � aS[Pt

S + 3PS(1 − SOCt)]2 + bS[Pt
S + 3PS(1 − SOCt)] + cS,

PS ≤Pt
S ≤PS (2b)

CFL(Pt
FL) � aFL(PB,t

FL − Pt
FL)2 + bFL(PB,t

FL − Pt
FL) + cFL,

PFL ≤P
t
FL ≤PFL,

(2c)

SOCt+1 � SOCt − η · P
t
SΔt
S

,

SOC ≤ SOCt ≤ SOC
(2d)

In above economy models, the variable subscripts “MT,” “S,” and
“FL” denote the micro turbine, storage and flexible loads,

FIGURE 1 | VPP system schematic diagram.
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respectively; C(·) is the cost function; Pt is the power output or
consumption at time t; a, b and c denote the coefficients of
quadratic cost function; P and P represent the upper and the
lower limits of the power; SOCt is the storage state of charge; SOC
and SOC are its upper and the lower limits; S represents the
storage capacity; η is the discharge and charge efficient; Δt is the time
interval between t and t + 1; PB,t

FL is the baseline load. In Eq. 2c, the
incentive cost is adopted here for flexible load adjustment cost which
is the function of the load power change (Wang et al., 2019).

The Two-Stage Dispatch Framework
To accommodate renewable power integration and reduce the
impact of prediction error, a multiple time-scale rolling
dispatch framework is adopted (Li et al., 2015), which
includes the following two stage process: 1) the look-ahead
dispatch, which will execute VPP dispatch in a receding
horizon every 1 h in the upcoming 4 h, with a time
resolution of 15 min and 2) the real-time dispatch, which
will perform in a receding horizon every 5 min in the
upcoming 1 h, with a time resolution of 5 min.

THE TWO-STAGE DISTRIBUTED
ECONOMIC DISPATCH FOR VPP

According to the VPP framework discussed in The Dispatch
Framework of Virtual Power Plant, a look-ahead and real-time
two-stage distributed economic dispatch is developed in this section.

The Look-Ahead Economic Dispatch Model
In the look-ahead dispatch, VPP is responsible for allocating the
4 h VPP power schedule with a time resolution of 15 min issued
by CSO to each DER based on the look-ahead forecasting wind
and solar power.

The Look-Ahead CED Model
The wind and solar power are non-dispatchable DERs whose cost
are regarded as constant, so only the overall VPP costminimization
of micro turbine, storage and flexible loads is considered:

min∑n
i�1

CMT,i(Pt
MT,i) + CS,i(Pt

S,i) + CFL,i(Pt
FL,i) (3a)

where n is the number of DER; Pt
MT,i, P

t
S,i and P

t
FL,i are the power

of micro turbines, storage and flexible loads, respectively (Note:
an uniform DER index is used and i denotes the ith DER,
Pt
S,i � Pt

FL,i � 0, and the storage DER and flexible load DER
follow the similar rule). For clean expression, the symbol t is
omitted when there is no confusion in the context.

The constraints in the look-ahead stage include:

(1) Flexible load power limits:

PFL,i ≤PFL,i ≤PFL,i (3b)

Theminimum andmaximum power limits of all flexible loads are
considered constant values in this paper. It should be noted that the
limits inEq. 3b can be adjustedwith the real environment parameters
in different periods, such as temperature, air pressure, etc. (Lu 2012)

2) Storage power and SOC limits:

PS,i ≤PS,i ≤PS,i

SOC i ≤ SOCi ≤ SOCi (3c)

3) Micro turbine power limits:

PMT,i ≤PMT,i ≤PMT,i (3d)

4) Power flow limits:

Pl ≤Pl ≤Pl(l � 1, 2 . . .m) (3e)

where Pl is the power flow in line l; Pl and Pl represent the power
flow limits of line l;m is the number of lines. Based on DC power
flow, Pl can be transformed to a linear combination of DERs
power (Christie et al., 2000).

Pl � ∑n
i�1

ρli(PMT,i + PS,i + PFL,i + Plk
W,i + Plk

V,i)
where ρli is the sensitivity of power injection at DER i to the power
flow on line l. Denote Db[ρli] ∈ Rm×n, D is the power transfer
distribution factor matrix, which can be obtained as follows (Šošić
et al., 2014):

D � BfB−1
r

where Bf is the matrix of branch network susceptances; Br is the
matrix of nodes’ susceptances.

(5) Power balance:

∑n
i�1

PMT,i + PS,i + PFL,i + Plk
W,i + Plk

V,i � PVPP (3f)

where Plk
W,i and Plk

V,i are the wind and PV look-ahead forecasting
power, respectively; PVPP is the scheduled VPP power output.

The optimization model (3a)–(3f) is called a typical
centralized economic dispatch (CED) for VPP. To derive the
DED model, the dual counterpart of (3a)–(3f) is further
organized as:

max
λ,zl ,zl

Ld(λ, zl, zl ) � ∑n
i�1
[CMT,i(Pp

MT,i) + CS,i(Pp
S,i) + CFL,i(Pp

FL,i)]
−λ⎡⎣∑n

i�1
(Pp

MT,i + Pp
S,i + Pp

FL,i + Plk
W,i + Plk

V,i) − PVPP
⎤⎦

+∑m
l�1

zl⎡⎣∑n
i�1
ρli(Pp

MT,i + Pp
S,i + Pp

FL,i + Plk
W,i + Plk

V,i) − Pl
⎤⎦

+∑m
l�1

zl {Pl −∑n

i�1ρli(Pp
MT,i + Pp

S,i + Pp
FL,i + Plk

W,i + Plk
V,i)}
(4a)

Pp
MT,i � S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ − bMT −∑ ρli(zl − zl )

2aMT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Pp
FL,i � S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣PB
FL −

λ − bFL −∑ ρli(zl − zl )
2aFL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pp
S,i � S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ − bS −∑ ρli(zl − zl )

2aS
− 3PS(1 − SOC)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4b)
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where λ, zl ≥ 0 and zl ≥ 0 are the Lagrangian multipliers;
the notation S[ · ] denotes the constraint projection
operator, which can bound the argument within the
constraint [P, P].

The Look-Ahead DED Model
To transform the centralized model into the distributed
model (Mateos-Nunez and Cortes 2017), the Lagrangian
multiplier λ in Eq. 4a is separated as following:

λ[ ∑n
i�1

(Pp
MT,i + Pp

S,i + Pp
FL,i + Plk

W,i + Plk
V,i) − PVPP

⎤⎦
� ∑n

i�1
λi(Pp

MT,i + Pp
S,i + Pp

FL,i + Plk
W,i + Plk

V,i) − λ1PVPP (5a)

λi � λj(i, j) ∈ ϕE (5b)

where λi is the Lagrangian multiplier of the ith DER, λ �
[λ1,/λn] .

For a communication-connected system, Eq. 5bmeans that
all multipliers are equal, which makes (5a) holds. In Eq. 5a,
since PVPP is not the power output of any DER, here the
connection agent’s Lagrangian multiplier λ1 will be used for
PVPP. zl and zl can be separated similarly to become
zl � [zl,1,/, zl,k,/zl,n] and zl � [ zl,1 ,/, zl,k ,/ zl,n ]. zl,k
and zl,k are the Lagrangian multiplier of line l at kth DER.
And in terms of power flow constraints, and are used for and in
(6a) zl,1, zl,1 are used for Pl and Pl . In this way, all DERs
can be decoupled with each other so that the centralized
model is transferred into a distributed model. Finally, the
distributed model of the look-ahead economic dispatch is
formed:

max
λ,z, z

Ld(λ, z, z) � max∑n
i�1
Ld(λi, zl,i, zl,i )

s.t. λi � λj, zl,i � zl,j, zl,i � zl,j (i, j) ∈ φE

Ld(λ1, zl,1, zl,1 ) � CMT,1(Pp
MT,1) + CS,1(Pp

S,1) + CFL,i(Pp
FL,1)

− λ1(Pp
MT,1 + Pp

S,1 + Pp
FL,1 + Plk

W,1 + Plk
V,1 − PVPP)

+ [∑ ρli(zl,1 − zl,1 ) · (Pp
MT,1 + Pp

S,1 + Pp
FL,1 + Plk

W,1 + Plk
V,1)

− zl,1 · Pl + zl,1 ·Pl ] (i � 1)
(6a)

Ld(λi, zl,i, zl.i ) � CMT,i(Pp
MT,i) + CS,i(Pp

S,i) + CFL,i(Pp
FL,i)

+ [∑ ρli(zl,i − zl,i ) − λi] · (Pp
MT,i + Pp

S,i + Pp
FL,i + Plk

W,i + Plk
V,i)

(i � 2, 3 . . . , n)
(6b)

The Real-Time Economic Dispatch Model
In the real-time stage, VPP will adjust DER power through rolling
optimization if there is any update of wind and solar power
information from the ultra-short-term/real-time forecasting to
track the look-ahead VPP schedule curve in a receding horizon
every 5 min in the upcoming 1 h.

The Real-Time CED Model
In the real-time stage, suppose at each timer interval t, the look-
ahead VPP schedule curve can be completely tracked, the
following minimum cost objective function is considered
(3a)–(3f):

min ∑n
i�1

CMT,i(PMT,i) + CS,i(PS,i) + CFL,i(PFL,i)
s.t(3b) − (3e)
∑n
i�1

(PFL,i − Plk
FL,i + PS,i − Plk

S,i + PMT,i − Plk
MT,i)

� ΔPGOAL � ∑n
i�1

(−ΔPW,i − ΔPV,i)
ΔPW,i � Preal

W,i − Plk
W,i, ΔPV,i � Preal

V,i − Plk
V,i (7)

where Plk
MT,i, P

lk
S,i and Plk

FL,i are the latest look-ahead scheduled
power of micro turbines, storage and flexible loads respectively;
ΔPGOAL represents the expected regulation of VPP to track the
VPP schedule curve; Preal

W,i and Preal
V,i are the real-time forecasting

power of wind and PV; ΔPW,i and ΔPV,i are the power deviation
of wind and solar, respectively.

The Expected Regulation Correction
In reality, the expected regulation ΔPGOAL should also consider
the VPP regulation limits and dead zone for further
corrections:

ΔPGOAL �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0,
∣∣∣∣ ∑(ΔPW,i + ΔPV,i)∣∣∣∣∣<Mvpp∑ΔPup,i, 0≤ ∑ΔPup,i ≤ −∑(ΔPW,i + ΔPV,i)∑ΔPdown,i , 0≤ ∑ΔPdown,i ≤ ∑(ΔPW,i + ΔPV,i)

−∑(ΔPW,i + ΔPV,i), else

ΔPup,i � PMT,i − Plk
MT,i + PS,i − Plk

S,i + PFL,i − Plk
FL,i

ΔPdown,i � Plk
MT,i − PMT,i + Plk

S,i − PS,i + Plk
FL,i − PFL,i

(8)

where ΔPup,i is the up-regulation capacity of ith DER; ΔPdown,i is the
down-regulation capacity;MVPP is the regulation dead-zone. In Eq.
8, two particular cases related to wind/solar power uncertainty are
considered: 1) If the total real-time forecasting power is less than the
total look-ahead forecasting values i.e., ∑(ΔPW,i + ΔPV,i)< 0, the
dispatchable DERs need to increase their power up to ∑ΔPup,i to
correct the deviation; 2) On the other hand, the real-time forecasting
power is higher than the total look-ahead one,
i.e., ∑(ΔPW,i + ΔPV,i)> 0, the dispatchable DERs need to reduce
their power down to ∑ΔPdown,i.

The Real-Time DED Model
Like the look-ahead DED model, the real-time DED model is
constructed as follows:
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max
λ,zl ,zl

Ld(λ, z, z) � max∑n

i�1Ld(λi, zi, zi )
s.t.λi � λj, zi � zj, zi � zj (i, j) ∈ ϕE,

Lr(λi, zi, zi ) � CMT,i(Pp
MT,i) + CS,i(Pp

S,i) + CFL,i(Pp
FL,i)

+λi(Pp
FL,i − Plk

FL,i + Pp
S,i − Plk

S,i + Pp
MT,i − Plk

W,i −
ΔPGOAL

n
)

+∑ ρli(zl,i − zl,i ) · (Pp
MT,i + Pp

S,i + Pp
FL,i + Preal

W,i + Preal
V,i ) (9)

It is noted that Eq. 9 doesn’t mean the expected regulation of each
DER isΔPGOAL/n. It only reflects the total regulation requirement for
VPP. SinceΔPGOAL is theVPP-level regulation, for each agent how to
achieve ΔPGOAL/n based on the local information is an important
concern, which will be discussed in The Real-Time DED Procedure.

The two-stage DED problems Eqs 6, 9 are convex
optimization problems with equality constraint, which can be
solved by the method explained below.

Solution Methodology Based on the
Improved Exact Diffusion Algorithm
To solve the distributed optimization problems above, an
improved EDA is developed.

The Standard Exact Diffusion Algorithm
In the distributed convex optimization problems Eqs 6, 9, the
three Lagrangian multipliers λ, zl and zl are independent and
they can be updated alternatively in each iteration (Mateos-
Nunez and Cortes 2017). Taking λ as example, the standard
EDA in (10a)-(10c) can be applied for updating the
Lagrangian multipliers (Yuan et al., 2019a), zl and zl can
be done similarly:

ϕi(k + 1) � λi(k) + μ · zL(λi)/zλi (10a)

φi(k + 1) � ϕi(k + 1) + λi(k) − ϕi(k) (10b)

λi(k + 1) � ∑wijφj(k + 1) (10c)

where for the ith DER at iteration k, λi(k) represents a Lagrangian
multiplier and can be regarded as the incremental cost of the ith DER
to be updated; μ is the step size, which is set to 0.1 in the study; ϕi(k)
represents the local incremental cost by a gradient-descent type

iteration, similar to consensus iteration; φi(k) is the local
incremental cost considering bias correction (Yuan et al., 2019a);
L(λi) stands for Ld(λi) in the look-ahead DED and Lr(λi) in the real-
time DED, respectively; wij is the edge weight introduced in Eq. 1.
More explanations about (10a)-(10c) are added as follows:

1) InEq. 10a, usually the gradient at optimal point λp of eachDER is
not zero (for instance, zLd(λ)/zλi is the power output of ith DER
which is not zero in general). It will cause oscillation when λi
reaches near the optimal point and slow down the convergence. A
correction term λi(k) − ϕi(k) is added in Eq. 10b to remove the
bias incurred by the gradient item, as is proved byEq. 11.When λi
converge to λp:

φi(k + 1) � λi(k) + λi(k) − λi(k − 1) + μ[ zL
zλi

∣∣∣∣∣∣∣
λi�λi(k)

−zL
zλi

∣∣∣∣∣∣∣
λi�λi(k−1)

]
� λp(k) + λp(k) − λp(k − 1) � λp

(11)

2) In Eq. 10c, information exchange between the neighboring agents
occurs. Each agent will exchange its φi(k) with all neighbors and
the weighted average cost in Eq. 10c is used to evaluate the next
incremental cost λi(k + 1). During the whole iteration, the
incremental cost of any DER will be diffused to other
communication-connected DERs through Eq. 10c and λi(k)
will finally converge and reach the global optimal point (Yuan
et al., 2019b).

The Improved Exact Diffusion Algorithm
Convex Penalty Term
To increase the cost for the equality constraints violation of λi �
λj and accelerate the convergence speed, a convex penalty term∑(i,j)∈ϕEβ(λi − λj)2 is added to the DED objective function Eqs 6,
9, β is the penalty parameter, which is set to 0.7 in the study. And
the exact-diffusion-based formulas to be updated in each iteration
become:

ϕi(k + 1) � Xi(k) + μ · ⎡⎢⎢⎢⎢⎢⎢⎣zL
zλi

,
zL

zzi
,
zL

z zi

⎤⎥⎥⎥⎥⎥⎥⎦
T

φi(k + 1) � ϕi(k + 1) +Xi(k) − ϕi(k)
Xi(k + 1) � ∑wijφj(k + 1) (12)

where

Xi(k) � [λi(k), zi(k), zi (k)]T

(13)

The designed penalty term only involves the information from
neighboring DERs which doesn’t need extra effort to achieve
global information during the iterations and can increase
convergence efficiency, while the ADMM need the
information of the whole VPP (Xia et al., 2019).

Information Exchange Relief and Stop Criteria
Each agent will exchange the following information with its
neighbors: 1) φi(k + 1); 2) Xi(k); 3) the agent status, any of
these three types (Normal, Idle, or Failure) (as explained in
The Look-Ahead DED Procedure).

FIGURE 2 | Local communication failure.
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To reduce the information exchange burden of
communication during the distribution optimization process,
the following conditional communication rule in Eq. 14 will
be applied when there is minor incremental cost difference
between consecutive iterations:

∑n
j�1

wij

!!!!!φj(k + 1) − φj(k)
!!!!!< ε, k> 2 (14)

Thus, the conditional communication rule becomes:
If Eq. 13 is satisfied, then Xi(k) � Xi(k − 1), φi(k + 1) � φi(k)
When the conditional communication rule is satisfied with a

pre-specified accuracy level ε (10−5 in the study), agent i will stop
information exchange and set the agent status Idle, and
accordingly the agents that receive Idle from agent j will
update X with the last φj and Xj they received from agent j.
It should be noted that when agent i and its neighbors are all Idle,
agent i will stop the iteration.

Local Communication Failure Treatment
In distributed communication network, the information
transfer distance is short, and the impact of delay and bit
errors is limited compared with communication failures. So,
the treatment of local communication failures is studied in
this paper.

When there is local communication failure happened (the
dotted line in Figure 2) and provided that the communication
network keeps connected, the proposed algorithm still works
according to the following treatment Eqs 1–3:

1) If agent i and agent j cannot receive the next updated
information from each other within the maximum data-
transfer waiting time, they will set the agent status
Failure.

2) Then in the next iteration, the number of the neighboring
agents for the involved agent i and agent j (i.e., the shadowed
agents in Figure 2) will be less one in Eq. 14 and then Eq. 1
will be recalculated to update wij.

ni � ni − 1,
nj � nj − 1

3) When the communication recovers, agent i and agent j can
receive information from each other, and the agent status will
be set to Normal, and update ni, nj and wij similarly.

It is worth mentioning that the proposed algorithm also has
some error tolerance for communication delay, when the data-
transfer time exceeds the maximum waiting time, then the
algorithm iteration will turn to above local communication
failure treatment Eqs 1–3. In addition, the proposed improved
EDA is robust to occasional bit errors. The false data due to bit
errors can be regarded as another new initial data and the
algorithm can still reach convergence as long as the remaining
data is correct during the iterations, since one advantage of EDA
is that its convergence performance is insensitive to the
initialization setting (Yuan et al., 2019b).

The DED Solution Procedure
The Look-Ahead DED Procedure
For each agent, the look-ahead DED algorithm in pseudo-code
form is summarized in Table 1, in which 2.2 represents the
conditional communication strategy, 2.3 represents information
exchange and 2.4 represents the communication failure
treatment, respectively. The maximum data-transfer waiting
time is set to 3 ms in the study.

The Real-Time DED Procedure
As mentioned in The Expected Regulation Correction, in the real-
time stage how to evaluate the expected regulation ΔPGOAL/n
based on the local information should be finished before
executing the improved EDA. For each agent, the local
information given includes: 1) The forecasting power deviation

TABLE 1 | Pseudo-code of the look-ahead DED for each agent.

Preparation: Calculate the power transfer distribution factor matrix D

1. Initialization: Let k � 0, Xi(0) � ϕi(0) � 0, set the status of agent i and all its
neighbors as Normal

2. While (agent i and its neighbors are not Idle)
{
2.1 zl(k) � max{0, zl(k)}, zl (k) � max{0, zl (k)}
2.2 Apply (4b) and (12) to update Pp

i , ϕi(k + 1) and φi(k + 1)
2.3 If (14) is satisfied, then set agent i as Idle
2.4 If the data-transfer waiting time of agent j is greater than 3 ms {
Set the status of agent j as Failure;}
Else {
Set the status of agent j as Normal
Send Xi(k), φi(k + 1) and the agent status to agent j and receive agent j updated
information; }
2.5 Traverse agent status of agent i and all the neighbors
2.4.1 If agent j is Failure [nj � nj − 1 and recalculate (1); ]
2.4.2 If agent j is Idle {
set Xj(k) � Xj(k − 1), φj(k + 1) � φj(k); }
2.6 Apply (10c) to update Xi(k + 1)
2.7 k � k + 1
}
3. End

TABLE 2 | Pseudo-code of the real-time DED.

1. Initialization: Let k = 0, calculate Di (0) with real-time forecasting and
real-timemeasurement data and set agent status of agent i as Normal
2. While (agent i and its neighbors are not Idle)
{
2.1 Apply (15b) to update δi(k + 1)
2.2 Handling information exchange, communication failure and conditional
communication if any
2.3 Apply (15c) to update Di(k + 1)
2.4 k � k + 1
}
3. Set ΔPGOAL based on (8) from the final Di(k) according to (15d)–(15e)
4. Early algorithm termination evaluation
4.1 If ΔPGOAL equals zero; then stop and end
4.2 If ΔPGOALis equal to its upper or lower limits, {
Set the dispatchable DERs power equal to their limit values
Stop and end;}
5. Execute the real-time DED similar to Step 1–2 in the look-ahead DED
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ΔPW,i + ΔPV,i, for the DER without any wind or solar power,
ΔPW,i + ΔPV,i � 0; 2) The regulation capacity ΔPup,i and ΔPdown,i,
for non-dispatchable DERs, ΔPup,i � 0 and ΔPdown,i � 0.

The information diffusion strategy in (de Azevedo et al., 2017)
is adopted for each agent to get the global information in Eq. 8,

which can be regarded as an algorithm preparation for the
improved DEA to solve the real-time DED problem, here
some important procedures are explained below.

1) Define the regulation vector Di(k) � [d1,i(k) d2,i(k) d3,i(k)]T,
which is initialized according to Eq. 15a and updated
iteratively with (15b)–(15c).

Di(0) � [(ΔPW,i + ΔPV,i)ΔPup,iΔPdown,i]T (15a)

δi(k + 1) � Di(k) + 0.65 · [Di(k) −Di(k − 1)] (15b)

Di(k + 1) � ∑wijδj(k + 1) (15c)

In (15b)–(15c), the information diffusion iteration can be
regarded as a specific form of the standard EDA iteration
where Di(k), 0.65Di(k) and δi(k) correspond to λi(k), ϕi(k) and
φi(k) in (10a)-(10c), respectively. In this way, the similar
information exchange, stop criteria and local communication
failure treatment in The Improved Exact Diffusion Algorithm and
Local Communication Failure Treatment can be applied.

2) When the algorithm converges and letDi(∞) denotes the final
regulation vector, thus each agent can achieve the global
information as follows:

FIGURE 3 | Diagram of the 14-DERs VPP.

TABLE 3 | DERs parameters.

Bus DER type P(kW) P(kW) Cost function
coefficients

a b c

1 battery storage 15 −15 0.065 1.5 400
2 micro turbine 30 0 0.1 4.8 600
4 flexible loads −25 −45 0.035 8 350
5 flexible loads −13 −20 0.032 6.5 300
7 battery storage 10 −10 0.065 1.5 400
9 flexible loads −20 −40 0.03 8 300
10 flexible loads −15 −25 0.038 7 400
11 flexible loads −12 −24 0.035 7.5 350
12 flexible loads −28 −45 0.04 8 450
13 flexible loads −14 −25 0.035 7 350
14 flexible loads −25 −45 0.032 8 300

TABLE 4 | Battery storage parameters.

Parameter S η SOC0 SOC SOC

Value 50 kWh 0.8 0.5 0.9 0.1

TABLE 5 | Parameters in the algorithm.

Parameter μ β ϵ Mvpp

Value 0.1 0.7 10−5 1kW
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FIGURE 4 | VPP data: (A) The look-ahead forecasting curve (B) The VPP schedule curve (C) The total baseline flexible loads.

FIGURE 5 | The look-ahead DED performance analysis (A) Total cost (B) Tracking performance (C) Flexible loads and battery storage power.
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Di(∞) � [d1,i(∞)d2,i(∞)d3,i(∞)]T (15d)

∑ΔPW,i + ΔPV,i

n
� d1,i(∞),

∑ΔPup,i

n
� d2,i(∞),

∑ΔPdown,i

n
� d3,i(∞)

(15e)

3) Each agent can achieve the average expected regulation of
VPP ΔPGOAL/n using Eq. 8.

For each agent, the whole real-time DED algorithm including
the expected regulation evaluation is summarized in Table 2, in
which the details of the information exchange and
communication failure treatment is similar to those in the
look-ahead DED procedure, Step 1-3 represents the
information diffusion strategy for algorithm preparation.

CASE STUDY

To validate the performance of the algorithm proposed above, we use
a modified IEEE 14-bus topology to represent the VPP internal
topology, as illustrated in Figure 3. There are 14 DERs deployed
separately in the system. Two wind farms are deployed at bus 3 and
bus 8, respectively, one PV station at bus 6 and the rest buses are
deployed with dispatchable DERs. The dispatchable DERs data are
given inTable 3, where the positive valuemeans the power is injected
and the negative value means the power is absorbed. The power flow
constraints are excluded in the case. As mentioned in Multi-Agent
Communication Framework, the bus indices in Table 3 are used to
represent the DER indices and each DER agent has the same index
as its corresponding DER; and the connection agent is located at
bus 1 which is connected to the main grid. The communication
network topology is identical to the physical network topology. The
battery storage parameters and the improved EDA parameters are
summarized in Table 4 and Table 5, respectively.

FIGURE 6 | (A) The real-time forecasting power (B) The VPP real-time DED performance.

FIGURE 7 | Look-ahead DED performance with prediction error.
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Suppose the look-ahead VPP dispatch is executed at t � 8:00
and the corresponding real-time VPP dispatch is executed at t � 9:
00. Figure 4A gives the 4 h look-ahead forecasting data from 8:00
to 12:00, including the wind power at bus 3 (PW3) and bus 8
(PW8), the solar power at bus 6 (PV6). Figure 4B shows the VPP
schedule curve issued by CSO, in which the negative value means
VPP need to absorb power, considering some specific operation
scenario that the wind and solar power is low. Figure 4C gives the
total baseline flexible loads profiles initially (before dispatch).

Dispatch Results
The look-ahead DED is finished based on the improved EDA in
Solution Methodology Based on the Improved Exact Diffusion
Algorithm. For comparison purpose, the CED model (3a)–(3f) is
also solved. The total cost of each dispatchable DER from the DED
solution and the CED overall cost are presented in Figure 5A, it is
very clear that the total DED cost is very close to the CED overall
cost, which can confirm the effectiveness of the DED model.
Further, the resultant time-series VPP power exchange with the
main grid is plotted in Figure 5B which can well track the VPP
schedule curve in Figure 4B. The resultant total battery storage
power and the total flexible loads after the look-ahead dispatch is
shown in Figure 5C. The micro turbine doesn’t provide any power
output in the look-ahead dispatch due to its high cost.

The real-time tracking performance of VPP from 9:00−10:00
is shown in Figures 6A,B. Due to the deviation between the
look-ahead forecasting and the real-time forecasting, there
exists obvious tracking errors, comparing the VPP power
output (the dot dash line) with the VPP schedule curve (the
solid line) in Figure 6B. In addition, the real-time DED can
further correct the deviation (the dash line) and improve the
tracking performance.

Analysis on the Effect of Prediction Error
To analyze the effect of prediction error on dispatch performance,
the look-ahead dispatch according to four prediction error

level, ± 10, ± 15, ± 20, and ±25% are presented in Figure 7,
where the real-time wind and solar power data here is represented
by the look-ahead prediction plus prediction error. Based on the
above two-stage dispatch, the tracking standard deviation from
the schedule curve during 9:00−10:00 is used to measure the
tracking effect is presented in Table 6.

It is observed that when the prediction error is within ± 20%,
the VPP power output in this test system can well track the
schedule curve. Nevertheless, the tracking performance will
become worse when the prediction error is enlarged, because
the total up-regulation capacity is not enough in this case. On the
other hand, the dispatch performance can be satisfied when there
is enough adjustment capacity in the real-time stage to
compensate for the deviation.

Communication Robustness
To verify the algorithm robustness, it is supposed that the
communication line between agent 1 and agent 2 fails at 9:15
during the real-time DED. The whole convergence process of
agent 1 (at bus 1) for the 9:15−9:20 time interval with and without
communication failure is plotted in Figure 8:

It can be seen from Figure 8, when the local communication
failure occurs, the proposed improved EDA still has enough
robustness to converge to the same optimal solution without

TABLE 6 | The mean absolute tracking error.

Prediction
error

+10% −10% +15% −15% 20% −20% 25% −25%

Tracking error/kW 0.043 0.041 0.042 0.042 0.042 2.927 0.043 8.576

FIGURE 8 | The convergence process of bus 1.

FIGURE 9 | (A) The convergence process (B) The power residual
evolution.
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communication-failure, only with the convergence speed lightly
slowed down.

Algorithm Performance Verification
To measure the accuracy and convergence performance of the
improved EDA, a power residual based performance index Re is
introduced (Tang, Hill, and Liu 2018):

Re � !!!P(k) − Pp!!!2/!!!P(0) − Pp!!!2
where P(k) � [P1(k), P2(k)/Pn(k)] is the kth iteration DER
power vector; Pi(k) is the power of the ith DER at iteration k;
Ppis the optimal power obtained by the CED method; the less is
the Re value, the more accurate will the method be.

For comparison purpose, here the look-ahead dispatch at 8:00 is
performed using the proposed improved EDA, the standard EDA
and the consensus-based algorithm (Tang, Hill, and Liu 2018). The
results are given in Figure 9, where the convergence processes of all
DERs are presented in Figure 9A and the power residual evolution
comparison is presented in Figure 9B. It is very clear that the
incremental cost of all DERs converge to the consensus value
λ � 2.625. Figure 9B also verifies the improved EDA have better
accuracy and convergence performance than the standard EDA and
the consensus-based algorithm. For the real-time DED, the
improved EDA has similar observation and conclusion.

CONCLUSION

A distributed two-stage economic dispatch for VPP based on the
improved exact diffusion algorithm is proposed in this paper to
manage a large scale of DERs dispersed geographically and deal
with the uncertainty of DERs. The centralized look-ahead

dispatch and real-time tracking models are transformed to
distributed ones by constructing dual problems and separating
the Lagrange multipliers. The exact diffusion algorithm is
improved by adding a convex penalty term and a conditional
communication strategy. Case studies based on a modified IEEE
14-bus system validate that VPP power output can track the VPP
schedule curve well and balance the power deviation using the
improved exact diffusion algorithm with certain robustness
against local communication failure.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YZ and ZW conceptualized the study; YZ and ZW performed the
analysis; YZ, ZW, and HW performed investigations; ZW and PJ
acquired resources; ZW and PJ acquired funding; YZ and ZW
wrote the original draft; PJ and HW reviewed and edited the
manuscript. All authors agree to be accountable for the content of
the work.

FUNDING

This work was supported by the National Nature Science
Foundation of China (No. 51837004).

REFERENCES

Baringo, A., Baringo, L., and Arroyo, J. M. (2019). Day-Ahead Self-Scheduling of a
Virtual Power Plant in Energy and Reserve Electricity Markets under
Uncertainty. IEEE Trans. Power Syst. 34 (3), 1881–1894. doi:10.1109/
tpwrs.2018.2883753

Bouffard, F., and Galiana, F. D. (2008). Stochastic Security for Operations Planning
with Significant Wind Power Generation. IEEE Trans. Power Syst. 23 (2),
306–316. doi:10.1109/TPWRS.2008.919318

Boyd, S. (2010). Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers. Foundations Trends® Machine
Learn. 3 (1), 1–122. doi:10.1561/2200000016

Christie, R. D., Wollenberg, B. F., and Wangensteen, I. (2000). Transmission
Management in the Deregulated Environment. Proc. IEEE 88 (2), 170–195.
doi:10.1109/5.823997

de Azevedo, R., Mehmet Hazar, C., Tan, Ma., Osama, A., and Mohammed (2017).
Multiagent-Based Optimal Microgrid Control Using Fully Distributed
Diffusion Strategy. IEEE Trans. Smart Grid 8 (4), 1997–2008. doi:10.1109/
tsg.2016.2587741

Ding, Y., Jia, H., Song, Y., Li, Y., and Jin,W. (2016). Review of Reliability Evaluation
Methods for the Smart Grid Considering the Interaction between Wind Power
and Flexible Demand Resources. Proc. CSEE 36 (6), 1517–1526. (in Chinese).
doi:10.13334/j.0258-8013.pcsee.2016.06.007

Koraki, D., and Strunz, K. (2018). Wind and Solar Power Integration in Electricity
Markets and Distribution Networks through Service-Centric Virtual Power

Plants. IEEE Trans. Power Syst. 33 (1), 473–485. doi:10.1109/
tpwrs.2017.2710481

Li, Z., Wu, W., Zhang, B., and Wang, B. (2015). Adjustable Robust Real-Time
Power Dispatch with Large-Scale Wind Power Integration. IEEE Trans.
Sustainable Energ. 6 (2), 357–368. doi:10.1109/tste.2014.2377752

Lin, X., and Boyd, S. (2003). Fast Linear Iterations for Distributed Averaging.” in
Proceeding of the 42nd IEEE International Conference on Decision and
Control. Maui, HI: IEEE. December 9–12, 2003, Maui, HI, USA.

Lu, N. (2012). An Evaluation of the HVAC Load Potential for Providing Load
Balancing Service. IEEE Trans. Smart Grid 3 (3), 1263–1270. doi:10.1109/
tsg.2012.2183649

Mateos-Nunez, D., and Cortes, J. (2017). Distributed Saddle-Point Subgradient
Algorithms with Laplacian Averaging. IEEE Trans. Automatic Control. 62 (6),
2720–2735. doi:10.1109/tac.2016.2616646

McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Hatziargyriou,
N. D., Ponci, F., et al. (2007). Multi-Agent Systems for Power Engineering
Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE
Trans. Power Syst. 22 (4), 1743–1752. doi:10.1109/TPWRS.2007.908471

Nedic, A., and Ozdaglar, A. (2009). Distributed Subgradient Methods for Multi-
Agent Optimization. IEEE Trans. Automatic Control. 54 (1), 48–61.
doi:10.1109/tac.2008.2009515

Šošić, D., Škokljev, N, and Pokimica, N., 2014. Features of Power Transfer Distribution
Coefficients in Power System Networks, INFOTEH-JAHORINA 13, 86–90.

Tang, Z., Hill, Dd. J., and Tao, . (2018). A Novel Consensus-Based Economic
Dispatch forMicrogrids. IEEE Trans. Smart Grid 9 (4), 3920–3922. doi:10.1109/
tsg.2018.2835657

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 73480112

Zheng et al. VPP Two-Stage Distributed Economic Dispatch

https://doi.org/10.1109/tpwrs.2018.2883753
https://doi.org/10.1109/tpwrs.2018.2883753
https://doi.org/10.1109/TPWRS.2008.919318
https://doi.org/10.1561/2200000016
https://doi.org/10.1109/5.823997
https://doi.org/10.1109/tsg.2016.2587741
https://doi.org/10.1109/tsg.2016.2587741
https://doi.org/10.13334/j.0258-8013.pcsee.2016.06.007
https://doi.org/10.1109/tpwrs.2017.2710481
https://doi.org/10.1109/tpwrs.2017.2710481
https://doi.org/10.1109/tste.2014.2377752
https://doi.org/10.1109/tsg.2012.2183649
https://doi.org/10.1109/tsg.2012.2183649
https://doi.org/10.1109/tac.2016.2616646
https://doi.org/10.1109/TPWRS.2007.908471
https://doi.org/10.1109/tac.2008.2009515
https://doi.org/10.1109/tsg.2018.2835657
https://doi.org/10.1109/tsg.2018.2835657
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Tu, S-Y., and Ali, S. (2012). Diffusion Strategies Outperform Consensus Strategies
for Distributed Estimation over Adaptive Networks. IEEE Trans. Signal Process.
60 (12), 6217–6234. doi:10.1109/TSP.2012.2217338

Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Shafie-Khah, M., and
Catalão, J. P. S. (2021). Risk-Averse Optimal Energy and Reserve Scheduling
for Virtual Power Plants Incorporating Demand Response Programs. IEEE
Trans. Smart Grid 12 (2), 1405–1415. doi:10.1109/TSG.2020.3026971

Wang, B., Hu, X., Gu, W., Li, Y., and Kong, L. (2019). Hierarchical Control
Architecture and Decentralized Cooperative Control Strategy for Large Scale
Air Conditioning Load Participating in Peak Load Regulation. Proc. CSEE 39
(12), 3514–3528. (in Chinese). doi:10.13334/j.0258-8013.pcsee.172444

Xia, S., Bu, S., Wan, C., Lu, Xi., Chan, K. W., and Zhou, B. (2019). A Fully
Distributed Hierarchical Control Framework for Coordinated Operation of
DERs in Active Distribution Power Networks. IEEE Trans. Power Syst. 34 (6),
5184–5197. doi:10.1109/tpwrs.2018.2870153

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. (2019a). Exact Diffusion for
Distributed Optimization and Learning—Part I: Algorithm
Development. IEEE Trans. Signal Process. 67 (3), 708–723.
doi:10.1109/tsp.2018.2875898

Yuan, K., Ying, B., Zhao, X., and Sayed, A. H. (2019b). Exact Diffusion for
Distributed Optimization and Learning—Part II: Convergence Analysis.
IEEE Trans. Signal Process. 67 (3), 724–739. doi:10.1109/tsp.2018.2875883

Zhou, H., Wang, Fen., Li, Z., Jiang, L. I. U., Li, Z., and He, G. (2021). Load Tracking
Control Strategy for Virtual Power Plant via Self-Approaching Optimization.
Proceedings of the CSEE (in Chinese), 1–17. doi:10.13334/j.0258-
8013.pcsee.202005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zheng, Wang, Ju and Wu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 73480113

Zheng et al. VPP Two-Stage Distributed Economic Dispatch

https://doi.org/10.1109/TSP.2012.2217338
https://doi.org/10.1109/TSG.2020.3026971
https://doi.org/10.13334/j.0258-8013.pcsee.172444
https://doi.org/10.1109/tpwrs.2018.2870153
https://doi.org/10.1109/tsp.2018.2875898
https://doi.org/10.1109/tsp.2018.2875883
https://doi.org/10.13334/j.0258-8013.pcsee.202005
https://doi.org/10.13334/j.0258-8013.pcsee.202005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	A Distributed Two-Stage Economic Dispatch for Virtual Power Plant Based on An Improved Exact Diffusion Algorithm
	Introduction
	The Dispatch Framework of Virtual Power Plant
	Multi-Agent Communication Framework
	DER Economy Model
	The Two-Stage Dispatch Framework

	The Two-Stage Distributed Economic Dispatch for VPP
	The Look-Ahead Economic Dispatch Model
	The Look-Ahead CED Model
	The Look-Ahead DED Model

	The Real-Time Economic Dispatch Model
	The Real-Time CED Model
	The Expected Regulation Correction
	The Real-Time DED Model

	Solution Methodology Based on the Improved Exact Diffusion Algorithm
	The Standard Exact Diffusion Algorithm
	The Improved Exact Diffusion Algorithm
	Convex Penalty Term
	Information Exchange Relief and Stop Criteria
	Local Communication Failure Treatment

	The DED Solution Procedure
	The Look-Ahead DED Procedure
	The Real-Time DED Procedure


	Case Study
	Dispatch Results
	Analysis on the Effect of Prediction Error
	Communication Robustness
	Algorithm Performance Verification

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


