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As the largest processing sector of primary energy, the transformation and upgrading
of the power sector is undoubtedly an effective way to alleviate the situation of energy
and environment. This article studies the gradual goals of the transformation and
upgrading of China’s power industry, where the conditions of technical judgment,
specific profile, and moderate agenda are incorporated. The empirical analysis of
China’s provincial power sectors based on the constructed models came to the
following results. First, it is of great importance to consider the profile of each
region’s power sector in setting energy-saving and emission reduction targets. The
analysis of variance demonstrates significant differences in the reference points of
inputs and outputs under the 1% confidence level. Second, regardless of the specific
quantity, the strongly consistent trends of the short- and long-term targets
demonstrated the feasibility and effectiveness of the gradual goals. Finally, realizing
the potential of energy-saving and emission reduction needs a gradual pathway instead
of accomplishing in one stroke. The targets of this study, which are attainable for the
power sector and still represent a best practice, could serve as transitional benchmarks
in power supply and emission reduction. To further achieve carbon neutrality, the
management strategy to coordinate power supply and renewable energy
accommodation needs to be transformed.
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INTRODUCTION

Energy issues and climate change are increasing concerns over the world. As an important energy
processing and conversion sector, power industry plays a dominant role in supporting the national
economic and social development. At the same time, it consumes a lot of energy, causing serious
environmental pollution. The total electricity consumption was 7,511 billion kWh in 2020, and the
installed capacity of power plants of 6,000 kW and above was 2.2 billion kilowatts to meet the ever-
increasing power demand in China, of which thermal power and nonfossil energy (hydropower,
wind power, and photovoltaics) accounted for 56.6 and 43.4%, respectively. As for CO2 emissions,
the power industry accounts for about 40% of the total emissions of the whole society, and the carbon
emissions of other industries also come from their demand for electricity to a large extent (Holladay
and LaRiviere, 2017).
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Faced with the increasingly difficult situation of energy
conservation and emission reduction, there has been an
international effort to develop a low-carbon economy,
especially in the power industry. For example, the growth rate
of carbon emissions has declined in the United States due to the
reduction in coal-fired power generation. European countries
have also realized a continuous rate of reduction in emissions by
reducing fossil fuel consumption in power generation (Mohsin
et al., 2019). A relatively great potential of preserving the
environment could be realized by more robust environmental
policies and renewable energy resources for the set of 25
developing countries (Mohsin et al., 2021b). In China, the
power development plan, the Sino-US joint statement on
climate change, and the climate ambition summit have all put
forward clear optimization goals for China’s energy consumption
structure, namely, by 2030, carbon emissions per unit of GDP will
be reduced by 60–65% compared to 2005, and nonfossil energy
will account for about 25% (Lo, 2014; 2020). In September 2020,
China pledged at the United Nations General Assembly to reach
the peak of carbon emissions by 2030 and achieve carbon
neutrality by 2060. The carbon peak goal and the carbon-
neutral vision have been listed as the key tasks of the Central
Economic Work Conference. The proportion of electricity in the
terminal energy consumption increased year by year, and
accordingly, the total primary energy consumption of this
sector increased. Electric power is the hub of energy
consumption. The “30·60” targets put forward higher
requirements for carbon emission reduction in the electric
power industry. Therefore, it is very important to formulate a
rational pathway for the power industry to take the lead in
realizing the targets of emission peak and carbon neutrality.

The first step for the pathway design is to evaluate the present
status and improvement potential of the decision-making units
(DMUs). In this regard, the DMUs are usually compared to the
benchmarks to determine the corresponding operation situation
and the possible inefficiency levels. The nonparametric data
envelopment analysis (DEA) (Charnes et al., 1978) is
considered a popular tool to assess the relative efficiency of
the DMUs (Xia et al., 2020). It is also applied to the
aggregation of sub-indicators, taking the low-carbon finance
index for example (Mohsin et al., 2020). Based on the
efficiency analysis results, the potentials of input reduction or
output expansion are evaluated (Bello et al., 2018; Li et al., 2019;
Nakaishi et al., 2021a). The neighborhood approach is also used
to estimate the potential (Aarakit et al., 2021). In an
environmental efficiency analysis, various methods have
sprung up to incorporate undesirable outputs, for example,
carbon emissions, into the models (Monastyrenko, 2017; An
and Zhai, 2020; Li et al., 2021; Zhang et al., 2021). Among
them, directional distance function (DDF) (Chung et al., 1997)
methods have come into focus recently due to their feasibility in
dealing with multiple inputs and outputs and nonradial
characteristics (Zhou et al., 2018; Wang et al., 2019; Sun et al.,
2020). In practice, the directional vectors can serve as guidance
for the policy implementation or promotion direction. Along the
directional vectors, the potential on inputs or outputs can be
captured with policy or economic implications (Long et al., 2018;

Song and Wang, 2018; Xian et al., 2019). The growth potential of
environmental efficiency in China’s power generation sector was
found to be 27% on average (Nakaishi et al., 2021b). However, it is
a long-term task to realize the full potential of emission reduction,
not to accomplish in one move, which has rarely been considered
in the previous efficiency studies for the power industry. It needs
to find an appropriate pathway to realize energy-saving and
emission reduction targets for the DMUs of the power
industry step by step. In addition, there exists regional
diversity in the marginal abatement costs of China’s power
industry (Xian et al., 2019). There is a need to investigate the
impacts of resource endowment, the technological level,
economic development, and other factors in the efficiency
analysis to find out the sources of difference in operation status.

In analyzing the influence of individual characteristics,
external environment, and other factors on environmental
efficiency, various forms of regression analysis were commonly
used. Among them, some directly analyze the efficiency and some
research on the impact of a certain function of efficiency. For
example, Halkos and Polemis (2018) analyzed the relationship
between the environmental efficiency of the power sector and
economic growth through curve fitting. There are also studies
using the production function to analyze the impact of factors
such as the economic level, population, industrial structure,
production scale, electricity price, and bargaining power on
the efficiency of the power system (Lozano et al., 2019; Lin
and Zhu, 2020; Eguchi et al., 2021). Mohsin et al. (2021a)
combined DEA and the difference-in-difference method to
study the impacts of power reforms on energy efficiency and
found that energy reform can be a good means to achieve high
energy efficiency. The drivers of CO2 emissions in China’s power
industry were assessed by the production-theoretical
decomposition analysis based on DEA. The emission efficiency
changes and the growth in installed capacity are identified as key
contributors (Wang et al., 2019; Xie et al., 2021). The above
analysis could provide an important reference for the existing
inefficiency levels. However, from the practical perspective, it is of
more operation significance and reference value to find out goals
than to determine the efficiency/inefficiency levels for the
purpose of realizing the full potential of emission reduction.

From the perspective of performance management, DEA
methods are extended to evaluate performance in the context
of improvement plans where certain management goals are set
(Ruiz and Sirvent, 2019). To avoid setting unachievable or
unambitious goals, studies established various models for
target setting. Taking the closest target setting as an example,
it guarantees that the targets are achievable and represent best
practices (An et al., 2015; Ramón et al., 2016). Zhou et al. (2019)
used a DEA benchmarking approach to determine goals and
designed the reward and penalty plan accordingly. The target
setting approach was used in the case study of 10 cities of the
Chinese Huaihe River Basin. The impacts of decision-maker’s
preferences on the target setting are investigated (Lim and Zhu,
2019; Chen and Wang, 2020). The above analyses of influencing
factors and goal setting could provide important references for
the targets of DMUs in the power industry in the case of inputs
and desirable outputs. However, there exists correlation between
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the desirable and undesirable outputs in China’s power industry.
The most feasible transitional path is ensuring benefits and social
awareness and at the same time realizing energy-saving and
emission reduction (Chai et al., 2020); that is, both desirable
and undesirable outputs should be considered in setting gradual
goals for the power industry. In addition, the goals set in the
initial stage would necessarily affect the operational process. The
efficiency analysis should not neglect the impacts of initial goals.

Given the above, this study expands the target model to
include undesired outputs in recognition of benchmarking to
monitor operation as well as plans (Stewart, 2010). The
contributions of this work are twofold. First, it constructs
short-term and long-term learning target models for the
power sector under different goals and explores its energy
conservation and emission reduction potential; it also explores
reasonable steps to achieve energy conservation and emission
reduction. The urgent need for a clean power structure and the
structural characteristics of the provincial power sector itself, as
well as the coordination between energy conservation and
emission reduction, and power supply goals, are integrated
into the constructed models. Second, in order to build realistic
and feasible goals for the provincial power sector, it explores the
emission reduction potential under different target systems based
on the established efficiency analysis models and provides
practical and feasible strategies and pathways for energy
conservation and emission reduction in the provincial power
sector based on the corresponding benchmark analysis.

The remainder of this article proceeds as follows. “Methods”
section sets out the methods. In “The Gradual Targets of China’s
Power Industry” section, we investigate the short- and long-term
goals of China’s provincial power sector in energy-saving,
emission reduction, and responsibility fulfillment, analyze the
impacts of initial goal setting on efficiency, and explore feasible
pathways. “Conclusion” section comes to conclusions.

METHODS

This study will investigate the gradual goals for China’s provincial
power sector in energy-saving, emission reduction, and
responsibility fulfillment to explore feasible paths to realize the
potential. To this end, we first apply the directional distance
function to determine the energy-saving and emission reduction
potential for the power sector. Second, we develop a target-setting
model where the reference points are both attainable and
representing best practice based on the closest target model.

Energy-saving and emission reduction targets based on the
directional distance function.

Consider n DMUs in the electricity generation process,
indexed by j � 1,/, n, of which the distance function in a
given period of time is evaluated in terms of mx inputs, mb

desirable outputs, and mb undesirable outputs denoted by
(Xj, Yj, Bj). Herein, Xj � (x1j,/, xmxj)′> 0mx,
Yj � (y1j,/, ymyj)′> 0my, and Bj � (b1j,/, bmbj)′> 0mb. We
adopt the environmental DEA technology to conduct the
following study. The corresponding production possible set T
can be formulated by T � {(X,Y, B)∣∣∣∣X can produce (Y, B)}. The

production set is assumed to be convex and closed, and the
undesirable outputs are assumed to satisfy the weak disposability
assumption and null-jointness condition (Shephard et al., 1970;
Färe et al., 1985). Given the reference technology, the directional
distance function for environmental efficiency assessment with
variable returns to scale (VRS) in the DEA framework can be
formulated as follows:

D(X0, Y0, B0) � max β

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j�1

λjxij ≤xi0 − βgi0, ∀i � 1,/, mx

∑n
j�1

λjyrj ≥yr0 + βgr0, ∀r � 1,/, my

∑n
j�1

λjbkj � bk0 − βgk0, ∀k � 1,/, mb

∑n
j�1

λj � 1

λj ≥ 0, j � 1, ..., n

.
(1)

Subscript 0 indicates the DMU being evaluated. λj is the
weight of each DMU in constructing the production frontier.
(di0, dr0, dk0)′ is the directional vector along which DMU0 will be
projected to the production frontier. Upon obtaining the optimal
solution (λpj , βp)′ to the linear programming, the reference point
for the DMU under estimation on the best practice frontier is
(∑n

j�1λ
p
jxij,∑n

j�1 λ
p
jyrj,∑n

j�1 λ
p
jbkj)′. The potentials of inputs

and/or outputs can be obtained directly by the difference
between the reference point and the observation, which
obviously include both radial and nonradial slacks.

Attainable and Best Practice Target Setting
Model
As stated in the previous section, decision-makers usually set
goals at the beginning of the period. Moreover, the goals will
orient the operation process at that period of time. In this
subsection, we will establish a benchmark model in the
framework of DEA to find out the targets for the DMUs. The
targets would satisfy the following features. The targets represent
the best practice which are expressed in terms of inputs and/or
outputs and are attainable with reasonable distance from the
current situation of the DMU; that is, in the short term, the power
industry will pursue goals similar to its current profile to some
extent. We denote the targets by vector(xt

i , y
t
r, b

t
k)′. It can be

obtained by the following model:

min ∑
i

�������
xi0 − xt

i

xi0

�������
1
+∑

r

��������
yi0 − yt

i

yi0

��������
1

+∑
k

��������
bi0 − bti
bi0

��������1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈E

λjxji � xt
i , ∀i � 1,/, mx (2.1)

∑
j∈E

λjyjr � yt
r, ∀r � 1,/, my (2.2)

∑
j∈E

λjbjk � btk, ∀k � 1,/, mb (2.3)

−∑
i
vixji +∑

r
uryjr −∑

k
wkbjk + dj � 0, j ∈ E (2.4)

λj ≤M(1 − qj), j ∈ E (2.5)
dj ≤Mqj, j ∈ E (2.6)
∑
j∈E

λj � 1, j ∈ E (2.7)

vi, ur, wk ≥ 1, i � 1,/, mx, r � 1,/, my, k � 1,/, mb

qj ∈ {0, 1}, j ∈ E

λj , dj, x
t
i , y

t
r , b

t
k ≥ 0

,

(2)
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The objective function is to minimize a weighted L1 distance
to the DMU under estimation. E is a set of the extremely efficient
DMUs to construct the reference point for DMU0.M indicates a
positive number large enough. The key constraints of the above
model lie in Eqs (2.4)–(2.6). qj is a 0–1 logical variable. If it equals
0, then dj � 0, and it means that the reference point DMUj falls
on the production frontier of T by the constraint (2.4). Otherwise,
if it equals 1, DMUj is not on the efficient frontier subject (2.4),
and simultaneously, the constraint (2.5) enforces λj to be zero,
which indicates that the point will not participate in constructing
the targets for the DMU under estimation. In addition, due to the
L1 distance in the objective function, the model becomes a type of
nonlinear program. With regard to its solving process, a set of
instrumental variables would be introduced. For example, we
introduce a pair of nonnegative variables x+

i and x−
i for each i.

The corresponding term
����xi0 − xt

i /xi0

����1in the objective function
would be equivalently transformed to (x+

i + x−
i )/xi0 by

introducing additional constraint xi0 − xti � x+
i − x−

i to model
Eq. 2. Similarly, the other nonlinear terms can be transformed
to linear ones by introducing instrumental variables and
constraints. By means of the transformation we can obtain the
targets (xtpi , ytp

r , b
tp
k )′ for each DMU.

THE GRADUAL TARGETS OF CHINA’S
POWER INDUSTRY

Data Descriptions
We employ the methods introduced in the “Methods” section to
explore the gradual pathway of China’s power industry in 30
provincial administrative regions (PARs) in terms of energy-
saving, CO2 emission reduction, and responsibility fulfillment
during the period 2010–2019; Tibet is not included due to data
unavailability. The inputs include labor, installed capacity, and
energy. Similar to the study of Duan et al. (2016), we take the sum
of energy inputs as a single energy input indicator. The desirable
output is electricity generated, and undesirable outputs are CO2

emissions stemming from three primary fossil fuels include coal,
petroleum, and natural gas. The data of labor, installed capacity,
energy, and electricity generated are from the China labor
statistical yearbook, China electric power yearbook, China
energy statistics yearbook, and compilation of statistical data
of the electric power industry. The CO2 emissions are calculated
through the method of IPCC. The descriptive statistics of the
inputs and outputs are shown in Table 1.

Gradual Goals of the Power Industry
Environmental Efficiency Analysis of the Power Sector
Under DDF
Based on the DDF, where the directional vectors are the quantity
of inputs and outputs indicators of the observations, the values of
the distance function of the power sector in China’s 30 PARs
during 2010–2019 are obtained. The distances of 2010, 2015, and
2019 and the average distances during the study period are shown
in Figure 1. It shows that nine PARs get the lowest distance of
zero on average, including Beijing, Tianjin, and Shanghai. Most of
these areas are municipalities directly under the central

government or located in the eastern developed areas. The
corresponding power generation process is superior to others
in terms of production and emission, and the observations are
located on the production frontier. The lowest distance from the
frontier of Sichuan and Yunnan might benefit from the
advantages of energy resources and the development of
external power transmission. The longest distance occurs in
Heilongjiang Province. As an energy base, it is urgent to
improve the environmental efficiency in power generation
facing the pressure from primary energy-dominated energy
mix and emission reduction. The trends of distance functions
vary from one to another. Some have experienced growth, some
have been declining, and some have risen before falling. Taking a
new round of electric power reform in 2015 as the boundary, it
shows that most of the regions have experienced the narrowing of
the distance, which is inseparable from the promotion effect of
power reform.

In order to more intuitively reflect the performance of each
region’s power sector, a scatter diagram of the environmental
efficiency during the study period is shown in Figure 2. It shows
that the relative efficiency has experienced a trend of slight
decentralization around 2015. Most of the observations on the
efficient frontier have always been in the lead. The slight changes
in environmental efficiency indicate a catch-up effect among the
regions in power generation and emission reduction.

From the perspective of practice, it is more meaningful to
know the specific goals of each input/output indicator for the
plans than the relative efficiency levels. Therefore, the
reference targets for each DMU in terms of inputs, desirable
outputs, and undesirable outputs are calculated by the
weighted sum of the observations on the efficient frontier
participating in constructing the benchmarks. Taking the
ith input for example, the target can be obtained by
∑n

j�1 λ
p
jxij, where λpj and xij are the weight and inputs

corresponding to the jth observation, respectively. To make
the targets of different inputs and/or outputs comparable, we
transform the targets to gap ratios, that is, dividing the
difference between the observation to the targets by the
target value, that is, (∑n

j�1 λ
p
jxij − xi0)/∑n

j�1 λ
p
jxij for the ith

input. The average gap ratios of each indicator during the
study period of 2010–2019 can be found in Figure 3. The
results of labor, power generated, and carbon emissions
correspond to the left coordinate, while the other two
indicators correspond to the right for the sake of
readability. What is worth noting is that the positive and
negative signs mean the indicator should be increased or
reduced, respectively. That is, the more, the better for the
desirable outputs, and the opposite applies for the other
indicators, including inputs and undesirable outputs.

For the input indicators, the gap ratio of installed capacity
moves around 2.41%. The gap ratio of energy input slightly
fluctuates around zero, which may be due to the energy input,
and in this study, it is the total energy input rather than a certain
energy type. The energy input needs to support the power supply
and economic operation, and the way to further improve the
environmental efficiency of the power generation sector is to
optimize the power mix rather than simply reducing the energy
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input. As for the labor input, it is approximated by the total input
in the production and supply of electric power and heat power
industry. The fluctuation of the gap ratio needs to further clarify
the exact values of the power generation industry. From the point
of view of outputs, we can find that the gap ratio of electricity
generated is relatively stable at 4% except for 2015 and 2016. It
indicates that the relative gap among the regions regarding
desirable output has not been widened or narrowed to some
extent during the study period. When turning to the undesirable
output, the gap ratio is larger than the desirable one. The

maximum gap of 8.80% is in 2016, the year after the new
round of power reform. On average, the carbon emissions
could be reduced by 5.79% through environmental efficiency
improvement.

In detail, we can obtain the specific quantity of targets in the
inputs and outputs for each region to realize. From the
perspective of serving society and emission reduction, the
targets of desirable and undesirable output in the latest year of
the study period 2019 are listed in Table 2. The emission
reduction potentials of Heilongjiang and Henan were over

TABLE 1 | Descriptive statistics of inputs and outputs.

Variable Unit Mean Std. dev Type

Labor Person 98041.71 54231.60 Input
Installed capacity Megawatt 48879.93 30290.91 Input
Energy consumption Million tons of coal equivalent (Mtoc) 57333.29 36699.51 Input
Power generated Billion kWh 191.64 123.85 Desirable output
Carbon emissions Thousand tons 125310.84 99021.91 Undesirable output

FIGURE 1 | Directional distance of the power sector of provincial administrative regions.

FIGURE 2 | Environmental efficiency of the power sector during 2010–2019.
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15% in the measurement of the gap ratio. Large potential
abatement cost savings would be realized by trading emission
permits for these regions (Xian et al., 2019). In terms of the total
amount, the carbon emission reduction could have been up to
196.35 million tons in 2019 if the power sector of all regions
achieved the best practice of that time. It is hard to realize the
amount of emission reduction by a nonstop process. A feasible
and smooth transition target for each provincial power sector
needs to be investigated.

Closest Targets of the Power Sector
As stated in the “Methods” section, realizing the potential of input
saving and emission reduction needs a gradual pathway instead of
accomplishing in one stroke. For this reason, we applied the
models of attainable and best practice targets setting in the
previous section to the power generation sectors of 30 PARs.
The gap ratios, of which the calculation process is the same as the
“Environmental Efficiency Analysis of the Power Sector Under
DDF” section, of each region during the study period 2011–2019

FIGURE 3 | Gap ratio of the inputs/outputs in the power sector during 2010–2019.

TABLE 2 | Reference targets of desirable and undesirable outputs for the power sector in 2019.

Target-desirable
(billion kWh)

Gap, % Target-undesirable
(thousand tons)

Gap, %

Beijing 46.10 0.00 13465.49 0.00
Tianjin 67.30 0.00 44559.93 0.00
Hebei 316.45 8.77 186601.19 −10.63
Shanxi 355.57 8.51 227746.34 −10.26
Inner Mongolia 545.10 0.00 412158.72 0.00
Liaoning 212.22 6.13 111092.31 −6.99
Jilin 103.86 10.84 50540.89 −13.84
Heilongjiang 125.51 13.31 65351.42 −18.15
Shanghai 83.70 0.00 62801.61 0.00
Jiangsu 506.20 0.00 341245.70 0.00
Zhejiang 355.20 0.23 205048.38 −0.23
Anhui 288.00 0.00 224838.44 0.00
Fujian 257.30 0.00 118938.50 0.00
Jiangxi 148.41 5.46 91291.02 −6.13
Shandong 550.88 4.06 387318.09 −4.42
Henan 319.45 11.85 185064.35 −15.53
Hubei 302.34 1.67 124100.32 −1.72
Hunan 175.10 11.42 69247.42 −14.80
Guangdong 497.34 2.44 252463.19 −2.57
Guangxi 189.79 3.74 82865.42 −4.04
Hainan 35.10 1.70 16913.57 −1.76
Chongqing 89.09 8.86 43482.61 −10.77
Sichuan 390.30 0.00 43269.85 0.00
Guizhou 242.62 6.98 114941.65 −8.11
Yunnan 346.20 0.00 29295.37 0.00
Shaanxi 244.18 8.96 155044.17 −10.92
Gansu 185.08 10.36 65148.13 −13.07
Qinghai 88.30 0.00 9506.41 0.00
Ningxia 177.03 3.80 119206.49 −4.12
Xinjiang 372.28 3.14 230943.73 −3.35
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are shown in Table 3. In order to compare the gap ratio of each
region’s power sector as a whole, the weighted sum of the gap
ratios of each input/output indicator is constructed. Herein, the
inputs (labor, installed capacity, and energy) and outputs
(electricity generated and carbon emissions) are endowed with
the same weight of 1/2, of which each input indicator gets a
weight of 1/6. For the outputs, power supply and emission
reduction are assumed to be equally important; that is, the
weights of desirable and undesirable output are both equal to
1/4. The weighted sums of the indicators for the power sectors in
Table 3 are sorted by the average values of the 10 years in the last
column.

On average, Beijing and Jiangsu have obtained the lowest gap
ratio of zero during the study period, which means that these two
regions provide an example in power generation for others in
terms of environmental efficiency. If all the regions realized the
closest targets, a 1.75% increase could have been achieved. The
gap ratios for Hubei, Yunnan, and Zhejiang are all below 1%,
which indicates the power sectors of these regions are near the
best practice. The highest ratios for Heilongjiang and Jilin
indicate that it is very urgent for these two regions to realize
the transformation in the power industry. After all, the targets
here are the closest ones of the best practice frontier for these
regions with consideration of their specialties. The variance
analysis of the gap ratios shows that there exist significant
differences in both the regions and different years under the
1% confidence level, as shown in Table 4. It further enhances the

importance of learning about each other’s practices in terms of
power generation and emission reduction.

The gap ratios of the inputs and outputs could provide
strategic references for the improvement of environmental
efficiency and transformation of the power industry. To realize
the potential of input/undesirable output reduction and desirable
output increase in the previous subsection, it needs a specific
roadmap. Figure 4 presents the gap ratios of each indicator
compared to the closest targets, which are attainable and
represent the best practice. The column charts (labor, installed
capacity, and power generated) and line charts (energy
consumption and carbon emissions) correspond to the left and
the right coordinate, respectively. The empirical results also
provide evidence for the importance of gradual goals by
comparing the gap ratios of DDF results and closest targets in
Figures 3, 4.

TABLE 3 | Gap ratios between the observations and the closest targets of the power sector (%).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Beijing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jiangsu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hubei 0.00 0.00 0.00 0.29 0.01 0.06 0.00 0.00 0.00 0.00 0.04
Yunnan 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
Zhejiang 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.08
Anhui 0.47 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11
Tianjin 0.00 0.00 0.00 0.00 1.45 0.00 0.00 0.00 0.00 0.00 0.15
Fujian 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
Guangdong 0.48 0.00 0.00 0.00 0.00 0.85 0.33 0.50 0.00 0.00 0.22
Hainan 1.20 0.00 0.23 0.00 0.00 0.60 0.00 0.00 0.75 0.00 0.28
Sichuan 3.56 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39
Shanghai 0.00 0.00 0.00 0.00 0.00 0.00 2.79 0.00 2.58 0.00 0.54
Shandong 2.28 2.95 1.73 1.03 0.00 0.00 0.00 0.00 0.00 1.71 0.97
Guangxi 0.23 0.75 0.55 0.92 1.59 2.19 3.55 1.89 0.64 0.26 1.26
Guizhou 2.23 2.85 0.71 2.31 0.33 0.82 1.22 0.49 1.32 0.74 1.30
Liaoning 2.77 3.16 2.49 1.95 0.62 1.31 0.93 0.10 1.05 0.75 1.51
Hebei 3.32 1.19 1.18 0.67 2.12 2.22 1.55 0.96 0.83 1.34 1.54
Shanxi 1.34 2.45 1.93 1.12 0.72 0.94 3.34 1.09 2.01 1.35 1.63
Inner Mongolia 4.24 4.69 2.03 1.96 0.36 1.77 2.79 1.38 0.00 0.00 1.92
Chongqing 0.97 2.17 2.13 1.93 0.77 2.45 3.22 2.22 2.34 1.38 1.96
Xinjiang 4.65 3.93 3.04 3.05 0.76 0.95 3.32 1.11 1.44 0.00 2.23
Qinghai 0.00 0.00 0.00 0.00 0.00 6.70 6.64 6.47 3.80 0.00 2.36
Ningxia 2.38 1.94 0.75 0.00 0.00 1.86 5.19 4.78 3.52 4.21 2.46
Shaanxi 1.94 1.14 0.64 0.80 6.51 4.71 4.00 1.45 1.50 2.05 2.47
Hunan 2.48 1.98 1.96 1.66 1.73 4.13 3.57 2.56 3.39 2.28 2.57
Henan 1.52 0.92 0.79 0.75 4.86 4.89 5.81 3.50 3.85 4.33 3.12
Gansu 0.86 1.24 1.27 2.87 3.20 6.17 8.06 4.77 3.36 2.03 3.38
Jiangxi 3.65 2.82 1.92 1.47 14.26 10.18 1.34 0.45 1.04 0.80 3.79
Jilin 6.16 7.59 7.22 6.47 5.71 11.24 9.12 5.70 5.34 2.92 6.75
Heilongjiang 3.50 4.09 3.58 5.87 16.18 16.63 14.38 13.36 5.74 8.94 9.23

TABLE 4 | ANOVA statistics of the gap ratios.

Source of
variation

SS df MS F P-value F Crit

Rows 0.14 29.00 0.00 17.24 0.00 1.51
Columns 0.01 10.00 0.00 3.32 0.00 1.86
Error 0.08 290.00 0.00
Total 0.22 329.00
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From the perspective of inputs, the gap ratios of energy input
fluctuate around zero during the study period, which may be due to
the total quantity of energy input that neglects the power mix. The
gap existing in the labor input is relatively high during 2014–2017.
For the installed capacity, we can find that the largest gap occurred
in 2016 after the new round of power reform. The gap has been
narrowed after 2017. As to the desirable output, a 3.71% increase
could have been realized if the closest targets were reached. The line
of carbon emissions shows that the gaps for the years around 2015
are the largest. The reformmay promote the renewal and practice of
emission reduction strategies in some regions.

The targets of desirable output increase and undesirable
output decrease are calculated and shown in Figure 5. The
quantities corresponding to DDF and the closest targets are
presented, respectively. The positive and negative signs in the
figure indicate the increase or decrease and cannot be calculated
by simply adding up. There exists a clear gap between the two
curves for both the desirable and undesirable outputs. That is, the
closest targets are lower than the ones under directional distance
functions without considering the profile of the regions under

estimation. It again demonstrated the feasibility and necessity of
periodical target setting. Regardless of the specific value, the
trends of the short- and long-term targets have strong
consistency. From the perspective of the transformation of the
power industry, it provides gradual goals for power supply and
emission reduction.

CONCLUSION

As a dominant industry in supporting the national economic and
social development and realizing energy-saving and emission
reduction targets, it is very urgent to formulate a rational
pathway for the power industry to realize its transformation. In
this study, we established models for target setting of the power
industry in the framework of DEA where the reference sets
participating in constructing benchmarks for the DMUs and the
potentials of input and output adjustment were obtained first.
Considering that it is a long-term task to realize the full potential
of the indicators, the attainable targets in the short-term representing

FIGURE 4 | Gap ratio of the inputs/outputs compared to the closest targets.

FIGURE 5 | Targets of desirable and undesirable outputs.
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best practice were found out by a mixed-integer programming
model. The models are used to analyze the gradual goals of the
power sectors in China’s 30 provincial administrative regions. Based
on the empirical analysis, themain conclusions are as follows. First, it
is of great importance to consider the profile of each region’s power
sector in setting energy-saving and emission reduction targets. The
analysis of variance demonstrates significant differences in the
reference points of inputs and outputs in both regions and
different years under the 1% confidence level. Second, short- and
long-term targets of inputs and outputs are investigated by the
constructed models for each region’s power sector. Regardless of the
specific quantity, the strongly consistent trends of the targets
demonstrated the feasibility and effectiveness of the gradual goals.
In terms of the total amount, 196.35 million tons of carbon emission
reduction could have been realized in 2019 if the power sector of all
regions achieved the best practice of that time. Finally, realizing the
potential of input saving and emission reduction needs a gradual
pathway instead of accomplishing in one stroke. The targets of this
study which are attainable for the present profile of the power sector
and still represent best practice could serve as transitional
benchmarks in power supply and emission reduction. To further
achieve carbon neutrality, it needs to transform the management
strategy to coordinate power supply and renewable energy
accommodation.

There are still some deficiencies in our research. First, due to
data availability, the labor input is the total number of employees
of production and supply of electric power and heat power
industry rather than electric power industry, which may affect
the estimation results. Second, it lacks analysis on the influence of
external environmental factors. The limitations will be addressed
in future research.
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