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In the power system, the loads and nonlinearity parameters cause the system frequency
deviation, which complicates the load frequency control (LFC). To deal with the above
problem, an adaptive sliding mode control (SMC) based on disturbance observer is
proposed to eliminate frequency deviation for interconnected power system in this paper.
Firstly, the mathematical model of the power system is established, where the power
exchange between the tie line is considered as the variable of the designed sliding surface.
Secondly, the nonlinear disturbance observer is constructed to estimate the parameter
uncertainty and load of power system. Thirdly, combined with the estimated value of the
disturbance observer and integral sliding mode surface, the SMC is designed. Moreover,
considering the inherent shortcoming of SMC—the chattering problem, an adaptive
strategy is applied to the SMC to ensure the stability of controller. Next, the stability of
the designed SMC is proved by Lyapunov stability theory. Finally, to verify the effectiveness
of the proposed controller, several simulations are presented.

Keywords: load frequency control, interconnected power system, the disturbance observer, the adaptive control,
sliding mode control

INTRODUCTION

LFC is a crucial technology for stable operation of modern large-scale interconnected power systems.
Due to random uncertainty such as the power demand, the power generation, the communication
time lag, the device parameter, etc. The frequency and power exchange in a large range power system
will fluctuate or escape from the planned tolerance. When unexpected uncertainty occurs in power
system, the purpose of frequency control is to quickly stabilize the system frequency and exchange
power between interconnected systems within an acceptable plan (Dou et al., 2017). Driven by the
rapid development of technology, power generation units, electrical equipment, and communication
systems, power systems have become more complex (Wang et al., 2021b). Therefore, an effective
frequency control strategy urgently needs to be proposed to manage the challenge of complex
systems.

Furthermore, micro-grid can fully exploit renewable energy to reduce carbon emission. Based on
the advantages of the micro-grid, the system has been widely established. However, when micro-grid
encounters the intermittency of renewable resource, the rapid fluctuations of load and the
uncertainties of internal parameters, frequency regulation is more complex (Kahrobaeian and
Mohamed, 2012; Khooban et al., 2017; Lu et al., 2017). To stabilize the frequency, many mature
control algorithms have been implemented to solve LFC problems, such as intelligent control,
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adaptive control (Rashidi et al., 2004), robust control (Huang
et al., 2016; Jiang et al., 2012), fuzzy control (Yousef et al., 2014),
proportional-integral differentiation (PID) control
(Khodabakhshian and Edrisi, 2008; Tan, 2010), etc.

PID control is the common control tool to damp frequency
oscillation for micro-grid which is treated as a linear model
(Bevrani and Hiyama, 2008; Kamwa et al., 2001). The PID
controllers are the simple and easy control tool which can
powerfully tuned for several specific operation points
(Wangdee and Billinton, 2006). As the integration of
renewable energy power generation, the characteristics of
power system are non-linear, thus the PID control has no
ability to eliminate frequency deviation, especially when the
actual work point of micro-grid deviates far from the expected
work point (Tang et al., 2015). In (Farahani et al., 2012), the PID
controller were optimized to eliminate frequency deviation. The
main idea is to tune the gains of PID controller by the lozi map-
based chaotic algorithm. Thus, a scheduling PID control strategy
based on optimized parameters was applied to microgrid.
Similarly, T. Chaiyatham proposed the fuzzy logic-PID
controller which utilizes bee colony optimization to tune the
fuzzy logic-PID controllers of micro-grid (Chaiyatham et al.,
2019). For non-reheat thermal system, Gonggui Chen et al.
utilized the fuzzy PID controller based on the Improved Ant
Colony Optimization algorithm against system frequency
deviation (Chen et al., 2020). Lim et al. (Lim et al., 1998)
solved the LFC problem for the unmeasurable state in micro-
grid using the robust control theory. Meanwhile, the adaptive
control schemes were validated with system parameter
uncertainties (Pan and Liaw, 1989).

Generally, as a well-known control method, SMC is a non-
linear variable structure controller, whose control is discontinuity.
As the advantages of strong robustness properties and quick
response, it has been studied extensively (Li et al., 2017; Li
et al., 2018; Ai-Hamouz and AbdeI-Magid, 1993; Wang et al.,
2021a; Mi et al., 2013). Therefore, SMC is an alternative control
strategy to address load frequency problems in micro-grid. Due to

external disturbances of renewable energy and parameter
variations in internal system, SMC has gained significant
research attentions in the field of LFC. AI Hamouz designed a
variable structure controller using linear sliding surface, where a
step disturbance was considered in the simulation (Ai-Hamouz
and AbdeI-Magid, 1993). Therefore, there is a problem with this
control strategy. In Sivaramakrishnan et al. (1984), a SMC was
presented through the pole assignment technique, where the
parametric uncertainties were studied with the matched
condition. However, when the power grid is working normally,
the system parameters cannot always meet the matched condition.
Yang Mi proposed SMC based on proportion-lintegral sliding
mode surface, and this method was proved that micro-grid can
be immune to the external disturbances with matched and
unmatched conditions. However, the aforementioned control
strategy was studied based on the proportional-integral
controller which has overshoot (Mi et al., 2013). In recent years,
considering the parameter uncertainty and the complexity of
external disturbances, the advanced SMC method based on
disturbance observer was proposed (Li et al., 2016; Mu et al.,
2017; Wang et al., 2019; Ma et al., 2017; Liu et al., 2016; Ginoya
et al., 2014). InMu et al. (2017), SMCwith neural network observer
was constructed, where the measured values were used to control
law and it was proven to be superior in the simulation. However,
the uncertainties of system parameters are not demonstrated. Ark
Dev proposed a SMC based on Luenberger observer (Dev and
Sarkar, 2019). However, the Luenberger observer is applied in the
absence of rigorous theoretical proof.

In this paper, a disturbance observer, which estimates the
matched and unmatched disturbances in the power system, is
applied in the LFC. Furthermore, an adaptive SMC strategy based
on disturbance observer is investigated to eliminate frequency
deviation.

The main contributions of this paper are described as.

1) The disturbance observers are proposed and applied to
estimate the disturbances of the multi-area interconnected

FIGURE 1 | Block diagram of interconnected system.
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power system, which effectively track matching and
unmatching disturbances.

2) SMC is improved to eliminate frequency deviation. Firstly,
comparing the traditional proportional-integral sliding mode
surface, the area control error (ACE) and estimated value are
taken as state variables into the novel sliding mode surface,
which ensures that the frequency deviation and the ACE
converge to the equilibrium point. Secondly, to address the
chattering of controller, the adaptive law is designed.

MODEL OF POWER SYSTEM

In the power system, the frequency deviation is caused by the
fluctuation of the load. The function of LFC is to eliminate
frequency deviation. The system proposed in many documents
has been applied to LFC. In this chapter, the mathematical model
of the power system is established where the types of disturbances
are elaborated.

LFC block diagram of i th area power system is illustrated in
Figure 1. Due to the complexity of the power system structure, it
is regarded as a nonlinear system in practice. However, since the
load fluctuation is very small, linearized power system model is
approved for theoretical analysis. In this section, N multi-region
interconnected systems that connect subsystems through tie lines
are studied. When the system is disturbed, the system is adjusted
by primary frequency control, which can restore the system
frequency to the planned tolerance. Then, SMC is adopted to
eliminate frequency deviation.

The mathematical dynamics of N regional systems can be
expressed as

Δ _fi(t) � − 1
Tpi

Δfi(t) + Kpi

Tpi
ΔPTi(t) − Kpi

Tpi
ΔPtie,i(t) − Kpi

Tpi
ΔPLi(t)

Δ _PTi(t) � − 1
Tti

ΔPTi(t) + 1
Tti

ΔPGi(t)

Δ _Ei(t) � KeiKbiΔfi(t) +KeiΔPtie,i(t)
Δ _Ptie,i(t) � 2π∑i∈N

j≠ i
TijΔfi(t) − 2π∑i∈N

j≠ i
TijΔfj(t)

Δ _PGi(t) � − 1
RiTgi

Δfi(t) − 1
Tgi

ΔEi(t) + 1
Tgi

ui(t)
(1)

where Δfi(t), ΔPTi(t), ΔEi(t), ΔPtie,i(t), ΔPGi(t) are the deviation of
frequency, machine mechanical output, integral control, tie-line
power, valve position, respectively; Tpi, Tti, Tgi are power system
time constants, turbine time constants, governor time constants,
respectively; Kei, Kbi and Kpi are integral control gain, frequency
bias factor and power system gain, respectively;Ri is speed regulation
coefficient; Tij is the tie-line co-efficient between area i and j ; i �
1, 2, 3,/,N and N represents the number of subsystems.

In this paper, the i th ACE can be expressed as

ACEi � ΔPtie,i(t) + KbiΔfi(t) (2)

Based on Eq. 1, the matrix form of power system can be
expressed as

_xi(t) � Aixi(t) + Biui(t) + Eijxj(t) + LiΔPLi(t) (3)

where

xi � [Δfi(t) ΔPTi(t) ΔEi(t) ΔPtie,i(t) ΔPGi(t) ]

Ai �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tpi

Kpi

Tpi
0 −Kpi

Tpi
0

0 − 1
Tti

0 0
1
Tti

KeiKbi 0 0 Kei 0

2π∑i∈N

j≠ i
Tij 0 0 0 0

− 1
RiTgi

0 − 1
Tgi

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bi � [ 0 0 0 0

1
Tgi

]T

,

Eij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−2π∑i∈N

j≠ i
Tij 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Li � [−Kpi

Tpi
0 0 0 0]T

where Ai is the system matrix; Bi is the input matrix; Eij is the
interconnection matrix; Li is the load disturbance matrix.

When the system is working, there is uncertainty in the system
matrix, which is an important factor leading to frequency deviation. In
this section, the uncertainty of systemparameters and load disturbances
are regarded as concentrated disturbances which are characterized by
linearity and nonlinearity. Then, according to Eq. 3, we get

_xi(t) � Aixi(t) + Biui(t) + Eijxj(t) + Γi(t) (4)

Γi(t) � A∨
i xi(t) + B∨

i ui(t) + E∨
ijxj(t) + LiΔPLi(t) (5)

where A∨
i , B∨

i and E∨
ij are matrices with uncertain parameters.

Furthermore, assume that the integrated disturbance is matched/
mismatched and bounded.

‖Γi(t)‖≤ α.
where α is a positive constant.

DESIGN OF SMC WITH DISTURBANCE
OBSERVER

Design of Disturbance Observer
In the power system, there are matching and mismatching
disturbances, which are unknown. The uncertainty and load
satisfy the following assumption:

Assumption 1. rank[Bi, Γi(t)] � rank[Bi] or rank[Bi, Γi(t)]≠
rank[Bi].

Based on Assumption 1, the concentrated disturbance can be
expressed as follows
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Γi(t) � [ di1 di2 di3 di4 di5 ]T
With the concentrated disturbance composed of system parameter
uncertainty and load, a nonlinear disturbance observer is designed
to estimate the unknown disturbance as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
d̂i1

d̂i2

d̂i3

d̂i4

d̂i5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pi1

pi2

pi3

pi4

pi5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + Lixi (6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
_pi1
_pi2
_pi3
_pi4
_pi5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦�−Li

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Lixi +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pi1

pi2

pi3

pi4

pi5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠−Li(Aixi(t)+Biui(t)+Eijxj(t))

(7)

where Γ̂i(t) � [ d̂i1 d̂i2 d̂i3 d̂i4 d̂i5]T is the estimated value
of the disturbance, which is the matched and unmatched
disturbance of the system. Li is the designed observer matrix
gain, [pi1 pi2 pi3 pi4 pi5 ]T is the auxiliary vector.

Design of SMC
SMC has been proven to be a powerful controller inmany documents,
and it is adopted to many fields, such as aircraft, robots, and inverted
pendulums. Traditionally, there are two crucial steps in SMC, which
are the sliding surface and the control law. The sliding surface ensures
that the system state reaches the equilibriumpoint, and the control law
drives the state of the space to the sliding surface. For matching and
matching disturbances, the proportional-integral sliding surface is
generally adopted in SMC.

s(t) � Ci1xi + Ci2 ∫t

0
xidt (8)

where Ci1 and Ci2 are the vectors of design parameters. The
dimensions of vectors are Ci1 ∈ R6×1 and Ci2 ∈ R6×1. In an
interconnected power system, the sliding mode surface is
constructed based on Δfi(t), ΔPTi(t), ΔEi(t), ΔPtie,i(t) and
ΔPGi(t) to ensure that the system state converges in a finite
time. ACE, calculated by the integral, cannot guarantee the
adjustment to zero, which drives the frequency deviation to
escape the scheduled scope. Based on the above analysis, we
improved the sliding surface to meet the LFC of the
interconnected system.

The improved sliding surface is

s
�
i(t) � Ci1xi + Ci2 ∫t

0
xidt + ci11(∫t

0
ACEidt + ∫t

0

× ∫t

0
ACEidt dt) + CiΓ̂i(t) (9)

where Ci1 � [ ci1 ci2 ci3 ci4 ci5 ] and Ci2 �[ ci6 ci7 ci8 ci9 ci10 ] are the designed parameters, and
Ci � [ 1 1 1 1 1 ]. ci11 is a positive constant.

In SMC, the chattering problem is difficult to address. In this
paper, the adaptive control is used to slow down the output

chattering of the controller. Based on Eq. 9, the adaptive
controller can be obtained

ui(t) � −(Ci1Bi)−1(Ci1Aixi(t)+ ci11 _ACE(t)+Ci2xi

+ci11∫t

0
ACEdt+Ci1Eijxj(t)+Ci1Γ̂i(t)+αi s�(t)+ β̂isign(s�(t)))

(10)
where ci11 and αi are the positive constants, sign(p) is the
symbolic function, β̂i is the adaptive control law. The
definition of β̂i is as follows:

_̂βi � k
�����s�i(t)

����� (11)

where k is a positive constant.

STABILITY ANALYSIS

In this section, the stability of disturbance observer and SMC is proved.

Stability Analysis of Disturbance Observer
To prove that the disturbance observer can track matched/
unmatched disturbances, the following assumptions are necessary.

Assumption 2. The derivative of the disturbance in the system
satisfies lim

t→∞
_Γi(t) � 0 .

Assumption 3. The error ei in the system is bounded, that is,
‖ei‖≤

����epi ���� .
ei � Γi(t) − Γ̂i(t) (12)

where epi is a positive constant.
Proof:

Based on Assumption 3, the derivative of the error is given

_ei � _Γi(t) − _̂Γi(t) (13)

Combining Eqs 6, 8, 9, we get

_ei � _Γi(t) − [ _pi1
_pi2

_pi3
_pi4

_pi5 ]T − Li _xi

� _Γi(t) − [ _pi1
_pi2

_pi3
_pi4

_pi5 ]T
−Li(Aixi(t) + Biui(t) + Eijxj(t) + Γi(t))

� _Γi(t) − Li(Lixi + [pi1 pi2 pi3 pi4 pi5 ]T)
+Li(Aixi(t) + Biui(t) + Eijxj(t)) − Li(Aixi(t) + Biui(t)
+Eijxj(t) + Γi(t)) � _Γ i(t) − Li(Γ i(t) − Γ̂i(t))≤ − Li

����epi ����
(14)

By means of Eq. 14, it can be concluded that the observer can
estimate the disturbance in a finite time.

Stability Analysis of Improved SMC
For an adaptive controller Eq. 10, it is necessary to prove the
stability of system Eq. 4. Next, the Lyapunov approach is adopted
to analysis the stability of the system under the controller.
Proof:

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7339104

Wei et al. Sliding Mode Control for LFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The Lyapunov function is constructed as follows:

Si � 1
2
s
�2

i (t) +
1
2k
β̃
2

i (15)

where β̃i � β̂ − β , _̃βi � _̂βi − _βi � _̂βi . βi is a positive constant.
The derivative of Si becomes

_Si � s
�
i(t) · _s�_i(t) + 1

k
β̃i · _̃βi (16)

Differentiating improved sliding surface Eq. 9, we get

_s
�_
i(t) � Ci1 _x + Ci2xi + ci11 _ACEi(t) + ci11 ∫t

0
ACEidt + Ci

_̂Γi(t)
(17)

Substituting Eq. 4, we get

Si � s
�
i(t) ·⎛⎜⎜⎜⎝Ci1(Aixi(t) + Biui(t) + Eijxj(t) + Γi(t))

+Ci2xi + ci11 _ACEi(t) + ci11 ∫t

0
ACEidt + Ci

_̂Γi(t)⎞⎟⎟⎟⎠ + 1
k
β̃i · _̃βi

(18)

Using Eqs 6, 10, 11, the _S is as

_S � s
�
i(t)(Ci1(Γi(t) − Γ̂i(t)) − αi s

�
i(t) − β̂isign(s�i(t)))

+1
k
(β̂i − βi) · _̂βi ≤ − αi

�����s�i(t)
�����2 − β̂i · s�i(t) · sign(s�i(t))

−1
k
_̂βi · βi + β̂i

�����s�i(t)
����� � −αi

�����s�i(t)
�����2 − βi

�����s�i(t)
�����≤ 0 (19)

where βi ≥
����Ci1epi

����.
From Eq. 19, we can conclude that when the coefficients of the

controller are selected appropriately, the frequency deviation of
system Eq. 4 is eliminated with the controller Eq. 10.

SIMULATION ANALYSIS

Several simulations are presented for improved SMC in this
section. In the simulation, frequency deviation of single and
interconnected systems is analyzed. First, in presence of load
fluctuation, the control performances are presented, such as,
the frequency deviation, the sliding mode surface, and the
controller output. Secondly, when there are parameter
uncertainties and load disturbances in the interconnected
system, the designed SMC performance is analyzed. The
parameters of the system are shown in Table 1 (Mi et al.,
2013).

Single-Area Power System
The step load disturbances are applied to the system. The load
disturbance is applied to the system, which is a −0.1 p.u.
disturbance applied on the system at 0–10 s. Moreover, the

TABLE 1 | The Parameters of interconnection system.

Area Tpi Tti Tgi Kpi Kei Kbi Eij

1 20 0.3 0.08 120 10 0.41 E12 � 0.5
2 25 0.33 0.07 113 9 0.37 E21 � 0.5

FIGURE 2 | The frequency deviation.

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7339105

Wei et al. Sliding Mode Control for LFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 3 | The disturbance observation.

FIGURE 4 | Frequency deviation of interconnected systems.
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FIGURE 5 | The power exchange of tie line.

FIGURE 6 | Sliding mode surface and control law with multiple systems.
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parameter uncertainty in the single system is analyzed. The
parameters of disturbance observer, SMC and parameter
uncertainty are as follows:

C11 � [ 20 9 1 1 1 ]T, C12 � [ 23 8 4 3 2 ]T,

c111 � 1, α1 � 6, k � 10, L1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A∨
1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 e−t 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The frequency deviation with traditional SMC and

improved SMC is shown in Figure 2. Compared with the
traditional SMC, the designed SMC effectively suppresses the
frequency deviation. In addition, the control strategy has
been verified to effectively eliminate the frequency deviation
caused by the uncertainty of the system parameters. From
Figure 3, it concludes that the designed disturbance observer
can track the load disturbance.

Multi-Area Power System
There are linear disturbances and parameter uncertainties in
multi-area systems (N � 2). The load disturbance in area 1 is a
−0.5 p.u., and the load disturbance in area 2 is a 0.4 p.u. The

parameters of disturbance observer, SMC and parameter
uncertainties in multi-area are as follows:

C21 � [ 25 6 3 1 1 ]T, C22 � [ 15 8 1 1 1 ]T,
c211 � 1, α2 � 6, L2 � L1, A

∨
1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 sin(t) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A∨
2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 −cos(t) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In multi-area systems, it can be concluded that when the

system has disturbances and nonlinear parameter uncertainties,
the system frequency can be eliminated with the designed SMC
from Figure 4. In addition, we can know that the power
exchange of tie line converges to zero at 10 s from Figure 5.
The sliding mode surface and control law in the system are
presented in Figure 6. In Figure 7, the estimated values of the
disturbance observer in area 1 and area 2 can effectively estimate
the load disturbance.

CONCLUSION

In this paper, the frequency in the power system, regarded as the
most basic feature of the power system, is solved by the designed
control strategy. An improved SMC is proposed, which guarantees
the stability of the system with disturbances. Firstly, the

FIGURE 7 | Disturbance estimation.
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disturbance observer is used in LFC, which calculates the
disturbance. Furthermore, it is proved by Lyapunov stability
theory. Secondly, the adaptive SMC based on the disturbance
observer is designed, which destroys the conservativeness of the
traditional SMC. Then, it is proved to ensure the system stability.
Finally, several simulation results are presented. In addition, for
power systems with nonlinear characteristics, the advanced control
strategy will be further studied.
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