
Stability Analysis of the World Energy
Trade Structure by Multiscale
Embedding
Leyang Xue1,2, Feier Chen1*, Guiyuan Fu3, Qiliang Xia1 and Luhui Du4

1State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Engineering, Shanghai Jiao Tong
University, Shanghai, China, 2Grainger College of Engineering,University of Illinois Urbana-Champaign, Champaign, IL, United
States, 3Institute of Fintech, Shanghai University of Finance and Economics, Shanghai, China, 4Shanghai Merchant Ship Design
and Research Institute, CSSC, Shanghai, China

This study investigates the dynamic trading network structure of the international crude oil
and gas market from year 2012 to 2017. We employed the dynamical similarity analysis at
different time scales by inducing a multiscale embedding for dimensionality reduction. This
analysis quantifies the effect of a global event on the dependencies and correlation stability at
both the country and world level, which covers the top 53 countries. The response of China’s
trading structure toward events after the unexpected 2014 price drop is comparedwith other
major traders. China, as the world’s largest importing country, lacks strong stability under
global events and could be greatly affected by a supply shortage, especially in the gasmarket.
The trend of multi-polarization on the market share gives a chance for China to construct
closer relationships with more stable exporters and join in the trade loop of major countries to
improve its position in the energy trading networks. The hidden features of trade correlation
may provide a deeper understanding of the robustness of relationship and risk resistance.
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1 INTRODUCTION

It has long been the interest of academy and industry to research on the world market of energy,
especially the crude oil and natural gas. Literature has investigated the economic impact of oil
price shocks, including the response of economic growth, inflation, and stock markets in oil-
importing and -exporting countries (Zhao and Chen, 2014; An et al., 2018; Gong and Lin, 2018;
Youssef and Mokni, 2019). Recent developments in the energy market have discussed the role of
oil prices in determining trade balances, international risk sharing, and long-standing country
policy (Filis and Chatziantoniou, 2013; Aydoğan et al., 2017; Youssef and Mokni, 2019). Many
studies focus on analyzing how the rising and falling of international oil prices affect the
relationship between supply and demand in the oil market (Axon and Darton, 2021; Esfahani
et al., 2021). In the past decades, significant changes have occurred in the world market. The U.S.
declines at a rate of 2.9% per year in terms of imports, while grows at a yearly rate of 15.1% in
export. China’s oil consumption reached 13% of the world total volume in year 2017, more than
67% depending on import (BP, 2019). Consequently, literature investigating the dynamic
interconnections among energy markets has emerged over the last two decades for the
changing world energy market (Badel and McGillicuddy, 2015; Baumeister and Kilian, 2016a;
Xue et al., 2019).

However, the energy price fluctuations affected by the global or regional events are very complex
and have further motivated the evolution of the world energy trade network research by comparing
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and measuring the structural changes over time. For example,
Hamilton (2010) reviews the connection between historical
events and oil price shocks. He states that the crude oil price
jump and drop in the 2008 global financial crisis present very high
amplitudes in the absence of critical geopolitical events.
Meanwhile, geopolitical events, such as the civil war in Syria
and chronic crises in oil-producing countries have only a minor
impact on oil prices. The dynamic effects of different shock types
on the price of oil are partly solved by researchers (AlbertJeong
and Barabási, 2000; Delvenne et al., 2015; An et al., 2018).
Understanding the recent evolution of the price of oil is
important in assessing the macroeconomic outlook
(Baumeister and Kilian, 2016b). However, the response of
energy-exporting and -importing countries to heterogeneous
events varies a lot (Blanchard and Gali, 2007; Kilian et al.,
2009; Inoue and Kilian, 2016; Gong and Lin, 2018). They find
that the overall effect of oil demand and supply shocks on the
trade balance of oil importers (and exporters) depends critically
on the response of the non-oil trade balance (Kilian, 2009).
Countries’ energy trade relationships are significant in
analyzing trade network patterns (Zhao and Chen, 2014;
Kremer et al., 2019; Mealy et al., 2019). A national energy
trade network would affect a country’s GDP and its centrality
on international trade significantly (Xi et al., 2019). The
identification and assessment of energy security risks are also
important for the behavior of exporters and importers that
changed the energy industry. So the potential effect of shock
estimation for a specific country and the new insights on dynamic
trade relationship together remain open and need a deeper
understanding.

Given this context, the energy trade relationships of big
countries are of growing interest in analyzing trade network
patterns. Trade dependency including trade concentration,
import or export dependency, and trade volume is useful to
analyze the relationship between nations. There are two different
types of features, intrinsic and induced (Li et al., 2018; Comin
et al., 2020). Induced features can be used to characterize the
immediate neighborhood of a node and the scaled features (Frey
et al., 2019; Fu et al., 2019). With the methodology development
and data availability, hidden information on international trade
has been deployed and sheds light on the opportunities and
threats of trade dependencies (Stavroglou et al., 2019; Wang et al.,
2019). However, it is hard to do a system-level analysis for its
limitation in a comparison between different countries (Yuan
et al., 2020; Ren et al., 2021). The intrinsic features of a node
cannot be obtained from the connectivity of the network. One
special feature of a node is the spacial position of a node, which is
frequently represented as a vector. So we will explore the nodes in
networks by distance in a feature space and try to discuss this
topic both from the feature similarity of countries and structural
properties of the world market over time.

To study complex systems composed of discrete elements with
observed connections, complex network theory is an applicable
framework (De Domenico et al., 2015; Dehmamy et al., 2018;
Tushar et al., 2020; Tushar et al., 2021). The world energy market
comprising a large number of interacting dynamical nodes
display a rich repertoire of behaviors across different time and

length scale (Hamilton, 2010; Aydoğan et al., 2017; Lang and
Auer, 2019; Comin et al., 2020). However, it is unclear how such a
detailed description of all elements could be interpreted
(Newman, 2018; Tushar et al., 2018; Cui et al., 2019) or it is
necessary to understand the phenomenon (Casadiego et al.,
2017). Accordingly, many studies try to reduce the complexity
of the system more only with fewer, aggregated variables to
explain the behavior of interest (Pecora et al., 2014; Sorrentino
et al., 2016). Davies (1989) proposed heat kernels and spectral
theory to investigate spectral properties and obtain pointwise
bounds on eigenfunctions by studying the heat kernel.
Embedding techniques, which define the network and its
nodes in a metric vector-space and allow us to use a plethora
of computational techniques, have emerged in analyzing network
data (Grover and Leskovec, 2016). However, it is not clear how to
define an appropriate diffusion for the networks with more
general dynamics than diffusion or sighed and directed edges
(Newman and Clauset, 2016). Consequently, metric embedding
involves finding an appropriate feature space in which the
distance between objects provides a good description of the
known dissimilarity between them (Abraham et al., 2006; Borg
and Groenen, 2010). By extracting lower-dimensional or coarse-
grained descriptions at the aggregated level of markets, an
effective subspace may be sufficient for the dynamical process
(Ravasz et al., 2002; Battiston et al., 2014). However, many
economic characters, such as cycles and higher-order
dynamical couplings cannot be captured (Banisch and
Djurdjevac Conrad, 2015). A dimensionality reduction of the
system in continuous space can be exploited to uncover
dynamical modules in the system of the energy trade market
(Lambiotte et al., 2014; Schaub, 2014; Rozemberczki et al., 2019).
Recently, dynamic topology of complex networks and
dimensionality reduction of multiscale systems are hot topics
with the development of network theory and embedding
techniques (Song et al., 2016; Schaub et al., 2019; Comin et al.,
2020). It provides us with a dynamics-based and geometric
representation of the system, associating similarity and
distance measures. Given this context, to investigate the
underlining information of the global energy market, different
scales in a long time window should be considered. Here, we
express the dynamical energy trading system as a function of
spatial location, exploit this vector space representation, and
analyze the associated similarity and dual distance measures.

The main contribution of our research reflects in the following
dimensions. Different from a multivariate statistical analysis of
trade volume, we focus on the structural changes and dynamic
processes of the global crude oil and gas market from a macro-
view over time by investigating the peak and tail areas. Not only
considering the connectivity between countries, we also look into
intrinsic and induced features of the individual countries in the
world trade system. Firstly, to observe the evolution of the world
trade network from a macro-level perspective, we construct a
low-dimensional embedding of the system to provide a
dimensionality reduction of the world energy trading system
in continuous space. This enables us to ignore the differences
in various aspects of countries and master the structural features
and functions of the trade networks. Secondly, to uncover
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dynamical modules in the trading system, we exploit the
dimensionality reduction ideas from a meso-level perspective.
So importing or exporting countries that act approximately as a
dynamical unit over a given time scale could be represented by
groups of nodes. Thirdly, from a micro-lever view, we explore the
important nodes in the network and quantify the feature of
different countries, such as the United States, China, and
Russia, to analyze energy security, including the changes in
their energy trade structure over time, their stability under the
events effect, and ability to resist risks. The dynamic structure
analysis could track the movement of major traders and give
insight into potential relationship development. Events’ effect on
the network and nodes help in a deeper understanding of the
robustness of relationship and risk resistance.

The remainder of the article is organized as follows. Section 2
describes the methodology used in this study. Section 3
introduces the data. Section 4 reports the results and discusses
the balances of the energy market driven by events. Section 5
contains our conclusions.

2 METHODOLOGY

Our objective is to capture the dynamics (changes) in trading
networks by examining the relationships after global or local
events. When events occur, the impact will diffuse along the
trading cross correlation networks. In terms of trading networks
topology, this can be observed by changes in trade flow in respect
of time.

We note that simple statistics on trade volume and node
degree can reveal market characteristics, such as power-law
(Gabaix, 2016). But it is not enough for a deeper insight for
processes observation. Naturally, the world market has
geographical relations between countries (Hadfield, 2008; Hu
and Cheng, 2008). When geo-location is under consideration,
the market becomes more complex. It is not purely economics,
rather politics, security, and national relationships. So it is better
to embed geographical relations into the model of the world
market. It is reasonable to employ heat kernel embedding
(Davies, 1989) as a fundamental framework.

The world energy trading market contains more features than
node degree and adjacency relationships, more features could be
added to the model to find more hidden information. Here, we
consider trade volume as another dominant factor in the world
energy trading market, where countries with major trading
volumes have a dominant impact on energy economics. As for
geographical factors, the Laplacian matrix can take geographical
relations into consideration. The degree and adjacency could
capture the pair-wise relation between countries. The common
fact we are aware of is that the energy transportation cost is
proportional to the distance (pipeline construction and freight
shipping). It can be a hidden factor implied by world trading
relations. Hence, it is reasonable to employ the Laplacian matrix
in our network modeling.

Based on the above statement, we model and analyze the
world energy trade network by an extended heat kernel
embedding. The world energy trading network can be

viewed as a directed graph G � 〈V, L〉, where the number
of vertices |V| stands for the number of countries in the world,
and the number of edges |L| represents the trade flow. If vertex
u is an outgoing edge toward vertex v, then it represents an
export from u or import by v. The degree of a vertex represents
the numbers of countries which it trades with, and the vertex
strength is the trade volume. The edge weight is the trade
volume in a single relationship.

Hence, we construct a dynamical network modeling of the
data according to Schaub et al. (2019), which is an extended
model of Davies (1989).

_x � Ax + Bu A ∈ Rm×m,B ∈ Rm×p, (1)

y � Cx C ∈ Rn×m, (2)
where x ∈ Rm, y ∈ Rn, u ∈ Rp are the state, the observed state,
and the input vectors for the dynamical network. Since we are
going to work on the given data which covers all months and
countries, wemay consider all states we plan to analyze as they are
observed. For Eq. 2, we will have n � m and y � x, where C is an
identical matrix. Meanwhile, considering the independence of
every country, we may place the individual control signal on each
country, leaving B an identical matrix. Finally, A is to be
determined by a specific model we would like to achieve,
where n � m � p. A unique aspect of dynamical embedding is
that it captures the evolution of the network. The model assumes
that there is an initial impulse to every node in the network. From
the time scale of the dataset, u contains the financial crisis as a
major background. After the major events occur, we observe the
impulse response in each year. u can be quantified as changes in
trade volume and cross correlations. The similarity of impulse
response between each country may reveal the underlying
connection and stability under major events.

The similarity between two nodes in a network can be
regarded as a scalar value indicating how close the two nodes
are according to some criterion. Here, we use node similarity to
measure the level of dependence between variables associated to
countries. This dependence can be across time, over the feature
space, or both.

From Eq. 1 and Eq. 2, the dynamical network could be regard
as a systemwhere each node i has an impulse at time t � 0.We can
have a mapping i1yi(t), yi(t) ∈ Rn, in which we map each
node to its impulse response at time t. Conventionally, the node
similarity can be defined as the similarity measured on an impulse
response. As a result, similarity between node i and node j can be
defined as

ψij(t) � 〈yi(t), yj(t)〉W � yi(t)uWyj(t), (3)

where W is a positive (semi-)definite weighting matrix contains
the features that we plan to enhance. Collecting the (zero state)
impulse responses yi into the matrix
Y(t) � [y1, . . . , yn] � Cexp(At)B � exp(At), we could calculate
the inner product matrix as follows:

Ψ(t) � YuWY � exp(At)uWexp(At). (4)

We further employ a dynamical network modeling of the data
from the general framework of multi-scale embedding (Schaub
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et al., 2019) to include trade volume as a factor. The resulting
formula for modified heat kernel embedding is as follow:

_x � Lsx + u, (5)

Ψ(t) � exp(Lst)u I + SSu( ) exp(Lst). (6)

Here, Ls is the normalized signed Laplacian matrix. S
represents the strength of each node in the network, where we
subtract the sum of exports by the sum of imports. The weighting
matrix with form of I + SSu is not necessarily positive-(semi)
definite. We can approximate a positive semi-definite form by
minimizing the error under Frobenius norm. The values in the
weighting matrix can be both positive and negative. Positive
weighting represents bigger export than import, while the
negative value represents bigger import than export. After the
calculation of Eq. 6, we may encounter similarity values from the
interval of [0,1]. This is due to the scaling of weighting matrix on
import/export relationships.

We aim to map the result of embedding to be more
understandable. A two-dimensional Euclidean space is most
commonly used to present the result of embedding. From the
two-dimensional space, we can point out the correlation between
the decomposition value and its meaning in trading network
more easily. We consider the spectral decomposition of Ψ(t) into
its eigenvectors v1(t), v2(t), . . ., vn(t) with associated eigenvalues
μ1(t) ≥ μ2(t) ≥. . .≥ μn(t). Then we define the mapping i1ϕi(t) as
follows:

ϕi(t) �[ ��
μ1

√
v1,i,

��
μ2

√
v2,i, . . . ,

��
μn

√
vn,i]u. (7)

Particularly, we are mostly interested in the first two
components of this decomposition, namely, ϕi,1(t) � ��

μ1
√

v1,i

and ϕi,2(t) � ��
μ2

√
v2,i. These two components are the most

significant factors in the result of embedding. By analyzing
these two components, we may easily tell the dynamics of the
network and the impact from major events. This also provides
us with a concise plot of the behavior of the network and its
impulse response at time t. The first value of the
decomposition can represent the ordering in a similarity
value under the reference of the largest entity (in our case
is the whole world), while the second component is related to
the import and export ratio.

3 DATA DESCRIPTION

In this study, we mainly focus on the import and export annual
data of natural gas and crude oil from the year 2012 to 2017. We
download detailedmonthly data from the UNComtrade database
(UN, 2019) for this research. Particularly for the goods we
investigate, the commodity numbers are 271111 (petroleum
gases and other gaseous hydrocarbons; liquefied natural gas)
and 271121 (petroleum gases and other gaseous hydrocarbons;
in the gaseous state, natural gas) for natural gas and 2,709
(petroleum oils and oils obtained from bituminous minerals;
crude) and 270900 (oils; petroleum oils and oils obtained from
bituminous minerals, crude) for crude oil.

To be brief in the following discussion, we introduce the ISO
3166-1 alpha-3 abbreviation for country names (ISO, 2019). We
are going to use the abbreviations in the following discussion and
in labeling the figures. To focus on the subject of discussion, we
select a major trader according to the sum of the trade value
across all data. In Table 1, we list the resulting top importer and
exporter of natural gas and crude oil in full names and
abbreviations.

Due to the limited functionality of the UN database and its
limitation in the download size, it is impossible to download full
data for all countries with man power, where full data need 60
thousands times of downloads. We first use a Bash script to crawl
data from the UN database with simple Linux command line
tools. Since full data is split into 60 thousands files after crawl, we
combine them into one dataset and aggregate data by each
month, reporter, partner, and commodity number. To avoid
numeric underflow or overflow in latter computation, we

TABLE 1 | Top 10 trade country by subject, for each category ranking, is
presented in a descending order.

Natural Gas Exporter Crude oil exporter

Qatar (QAT) Saudi Arabia (SAU)
Russia (RUS) Russia (RUS)
Australia (AUS) Iraq (IRQ)
Saudi Arabia (SAU) Canada (CAN)
Malaysia (MYS) United Arab Emirates (UAE)
Canada (CAN) Kuwait (KUW)
Mexico (MEX) Iran (IRI)
Norway (NOR) Venezuela (VEN)
Nigeria (NGA) Nigeria (NGA)
Algeria (DZA) Angola (ANG)

Natural Gas Importer Crude Oil Importer

Japan (JPN) China (CHN)
China (CHN) United Stated (USA)
Rep. of Korea (KOR) India (IND)
France (FRA) Japan (JPN)
Belgium (BEL) Rep. of Korea (KOR)
Germany (DEU) Germany (DEU)
Spain (ESP) New Zealand (NZL)
India (IND) Italy (ITA)
Italy (ITA) Spain (ESP)
United Kingdom (GBR) France (FRA)

TABLE 2 | Value distribution of different country type.

2012 2013 2014 2015 2016 2017

Minor Country Pairs (mm-Pairs)

Tail count 6,162 5,430 5,206 7,094 6,776 6,458
Peak count 19,598 14,030 19,286 18,666 17,404 20,602

Major-Minor Pairs (Mm-Pairs)

Tail count 3,476 3,444 3,358 4,080 3,982 4,050
Peak count 5,218 4,116 5,120 4,614 4,442 4,860

Major Country Pairs (MM-Pairs)

Tail count 462 506 506 552 552 600
Peak count 240 196 196 150 150 102
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normalized the dataset so that its trade volume lies between 0 and
1. Since the trade volume is highly skewed among the world, we
only take the top 53 countries with the largest overall trade
volume, which produce around 800 edges and major hubs can be
observed. As we plan to measure trade relation, we set weight of
the graph to normalized trade volume.

Since the model evaluates the network impulse response after
an initial input, the time unit of t must fit the time unit of the
dataset. As we obtain monthly data from the database, the time
unit in our modeling is month. During our analysis, we construct
a trading network each year. So the impact of major events can be
implied by the change of trading volume and network structures
during the observed years. We analyze the impulse response after
8 months of that year since the impact of most recent large
event—financial crisis has reached its peak after about 8 months.
We may assume impact of events can be observed after 8 months
after initial impulse.

4 RESULTS AND DISCUSSION

In this section, we first explore the characteristics and statistics of
the similarity matrix ψ, deriving from which we further
investigate the networks embedding. We analyze the overall
behavior of density and the dynamical structure of the market
over the years by investigating the peak and tail area. The peak
area refers to the area around zero, while the tail area is the small
area on the right. To have a close look at the structure and

behavior of major traders listed in Table 1, we visualize and
analyze the two major components of network embedding.

4.1 Dynamical Structure of the Energy
Market
Here, we investigate the similarity matrix derived from Eq. 6. In
our setting, this similarity depends on number of countries to
trade with and the import or export volume. Unlike the
conventional similarity value, the similarity value after scaling
exceeds the range of [0,1]. A node pair with either export or
import dominant characteristics produces positive scaling, while
a node pair with different characteristics produces negative
scaling. The weighting matrix enhances the similarity where
the hub node is involved and degrades the similarity when
countries with small trading volume are involved. The density
of these values can help us to uncover the pattern of trading pairs.
There are three major categories we would like to examine,
namely, pair among countries in Table 1 (MM-Pair), pair
among countries not in Table 1 (mm-Pair), and pair among
countries in Table 1 and not in that table (Mm-Pair). According
to the methodology above, we expect that majority of the
similarity of mm-Pair lies around zero while majority MM-
Pair in the tail area.

A common pattern can be observed in the density plot from
2012 to 2017 in Figure 1 and Table 2. Each density plot has a high
density around zero after the value is standardized, which means
that the impulse response from the world around are quite

FIGURE 1 | ψ value density from 2012 to 2017.
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different from each other. This phenomenon is expected since the
major importers and exporters of energy are very concentrated in
a few countries among approximately 200 countries. Rest
countries, except for the major traders, have weaker trading
relations with each other and can be more easily disturbed by
an external impulse (major events). These countries are
connected to major traders and regional exporters and
importers. With the trading network, there surely exist some
nodes with similar impulse response, such as smaller countries
next to a major exporter or major traders share the same market.
Our research results are in accordance with An et al. (2018),
whose study show that countries such as the United States and the
United Kingdom have higher ability to control the relationships
among other nodes.

We can also observe a trend of concentration in the tail area of
the density. The tail area is relatively flat around 2012 to 2014
(Figures 1A–C), while there are clear gathering peaks around
2015 to 2017 (Figures 1D–F). We examine three major categories
of similarity during different years. The similarity of MM-Pairs is
strengthened throughout the years, as more values lies in tail area.
Meanwhile, mm-Pairs and Mm-pairs are rather unstable. The
major proportion of mm-Pairs lie in the peak area and Mm-Pairs
are roughly equal in the two areas. The major importers and
exporters are acting more and more similar on both trade volume
and the relationship with other minor countries, which is also
stated in (Filis and Chatziantoniou, 2013; Baumeister and Kilian,

2016b). The Mm-pairs similarity has a little growth, which
implies that there’s minor hub forming within countries of
small trade volume. It could be the emerging of new energy
exporters or the increasing energy consumption of developing
countries.

4.2 Movement of Major Traders
By plotting the heat map of similarity among major traders in
Figure 2, we can clearly observe a trend of concentration in the
value. Here, we use accumulated data of the whole world as a
reference point. So the world will always have the greatest
similarity value to itself. If a country has a larger similarity
value to the world, it is more likely to follow the global trend
under events. We can see that these countries are either leader in
great economic entities or countries geographically nearby.
Notably in Figure 2, Canada and Mexico generally have a
large similarity value with the world. These two countries both
have simple energy trading relationships with several major
traders, such as China and the United States. They also have
stable trading relationships with each other, which strengthen
their similarity.

As major traders could be hubs in the world energy market,
similarity could be brought to the neighborhood by the weight
on the edge. These countries are generally unchanged in their
topology position, which may indicate the stability in world
energy trading relationships. The United States, Canada,

FIGURE 2 | ψ heat map from year 2012 to 2017.
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Mexico, and the EU are all stable upon their relative similarity
value. For huge economic entity like the EU, the similarity
value is smaller due to its trade flow and risk sharing with
countries which are net importers or exporters, such as Greece
or Spain. This consequence is consistent with Youssef and
Mokni (2019), whose research states that the response of
market to oil price changes in oil-importing countries is
more pronounced than that of oil-exporting countries
during periods of turmoil.

The heat map becomes blurry after time to time when the
region all expands. The major traders are becoming a more
internally related entity. Changes in the market can also be
enhanced by the increasing trade volume. When external
events ever happen, those countries with large trade volume
are likely to have similar responses. From the point of efficient
market, any disturbance in a local region is more likely to
propagate throughout the world regardless of geographical
distance (Gabaix, 2016; Lang and Auer, 2019). So it always has
the largest similarity with itself. We notice that most major
traders have self similarity to some degree. Generally, self-
similarity means a trading loop in the market as we scale self-
weighting to zero for most cases. The loop means that the
countries either reexport or reimport the energy, or a loop
trading relation exists among countries. For instance, Canada,
Spain, Mexico, and the United States can form a trade loop.
Generally, these countries are major global or regional economic
entities that establish both a significant import and export
relationship with the entire world around. Mexico is a major

energy provider for mid-south America, while it also has close
import relationship with the United States and Canada.

A more clear view of this phenomenon could be observed by
the density plot in Figure 3. A similar type of separation and
aggregation can also be found when we zoom into the values only
between the major traders. From Figure 3, we can clearly observe
two peaks in each plot, while values are gathering towards the
peak on the right side. Not only the global market has the
enhancement of relation, this also appears among the major
traders. This may suggest multi-polarization on market
sharing. If the world market is emerging under single-
polarization, Figure 3 would then go to unify as a whole,
since the response from the market will all depend on a single
entity. However, we could observe peak aggregation in the other
direction. During the process of multi-polarization, system risk is
also shared among all major traders. This can force them to
cooperate and act in a same way after events happen. As a result, it
is inevitable that the values will gather towards one peak since
cooperation among large entities is the best way to make greater
benefits.

4.3 Events Effects on the Network and
Nodes
Besides the major traders, we consider below the events around
the world that affects energy production, transportation, and
consumption. Here, the events we consider are namely financial
crisis, the development of shale gas, and oil technology.

FIGURE 3 | ψ value density within major traders.
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4.3.1 Effects of Worldwide Events
There is a timely manner for the world to recover from the financial
crisis. The time spends on recovery can be different for each country. A
large economic entity can have the power andmoney to fill the gap and
loss of the crisis in a short time. While those rather small economic
entities might be more heavily damaged and wait for the proper
regulation and relief to come back to the normal state (Aydoğan
et al., 2017; An et al., 2018). This can be viewed as a process of flux from
the most stable countries and organization to the others. This agrees
with the phenomena inFigure 1where the outliers are reduced over the
years. Furthermore, the development of shale gas technology can help
some developed or developing countries to find a supplement energy
source, which can also help their recovery and further development.

4.3.2 Effects of the Shale Gas Technology
The change in impulse response could be observed by looking at
the change in the point position. We can observe this on the plot
of embedding result in Figure 4C, recalling that x-axis is
proportional to the similarity value and y-axis is proportional
to node strength. After the quick development of shale gas
technology in year 2014, we find that RUS is brought into the

picture (from eight months after 2013 in Figure 4B). This also
helps the US to be an energy-independent country, and certainly
changes the network structure, leading to a world-wide effecting
of clustering. In Figure 4, points of countries are gathering
towards the left side and stacking in the vertical direction.

Meanwhile, Asian and European countries stay in the same
scope in Figure 4, as Russia and Norway has long been major
exporters of crude oil and natural gas. Malaysia and Indonesia are
the major source area of shale gas in Asia. The energy market of
these countries is as stable as those developed countries since
natural gas is one of the major supplement energy other than
crude oil. In recent decades, the world is not able to shift from
fossil fuel to reproducible energy. As a result, one holding the
major source of energy will be stable. For example, Norway is the
top natural gas exporter, Germany is the second largest natural
gas exporter, and Canada is the major oil exporter.

4.3.3 Effects on an Individual Country
If we look through Figure 4, we can observe that major traders
(Japan and Russian) at the origin have the trend of moving
towards the other end. Moreover, to examine the regional effect

FIGURE 4 | First two components of network embedding.
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and overall behavior, we add two reference points to the plot,
which are “world” and “EU-28.” Since the world overall could be
regarded as a stable market, we suggest that the more a point
deviates away from the origin on a major axis, the more stable it
can be under major events. Each zoomed area of the plot largely
consists of developed countries (European countries and North
American countries) and major exporters of natural gas
(Table 1). During all of the investigated years, no country
moves out of the scope though their relative topology position
may have changed. We notice that Mexico and Canada often take
the leading position while the United States lags. Meanwhile, the
United States, being the leading position of world economic
entity, also has a lot of trades with other poles in the world.
Also, the dependency on allies in all continents makes the
United States to share and distribute the risk of the market.
Mexico and Canada have rather simple energy trading relations
and route with the United States. As a result, they gain more
benefits of stability and less risk from trading relations.

From Figure 4, we can observe that position of China has
constantly changed. In Figure 4C, it stays close to the developed
country and outermost region in the plot. While in year 2015,
China still stays away from the top and stable areas of countries.
In the next following years (Figures 4E,F), it behaves even better
than all previous years. The zigzag behavior of China indicates
that it lacks strong stability for the increasing demand of gas. As a
growing developing country that depends on energy heavily,
China is greatly affected by the global market, especially for
shortage of supply. The process that makes China a stable entity
has both internal and external reasons. The internal reason might
be the energy market opening strategy in 2015, introducing more
freedom of trading and exporting to the market. This leads to a
more open and efficient market, thus exposes China more close to
the developed countries. Also, the natural gas pipeline between
China and Russia begins construction in 2015. This gives a
positive signal that China has even more demand for energy
than before. The stimulation on the market related to China gives
it more priority and interaction with the global market.

4.4 Discussion
The decrease of extreme outliers in Figure 2 may attribute to a
more efficient energy market. Meanwhile, there might not exist
simple reasoning behind this phenomenon (Badel and
McGillicuddy, 2015; Baumeister and Kilian, 2016a). One
possible explanation is the increment of trade volume in each
year. As we analyze the network considering degree and edge
weight, the increment in the trade value will certainly enhance the
network structure in terms of the node to node dynamics. The
more commodity trades between a pair of countries, the closer
connection can exist (Ravasz et al., 2002; Comin et al., 2020). This
also holds for the major traders. Countries with small capital and
regional and political situations can override the power of trade
volume (Filis and Chatziantoniou, 2013). On the other hand, a
country can be more dependent on another on energy with the
growth of trade volume. Then the national economy might be
more correlated, which is also stated in (Hu and Cheng, 2008;
Gabaix, 2016; Gong and Lin, 2018). Generally, the more
population we have, the greater energy consumption will be.

So developing countries may show a sharp increase in energy
trade volume as energy consumption grows. A more efficient
market can also increase the dynamics of the network. So the
consequence of the event may be better revealed in the structure.
Consequently, population growth, technology, and the
development of a nation can set the ground for further analysis.

The changing topology position of China in Figure 4 from the
year 2013 to 2017 indicates that the energy import system of
China is not stable. The total demand for energy increases and
leaves pressure on the energy import system. It could be affected
by the unexpected demand increase and the effects last for years.
For energy-importing countries, increasing reliance on imports
exacerbates a country’s vulnerability under supply shocks. The
development of unconventional resources and multi-import
sources can be solutions to mitigate risks. For energy
exporters, domestic economic development is highly reliant on
international energy markets with the high volatility of energy
prices. Energy trade correlation stability is important both for
importers and exporters. A deeper investigation of energy
consumption and energy trade networks of individual
countries is worthy of further research and could shed light on
diplomatic policies.

5 CONCLUSION

We presented a framework of the dynamic structure analysis over
time by the dynamical embedding of complex networks, which is
an extension of the heat kernel embedding. We focused on its
applications to dimensional reduction and the detection of
dynamical modules to highlight both intrinsic and induced
features of world crude oil and gas trade networks. The
similarity measure provides integrated description of networks
and multi-scale statistics of dynamic blocks in terms of coarse-
grained representations, which are different from the correlation
analysis of time-series data. It suggests that the energy market
system can be effectively described by a small set of major traders
that govern the dynamics over some time scale. So the complexity
of the dynamics could be reduced just keeping track of a few
aggregated “meta-nodes”, whose state is governed by the major
traders. By obtaining the dynamics characters of the world energy
trade networks and localized features of the network structure, we
assessed the effects of events on the trade correlation structure
and importing or exporting countries. The visualized topological
positions of the nodes could be understood as new features, which
would give insights for long term decisions of countries’ stability
under events. Multi-scale dynamical embedding of complex
networks could be applied to deploy the resilience ability from
shocks both for nodes and systems. The trends of multi-
polarization on market sharing and stability of the trade loop
among major traders is also helpful for developing countries, for
example, China in making diplomatic decisions.

Because the industrial structure of the developed western
economies reached maturity for decades, most of the
econometric research on economic structural evolution is for
developed states. Less-developed regions with their specific
features have not been deeply studied. For instance, some
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external economy parameters, for example, GDP or economy
growth of the countries of the year and the exchange rate in
currency, play important roles in the results and should be
considered. For further research, capturing information about
a node, for example, for China, from the local distribution over
node attributes around it is needed. The circumstance of
population growth, technology, and economic development of
the nation could be considered in a deeper investigation for
China’s energy import security. Energy consumption and energy
trade networks of individual countries are important factors
affecting energy system stability. Both the macro and micro
level research can open up new views for diplomatic policies.
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