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Maximum power point tracking (MPPT) methods based on fuzzy logic control (FLC) is a
popular application in recent years. However, different kinds of fuzzy control methods lack
comparative study, which led to confusion in practice. Hence, a comprehensive study on
these methods is essential. Unfortunately, very few attempts have been made in this
regard. In this paper, four FLC methods are selected for comparative analysis.
Furthermore, the design details and experimental result will also be given to help
choose and measure these methods, which presents a clear image of the technology
of FLC based MPPT to readers.
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1 INTRODUCTION

Due to the increasingly serious environmental problems, low carbon economy has received people’s
attention. Photovoltaic (PV) energy becomes a promising alternative as it is omnipresent,
environment friendly, and has less operational and maintenance costs. An efficient maximum
power point tracking (MPPT) technique is necessary that is expected to track the maximum power
point (MPP) at all environmental conditions and then force the PV system to operate at that MPP
(Sivakumar et al., 2015; Saravanan and Ramesh Babu, 2016; Kandemir et al., 2017; Al-Dhaifallah
et al., 2018; Yang et al., 2018a; Yang et al., 2018b; Li X. et al., 2019a; Yang et al., 2019a; Li X. et al.,
2019b; Yang et al., 2019b; Yang et al., 2019c; Li S. et al., 2020; Yang et al., 2020b; Eltamaly, 2021; Li F.
et al., 2021).

In recent years, many advanced control techniques have been associated with the MPPT
control such as fuzzy logic control (FLC) in order to increase the efficiency of solar panels.
Several FLC methods are compared and reviewed in the literature (Dounis et al., 2013;
Boukenoui et al., 2016; Kwan and Wu, 2016; Ouchen et al., 2016; Mohamed et al., 2017;
Nabipour et al., 2017; Yilmaz et al., 2018; Youssef et al., 2018; Li X. et al., 2019c; Loukil et al.,
2020; Verma et al., 2020; Jin et al., 2021; Rajesh et al., 2021; Tang et al., 2021). In this paper, four
FLC methods are selected for comparative analysis. Then, comprehensive study has been made
to compare the FLC methods regarding their features of input variables. Furthermore, the
control effect has also been studied. Finally, the correctness of the conclusion is verified by
simulation and experiment.

The paper is organized as follows. In Section 2, FLC MPPT techniques are extracted from a vast
literature survey. Then, the comparative analysis of the four methods will be verified by experiments
in Section 3. The concluding remarks are presented in Section 4.
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2 REVIEW OF MPPT ALGORITHMS BASED
ON FUZZY LOGIC CONTROL

Generally, three stages can be identified in FLC MPPT’s control
Figure 1. In the first stage, the numerical input variables are
converted into equivalent linguistic variables as input fuzzy sets.
In the second stage, the input fuzzy sets are calculated into output
fuzzy sets through the inference with the fuzzy rule base table. In
the last stage, the output fuzzy sets are converted back to
numerical variables as the output.

On the other hand, the design of FLC method is also divided
into three stages. Firstly, the input variables should be selected to
identify the position of work power point (WPP) related to MPP,
and the output variable should be chosen to execute the
command of the controller. After that, the rules of FLC
methods should be set based on the study of PV
characteristics. Finally, the parameters of FLC methods should
be configured on the basis of the variable characteristic.

In FLC, the values of variable are expressed of linguistic
variables such as PB (positive big), PS (positive small), ZE
(zero), NS (negative small), and NB (negative big) using basic
fuzzy subset. Each of these acronyms is defined by mathematical
membership functions (MFs). Moreover, the setting of
parameters involves two aspects: ranges and adjustments.

According to the consultation of other literature data and
personal summary, four extant methods of fuzzy controls are
compared. In addition, for ease of comparison, the output
variable of the four methods should be consistent. The
difference of duty cycle (dD) is the universal choice, and the
range and parameters of dD are same in different methods (Rezk
and Eltamaly, 2015). And boost circuit is chosen as the DC-DC
converter. dD are expressed of linguistic variables such as LB (left
big), LS (left small), ZE (zero), RS (right small), and RB (right big)
using basic fuzzy subset, as shown in Figure 2.

2.1 dP&dV Method and dP&dI Method
The dP&dVmethod is one of the most widely used in the industry
(Boukenoui et al., 2017; Farajdadian and Hassan Hosseini, 2019).
For the dP&dV method, the first and second inputs refer to Eqs.
1, 2, respectively.

dP(k) � P(k) − P(k − 1) (1)

dV(k) � V(k) − V(k − 1) (2)

where P(k) and V(k) are PV output power and voltage,
respectively at time k. According to the principle of dP&dV
method, the basic operation principle can be expressed by:

FIGURE 1 | The work progress of a FLC method.

FIGURE 2 | The output of all FLC methods.

TABLE 1 | The rules of dP&dV method.

dP

NB NS ZE PS PB

dV

NB RB RS ZE LS LB
NS RS RS ZE LS LS
ZE RS ZE ZE ZE LS
PS LS LS ZE RS RS
PB LB LS ZE RS RB

FIGURE 3 | The MFs of dP&dV method.

FIGURE 4 | The tracking effect of dP&dV method.
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{ dP > 0,  dV > 0 or dP < 0, dV < 0 Left of  MPP
dP > 0,  dV < 0 or dP < 0, dV > 0 Right of  MPP

(3)

Based on Eqs. 1–3, fuzzy rules are summarized in Table 1, and
the MFs of dP and dV is shown as Figure 3.

As shown in Figure 4, the steady-state oscillation is significant
when the irradiation is large. On the contrary, the steady-state
oscillation disappears when the solar irradiance level is low. The
tracking speed of this method is relatively fast, which helps to
keep up with PV changes quickly.

The dP&dI method is another popular method, which is
similar to the dP&dV method. For the dP&dV method, the
first and second inputs refer to Eqs. 4, 5, respectively.

dP(k) � P(k) − P(k − 1) (4)

dI(k) � I(k) − I(k − 1) (5)

where P(k) and I(k) are PV output power and voltage,
respectively at time k. According to the principle of dP&dI
method, the operation principle can be expressed by:

{ dP > 0, dI < 0 or dP < 0, dV > 0 Left of  MPP
dP > 0,  dI > 0 or dP < 0,  dI < 0 Right of  MPP

(6)

Based on Eqs 4–6, fuzzy rules are summarized in Table 2, and
the MFs of dP and dI is shown as Figure 5.

As shown in Figure 6, the steady-state oscillation is hard when
the irradiation is large. On the contrary, the steady-state
oscillation disappears when the irradiance decreases. The
tracking speed of this method is relatively faster, which help to
keep up with PV changes quickly.

The characteristics of the two methods can be summarized as
follow:

• The control logic is simple and rules are easy to design.
• It is easy to produce steady-state oscillation.
• The tracking speed of the two methods is faster.

2.2 E&dE Method
For the E&dE method, the first and second inputs refer to Eqs. 7,
8, respectively (Danandeh and Mousavi G, 2018; Bhukya and
Nandiraju, 2020).

E(k) � dP
dV

� P(k) − P(k − 1)
V(k) − V(k − 1) (7)

TABLE 2 | The rules of dP&dI method.

dP

NB NS ZE PS PB

dI

NB LB LS ZE RS RB
NS LS LS ZE RS RS
ZE LS ZE ZE ZE RS
PS RS RS ZE LS LS
PB RB RS ZE LS LB

FIGURE 5 | The MFs of dP&dI method.

FIGURE 6 | The tracking effect of dP&dI method.

TABLE 3 | The rules of E&dE method.

E

NB NS ZE PS PB

dE

NB ZE ZE ZE ZE ZE
NS LS LS ZE RS RS
ZE LB LS ZE RS RB
PS LS LS ZE RS RS
PB ZE ZE ZE ZE ZE

FIGURE 7 | The MFs of E&dE method.
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dE(k) � E(k) − E(k − 1) (8)

where P(k) and V(k) are PV output power and voltage
respectively at time k. According to the principle of E&dE
method, the operation principle can be expressed by:

{E > 0 Left of  MPP
E < 0 Right of  MPP

(9)

Based on Eqs. 7–9, fuzzy rules are summarized in Table 3, and
the MFs of E and dE is shown as Figure 7.

As shown in Figure 8, the steady-state oscillation still exists
and is mainly decided by the solar exposure level. The tracking
speed of this method is relatively slower, which is not suitable to
cope with the rapid change of irradiation.

The characteristics of E&dE method can be summarized as
follow:

• The tracking speed of the two methods is faster. The control
logic is simple and rules are easy to design.

• The steady-state oscillation is slight.
• The tracking speed of E&dE method is slow.

2.3 G&F Method
For the G&F method, the first and second inputs refer to Eq. 10
(Chen Y.-T. et al., 2016).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � 1 −

∣∣∣∣∣∣∣ dIdV
∣∣∣∣∣∣∣/

∣∣∣∣∣∣∣ IV
∣∣∣∣∣∣∣

F � 1 −
∣∣∣∣∣∣∣ IV

∣∣∣∣∣∣∣/
∣∣∣∣∣∣∣ dIdV

∣∣∣∣∣∣∣
(10)

According to the principle of G&F method, the operation
principle can be expressed by:

{G> 0  and F < 0 Left of  MPP
F > 0  and G< 0 Right of  MPP

According to the above formulas, fuzzy rules can be designed,
as shown in Table 4, and theMFs ofG and F is shown as Figure 9.

As shown in Figure 10, the steady-state oscillation is well
canceled in this scheme. The tracking speed of this method is
appropriate, which is enough to cope with the rapid change of
irradiation.

The characteristics of E&dE method can be summarized as
follow:

• The control logic is ingenious and rules are less.
• The steady-state oscillation is not found.
• The tracking speed of E&dE method is moderate.

FIGURE 8 | The tracking effect of E&dE method.

TABLE 4 | The rules of G&F method.

G

NB NS ZE PS PB

F

NB ZE RS RB
NS ZE RS RS
ZE ZE ZE ZE ZE ZE
PS LS LS ZE
PB LB LS ZE

FIGURE 9 | The MFs of G&F method.

FIGURE 10 | The tracking effect of G&F method.
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2.4 The Composite Methods
After the combination of other control techniques, many
FLC methods have been developed based on the above
methods.

The beta-parameter based MPPT algorithm are derived
from E&dE method (Li X. et al., 2019c). This method adds
an input variable, β, to E&dE method, and changes the fuzzy
rule based on the value of β, as shown in Table 5. The dilemma
between the rules number and the universality for various
operating conditions can be effectively solved with this new
algorithm. In addition, it can simplify the Fuzzy rule
membership functions since the number of fuzzy rules can
be reduced.

The FLC-MPPT based on genetic algorithm and small-signal
analysis are derived from dP&dV method (Mohamed et al.,
2017). Then, proper FLC-MPPT control design was performed
by means of combining genetic algorithm and the analytical
design formulas. This method use the small-signal model with
combination of a stochastic searching technique based on genetic
algorithm to get the accurate design parameters of dP&dV
method.

The FLC MPPT based on firefly algorithm are derived from
dP&dV method (Farajdadian and Hassan Hosseini, 2019) This
method utilize the firefly algorithm to design fuzzy controller
membership functions for a better effectiveness. After optimizing
the parameters by firefly algorithm, the MPPT method will have
better dynamic performance and perform well at all irradiation
levels.

Another MPPT method which is well adapted with
microcontrollers is Neural networks (NN) method. Artificial
neural network (ANN) emerged at the same time that fuzzy
logic emerged and both are considered a part of soft computation.
In complex neural networks, higher number of hidden layers are
used. Number of layers and neurons of each layer and the
functions employed in layers depend on user’s knowledge.
Input variables might be array parameters like V and I,
weather information like temperature and solar irradiation or
a combination of them. Output variable is usually duty cycle of
the inverter.

3 SIMULATION RESULT AND
EXPERIMENTAL EVALUATION

As shown in Figure 11, this experiment utilized Host PC, Real-
Time Model Simulator (MT6016), Interface board, and
Oscilloscope.

The PV model of EN50530 and boost converter are utilized in
this experience (Chen P.-C. et al., 2015; Park and Choi, 2017;
Ayop and Tan, 2018; Yang et al., 2020a; Li X. et al., 2021). Table 6
lists main electrical parameters of the selected PV module in
EN50530, and Table 7 lists main electrical parameters of the PV
system.

The results of the real-time simulation platform are consistent
with the theoretical analysis. As shown in Figure 12, the tracking
process of dP&dV method was successful in the whole process.
However, with the irradiation intensifies, the oscillation becomes
more obvious. This not only leads to the power loss, but also
brings a large variation of voltage, which will seriously affect
the power quality. Furthermore, the oscillation in E&dE and
G&F methods is far smaller than the dP&dV method. The
tracking speed of E&dE method is slower than that of the
G&F method.

TABLE 5 | The rules of β method.

βmin PB
βmid dP dV
βmax NS ZE PS

NS NS ZE PS
ZE ZE ZE PS
PS PS ZE ZE
NB NS

FIGURE 11 | Experimental platform.

TABLE 6 | Main parameters for EN50530 PV modules.

Parameter Value

Maximum power, Pmpp 59.85 W
Voltage at MPP, Vmpp 17.1 V
Current at MPP, Impp 3.5 A
Open-circuit voltage, Voc 21.1 V
Short-circuit current, Isc 3.8 A
Temperature coefficient of Voc −80 mV/°C
Temperature coefficient of Isc 0.065%/°C

TABLE 7 | Main parameters for the PV system.

Parameter Value

Boost converter inductor, L 10−3 H
PV-side capacitor, Cpv 470−6 F
DC-link capacitor, Cdc 470−6 F
Load resistance, Rload 20 Ω
Switching frequency, f 20,000 Hz
Reference power, Plimit 40 W
Threshold power, dPth 6 W
Simulation step size, Tcontrol 10−4 s
Sampling step size, dTsample 10−2 s

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7279495

Zhu et al. Pipeline Transportation of H2NG

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


4 CONCLUSION

In this paper, four MPPT programs based FLC are compared. It
can be concluded that, the selection of input variables determines
the difficulty of the final control effects, based on the analysis of
the design process and tracking effects. The correctness of the
theoretical analysis is proved by simulation results and
experiment evaluations.

However, this paper does not describes the MPPT
progresses which combine FLC with other technologies in
detail. Because, this paper focuses on the comparative
analysis of the difference of basic FLC methods. The
introduction of additional methods does not benefit
comparative analysis.
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