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As an important form of clean energy generation that provides continuous and stable
power generation and is grid-friendly, concentrated solar power (CSP) has been
developing rapidly in recent years. It is expected that CSP, together with wind and
solar photovoltaic, will constitute a stable, high percentage of renewable energy
generation system that will be price-competitive with conventional energy sources. In
this study, a dynamic programming approach based on minimum cost was used to
explore the optimal development path of CSP generation in China by 2050. A learning
curve model and a technology diffusion model were used as constraints. The impact of
factors such as Gross Domestic Product (GDP) growth, incentive policies, technological
advances, grid absorptive capacity, and emission regulation schemes on the development
of CSP generation was discussed in the context of sensitivity analysis and scenario
comparison. This study has reached the following conclusions: 1) the government cannot
achieve the target for cumulative installed capacity in 2050. Considering the interaction of
relevant factors, the target would be hard to achieve even under favorable conditions; 2) as
a key factor affecting the development of CSP, the incentive policy is closely related to
construction cost. It is noteworthy that although the target can be achieved with a higher
investment ratio, the CSP industry has failed to create a good ecological environment in the
early stage of development; 3) GDP growth and learning rate are important factors
influencing the development path in later stages; and 4) although they operate as
potential factors affecting construction costs, grid absorptive capacity and carbon
permit prices have limited impact on the development of CSP generation.

Keywords: concentrated solar power, development path, learning curve, innovation diffusion model, genetic
algorithm, dynamic programming

INTRODUCTION

Coping with global climate change and reducing dependence on non-renewable energy sources is of
great significance today. Researchers around the world are striving to develop renewable energy to
realize sustainable development (Lu et al., 2015). Renewable energy sources mainly include wind,
hydro, geothermal, and solar energy, among which solar energy resources have great potential.
The total solar radiation energy projected onto the Earth per second is about 5.9 × 106 tons of
standard coal equivalent. China enjoys substantial solar energy resources, and the total solar
radiation energy at its surface is 1.47 × 1016 kWh per year (Chen et al., 2017), which is
equivalent to 1.7 × 1012 tons of standard coal (Zhang et al., 2009). The distribution of total

Edited by:
Bai-Chen Xie,

Tianjin University, China

Reviewed by:
Neeraj Dhanraj Bokde,

Aarhus University, Denmark
Lina Xu,

Shanxi Datong University, China

*Correspondence:
Xiaojia Dong

dxjhbu@163.com

Specialty section:
This article was submitted to

Sustainable Energy Systems and
Policies,

a section of the journal
Frontiers in Energy Research

Received: 11 June 2021
Accepted: 27 September 2021
Published: 16 November 2021

Citation:
Zhang X, Dong X and Li X (2021) Study
of China’s Optimal Concentrated Solar

Power Development Path to 2050.
Front. Energy Res. 9:724021.

doi: 10.3389/fenrg.2021.724021

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 7240211

ORIGINAL RESEARCH
published: 16 November 2021

doi: 10.3389/fenrg.2021.724021

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.724021&domain=pdf&date_stamp=2021-11-16
https://www.frontiersin.org/articles/10.3389/fenrg.2021.724021/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.724021/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.724021/full
http://creativecommons.org/licenses/by/4.0/
mailto:dxjhbu@163.com
https://doi.org/10.3389/fenrg.2021.724021
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.724021


solar radiation is uneven: plateaus and arid areas in western
China have higher radiation than plains and humid areas in
eastern China. The Qinghai–Tibet Plateau has the highest
solar radiation density, with total annual radiation levels
exceeding 1,800 kWh/m2 and even 2,000 kWh/m2 in some
areas,1 indicating that China has a great opportunity to
develop solar energy.

Solar energy is used for power generation in two main ways:
photovoltaic (PV) and concentrated solar power (CSP) (Desideri
and Campana, 2014). At present, PV technology in China has
becomemature after decades of development. In 2019, new installed
capacity and cumulative installed capacity were both the highest in
the world, at 29.56 and 204.6 GW, respectively.2 CSP is the process
of converting solar energy into thermal energy, which is then
converted into electricity by doing work (Wang et al., 2020).
Basically, CSP shares the same power generation principle with
fossil-fuel power stations (Liu et al., 2019). The difference is that
fossil-fuel power stations use fuels such as coal, oil, and natural gas to
generate heat. However, the process produces huge amounts of
pollutants (flue gases, dust, sludge, andwastewater). In contrast, CSP
generates heat by clean, renewable solar energy. CSP devices can be
classified as parabolic troughs, solar towers, linear Fresnel lenses, and
parabolic dishes based on the type of reflectors (Wang F. Q. et al.,
2017). Parabolic trough concentrated solar power is one of the most
developed solar technologies (Gonzalo et al., 2019), accounting for
95.7% of operational CSP projects (Baharoon et al., 2015).

CSP has the following characteristics: 1) it uses solar radiation
to generate electricity. Solar energy is the most abundant and
widely distributed resource on Earth. 2) Compared with
hydropower, CSP faces fewer environmental problems and
social objections. Moreover, installed CSP capacity is not
constrained by topography. Because CSP facilities are often
constructed in desert areas, there is no need to resettle local
residents. Furthermore, they can boost the local economy (Chien
and Lior, 2011). 3) Unlike wind power, CSP creates no noise
pollution. 4) Compared with photovoltaic power generation, CSP
has a long service life and is pollution-free (Liu et al., 2019).

The biggest advantage of CSP over other renewable energy
sources is its ability to generate electricity in a stable and
continuous manner. With reflectors or lenses to concentrate
sunlight over a large area into a small light-collecting region,
it converts irradiation to heat and then turns heat into electricity
by doing work. The excess thermal energy is stored in a medium
such as molten salt to generate electricity at night or when solar
radiation is low, making CSP grid-friendly (Wang et al., 2020). In
addition, from a long-term perspective, CSP can be used as a basic
load regulator and can provide a stable and high proportional
generation system combined with renewable energy generation
technologies such as PV and wind power. Therefore, CSP is a
highly competitive power generation technology (Liu et al., 2019).

CSP has drawn much attention for its stable power generation.
Since 2008, CSP production has accelerated globally (Zhao et al.,

2017). Over the past 20 years, approximately 20 solar thermal power
plants over 500 kW have been manufactured, and some of these
have been commercialized (Liu et al., 2019). Globally, CSP operates
on a medium to large scale, with a focus on Spain and the
United States (Zhang et al., 2013). By the end of 2019, the total
installed global CSP generation capacity reached 6,289MW, of
which Spain accounted for 36.6% and the United States for
28%.2 Due to a late start (the first solar thermal power
demonstration projects launched in 2016) (Tang et al., 2018),
China accounts for only a small fraction of CSP installations
(6.7%).2 However, China takes the lead in terms of CSP capacity
under construction and in the planning stage (Zhao et al., 2017).
Figure 1 shows new and cumulative installed CSP capacities in
China from 2012 to 2019.3 In terms of distribution characteristics,
solar thermal power stations in China are distributed over most of
northwestern China and in a few areas in North China because of
their need for particular natural conditions such as land and light
resources. Existing solar thermal power stations are mainly
distributed in Qinghai province (Delhi City and Gonghe County)
and at Urad Middle Banner in the Inner Mongolia Autonomous
Region. Solar thermal power stations under construction or being
planned are mainly distributed in Gansu province (Yumen City,
Dunhuang city, Aksay Kazakh Autonomous County, Jinta County,
and Gulang County), Hami City in the Xinjiang Uygur
Autonomous Region, Zhangjiakou city in Hebei province, and
Urad Front Banner in the Inner Mongolia Autonomous Region.

CSP is a promising technology for solar energy utilization with
far-reaching implications for China (Yang et al., 2010). However, an
efficient and economical thermal energy storage (TES) system is one
of the key factors determining the development of this technology
(Pelay et al., 2017). CSP plants with large TES can be more
economically competitive by generating stable and dispatchable
power from intermittent solar energy (Ju et al., 2017). With high
penetration of renewable energy, CSP plants with cheap TES will
play a key role. However, with its low conversion efficiency of solar

FIGURE 1 | New and cumulative installed capacities of China’s CSP
from 2012 to 2019.

1The data are collected fromNational Energy Administration (http://www.nea.gov.
cn/2014-08/03/c_133617073.htm) [in Chinese].
2The data are collected from the IRENA (https://www.irena.org/solar). 3The data are collected from the IRENA (https://www.irena.org/solar).
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energy, the CSP industry in China is still immature (Zhao et al.,
2017). High cost is the main factor that hinders its large-scale
development. Therefore, developing CSP at minimal cost is
important research that can serve as a reference for policy-making.

To accelerate the construction of a clean, low-carbon modern
energy system and meet the needs of sustainable economic and
social development, China has occasionally adjusted its CSP
generation targets. The Medium and Long-term Development
Plan of Renewable Energy (National Energy Administration,
2007) requires the cumulative installed capacity of CSP to reach
200MW by 2020. China’s Renewable Energy Development
Roadmap 2050 (Sino-Danish Renewable Energy Development
Project Management Office, 2014) proposes that the cumulative
installed capacity of CSPwill reach 5, 30, and 180 GWby 2020, 2030,
and 2050, respectively. The 13th Renewable Energy Development
Five-Year Plan (National Energy Administration, 2016) predictes
that cumulative installed CSP capacity will reach 13.9MW in 2015
and 5,000MW in 2020. Nonetheless, due to insufficient
consideration of potential factors affecting CSP development in
China and unreasonable targets that could not be optimally
achieved, only a few targets were achieved by the end of 2019.

It is very important to forecast CSP investment cost because high
cost is the main factor hindering its large-scale development (Zhao
et al., 2017). The learning curve model is most commonly used to
predict cost reductions (Van der Zwaan andRabl, 2003; Viebahn et al.,
2011). However, few studies have used the learning curve model to
forecast cost reduction of CSP. In addition, only a few of the goals
proposed have been achieved in China, which may have been due to
unreasonable goal setting. Therefore, it is crucial to forecast the
development trend of CSP. The technology diffusion model is
most commonly used to predict the development trends of
renewable energy sources (Kumar and Agarwala, 2016; Fadly and
Fontes, 2019), but only a few researchers have predicted CSP
development using this model (Xie and Fan, 2017). Furthermore,
the goals cannot be achieved in an optimalmanner, whichmay be due
to insufficient consideration of potential factors affecting CSP
development in China. Dynamic programming, as an optimization
method for multi-stage decision problems, is more suitable for
studying path-dependent problems under the influence of
uncertain factors. Dynamic programming is also widely applied to
studies of renewable energy (Lu et al., 2015; Ding et al., 2020; Xu et al.,
2020), but rarely to CSP. To narrow these gaps, this study selected a
2050 target of 180 GW and investigated whether it was reasonable, as
well as charting the optimal development path ofChina’sCSP by using
dynamic programming based onminimum cost, with a learning curve
model and a technology diffusion model used as constraints. The
impact of factors such asGDP growth, incentive policies, technological
advances, grid absorptive capacity, and emission regulation schemes
on the development of CSP generation is discussed in the context of
sensitivity analysis and scenario investigation.

The rest of this paper is organized as follows. Literature Review
reviews previous research on solar energy, particularly on CSP, and
other renewable sources of energy.Model andHypothesis introduces
the research model used in this study and poses hypotheses. The
results are presented in Results. Discussions discusses the influence
of relevant factors on the CSP development path and makes some
suggestions. Finally, Conclusions provide conclusions.

LITERATURE REVIEW

Due to increasingly severe energy shortages and environmental
pollution, renewable energy sources are becoming a larger part of
the global energy mix, especially in the power industry (Zhang
et al., 2017). Therefore, CSP is drawing more attention from
experts and researchers. The relevant literature covers several
aspects, including cost forecasting as well as diffusion models and
integrated utilization of technologies.

Cost is a key constraint to compete with conventional energy
sources. Wang (2010) pointed out that significant cost reduction is
the crux of market acceptance. Compared with themature parabolic
trough CSP technology, there is potential for the linear Fresnel CSP
technology to be cost effective (Sun et al., 2020) due to its simple
structure and lesser need for reflectors. The learning curve model
proposed by Wright (1936) is most commonly used to predict cost
reductions. It has also been widely demonstrated that the cost of
products decreases continuously based on economies of scale
(Wright, 1936; Yelle, 1979; Wene, 2000), especially in renewable
energy generation (Hernández-Moro and Martinez-Duart, 2013).
Specifically, this cost reduction can be described as a certain
percentage decrease in cost when the cumulative installed
capacity is doubled, which is also known as “the learning by
doing approach.” The approach assumes that changes in costs
are generally attributable to experience, as verified in most of the
literature on cost changes in renewable energy (Albrecht, 2007;
Köberle et al., 2015; Elshurafa et al., 2018; Hong et al., 2020). Van der
Zwaan and Rabl (2003) explored the cost-cutting potential of PV
technology in the first decade of the 21st Century through the
learning curve model. The same model was used to analyze the cost
of CSP plants in Africa and Europe by Viebahn et al. (2011), and the
cost reduction curves were derived. Consistently with these papers,
this study also adopted the learning curve model to predict the
investment cost of CSP generation in China.

Technology diffusion is a subsequent sub-process of the
innovation process (Wu et al., 1997), which combines the
complex technology with the economy and the market (Cao
and Chai, 2013). Renewable energy, as a new form of energy,
has a development trend that resembles that for new technology
(Lu et al., 2015), with both following the S-shaped growth pattern
(Sheng, 2002). Researchers have conducted many studies on
renewable energy development based on technology diffusion
models. Xie and Fan (2017) built a logistic model to determine
the technology maturity of CSP and revealed that the CSP
technology was still in the early stage of development. It is
expected that global CSP technology will become highly mature
and will enter the stage of large-scale commercial application
around 2032. Grafström and Lindman (2017) provided a
technical development model for economic analysis of the
European wind power sector and suggested natural gas prices
and feed-in tariffs as crucial factors in the spread of wind power.
Other studies have analyzed renewable sources using technology
diffusion models (Rao and Kishore, 2010; Popp et al., 2011; Pfeiffer
and Mulder, 2013; Kumar and Agarwala, 2016; Fadly and Fontes,
2019). The Bass model plays an important role in the diffusion
modeling. Since it was proposed in 1969, it has become the main
research tool of market diffusion theory (Yang, 2006). Rao and
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Kishore (2009) used the Bass model to study the growth patterns of
wind power technology in several Indian states; the model which
provided a good foundation for the study of capital-intensive
equipment such as wind power generators. Radomes and
Arango (2015) analyzed the diffusion of photovoltaic systems in
Colombia using an extended Bassmodel in which the adoption rate
was a function of promotional activities and social interactions. It
can be concluded that technology diffusion modeling is generally
mature in renewable energy research based on the above papers,
but there is little research about CSP. Yang (2006) pointed out that
the fitting result of the Bass model is better than that of the logistic
model. Therefore, this study used the Bass model to explore the
diffusion path of CSP in China.

Due to the strict data requirements of the Bass model, some
studies have focused on parameter estimationmethods. Generally
speaking, the ordinary least-squares method (Satoh, 2001), the
non-linear least-squares method (Wang et al., 2017), the
maximum likelihood estimation method (Razo, 2017), the
Kalman filtering method (Chow, 2004), and the grey theory
method (Wang, 2013) can be used to estimate parameters
when data are sufficient, whereas judgment and analogical
methods can be used otherwise. However, when using
judgment or analogical methods, much external information is
required, leading to subjectivity in the estimated parameters.
Because CSP development in China started late, this study had
insufficient data. Due to the heavy reliance of the accuracy of Bass
model prediction on the number of data points (Mahajan et al.,
1990), more than 14 data points are usually required to produce
reliable statistical results (Zhang, 2006). Yang (2006) indicated
that the accuracy of estimating Bass model parameters using a
genetic algorithm is higher, which is of great significance for
forecasting product diffusion in the growth period. Genetic
algorithms (GA), proposed by Holand (1975), are global
search methods based on natural selection and genetic
variation. Sohn et al. (2009) developed a dynamic pricing
model using the Bass model with GA for Korean mobile
phone manufactures, and this method was also applied to the
optimal electric vehicle charging location problem by Akbari et al.
(2018). Similar papers include (Venkatesan and Kumar, 2002;
Wang and Chang, 2009; Kong and Bi, 2014). Therefore, the
application of GA to estimate the parameters of the Bass model
appears to be relatively mature. Hence, GA was used for
parameter estimation in this study.

The studies discussed above considered the impacts of cost
and technology diffusion on renewable energy development.
Other uncertain factors may also influence progress.
Therefore, researchers have been investigating the
comprehensive development of renewable energy (Xu et al.,
2020). For instance, Lund (2007), in a case study in Denmark,
discussed the problems and prospects of switching an existing
energy systems completely into a renewable energy (wind, solar,
wave, and biomass) system. Incentive policies for renewable
energy power generation in China were explored by Zhao
et al. (2016), including R&D incentives, fiscal and tax
incentives, grid-connection and tariff incentives, and market
development incentives. The results showed that these policies
indeed substantially promoted renewable energy power

generation development. Dynamic programming, as an
optimization method for multi-stage decision problems, is
more suitable for studying path-dependent problems under the
influence of uncertain factors. Dynamic programming has also
been widely applied to renewable energy studies (Boaro et al.,
2012; Marano et al., 2012; Feng et al., 2018; Jafari and
Malekjamshidi, 2020). Ding et al. (2020) researched the
sensitivity of cost and price elasticity and policy performance
to renewable energy technology diffusion by constructing a
dynamic programming model. Lu et al. (2015) and Xu et al.
(2020) also took these two models as constraints to explore the
optimal path of China’s wind power and PV power development,
respectively. They both took resource potential, economic
development, incentive policies, emission regulatory schemes,
and grid absorptive capacity into account. However, few
researchers have studied the CSP development path by
applying dynamic programming methods.

The studies just described have analyzed the progress of
renewable energy from various perspectives, but there have
been few studies on CSP, especially on its development path.
Therefore, this study draws on the more mature theories and
methods to build a dynamic programming model with the goal of
cost minimization. Based on the 2050 development target, the
optimal development path of CSP in China was studied under the
constraints of a learning curve model, a technology diffusion
model, economic development, policy incentives, emission
regulation schemes, and grid absorptive capacity.

MODEL AND HYPOTHESES

Learning Curve Model
The learning curve, also known as the experience curve, describes
the relationship between cumulative production and unit cost.
Previous literature in the field of new energy was principally
focused on the one-factor learning curve model (Lu et al., 2015).
The functional form can be defined as follows (De La Tour et al.,
2013):

C(t) � C0 × n(t)−α × eμt , (1)

where, C(t) is the unit investment cost for concentrated solar power
in year t,C0 is the corresponding cost in the base year, n(t) represents
the cumulative installed capacity of CSP at the beginning of the year t,
α is the cumulative installed capacity elasticity coefficient of the unit
investment cost, and eμt is a stochastic error term.

PR � 2−α, (2)

LR � 1 − 2−α. (3)

The progress ratio (PR) is used to describe the ratio of current
unit investment cost to original unit investment cost when
cumulative installed capacity doubles; however, the learning
rate (LR) is more commonly applied in newer literature
(Zhou, 2015). The LR is the learning rate of the learning curve
model, which denotes the proportional reduction in unit
investment cost associated with a doubling in accumulative
installed capacity. For example, if LR � 0.2, it means the unit
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investment cost will decline by 20%when the cumulative installed
capacity is doubled.

Innovation Diffusion Model
The Bass model is a mathematical model proposed by Bass
(1969), which represents the macroscopic diffusion process of
new products (Cao and Chai, 2013). It was originally designed to
predict sales of durable goods and has gradually been applied to
the new energy sector. The logistic model and the Gompertz
model are also typical S-shaped diffusion curves (Rao and
Kishore, 2010). The basic form of these three models is as
follows (Lu et al., 2015):

dN(t)/dt � F(t)[m −N(t)], (4)

where,m is the theoretical maximum installed CSP capacity, N(t)
is the possible maximum cumulative installed capacity in year t,
and F(t) is a time function determined by the technology
diffusion model. The basic form of the Bass model is as
follows (Bass, 1969):

�N(t) � [p + q

m
N(t)][m −N(t)]. (5)

The Bass model assumes that the adoption of new products is
influenced by both external and internal information. External
information includes mass media and advertising, for which the
effect is represented by p, and which is called the innovation
coefficient; internal information includes social interaction and
word-of-mouth, of which the effect is expressed by q, and which is
called the imitation coefficient (Bass, 1969).

Dynamic Programming Model for
China’s CSP
It is difficult to study the optimal development path of CSP
generation with conventional deterministic prediction methods
because solar power forecasting is uncertain (Channon and
Eames, 2014). Dynamic programming can decompose a
complex multi-stage decision-making problem into a group of
simple single-stage sub-problems to solve (Mahmoudimehr and
Loghmani, 2016). Generally speaking, the cost of CSP generation
consists of investment cost, operation cost, and emissions
reduction benefit. Therefore, the total cost function is as follows:

TC(S(t), x(t)) � C(t) × x(t) + (V −M × L) × n(t) × T, (6)

where, x(t) is the new installed capacity of China’s CSP in year t
and also the decision variable of the dynamic programming
model; n(t) is the cumulative installed capacity in year t; S(t)
is the state variable, which is equivalent to the cumulative
installed capacity gap between the target and n(t); C(t) and V
represent the unit investment cost and the unit operating cost of
CSP, respectively; T is the annual average operating hours; M is
the trading price of the carbon emissions market; and L is the
conversion coefficient between carbon emissions and thermal
power generation (Lu et al., 2015).

According to the target proposed in the China Renewable
Energy Development Roadmap 2050, cumulative installed CSP

capacity will reach 180 GW by 2050. Based on this target, the
relationship between S(t) and n(t) can be expressed as:

S(t) + n(t) � 180. (7)

Nowadays, the average service life of a CSP installation is
20 years (Piemonte et al., 2011). It is assumed here that the life
cycle of a CSP system follows a uniform distribution ranging from
18 to 22 years. The retired installed capacity is described by the
following equation:

r(t) � 1
5
∑22
i�18

x(t − i). (8)

The state transition equation can then be written as follows:

S(t + 1) � S(t) − x(t) + r(t). (9)

Therefore, the dynamic programming model of China’s CSP
development under the minimum cost can be expressed as:

⎧⎪⎨⎪⎩
ft(S(t)) � minx(t)∈g(S(t)){TC(S(t), x(t)) + 1

1 + r
ft+1(S(t + 1))}

f2051(S(2051)) � 0, t � 2050, . . . , 2020
.

(10)

Constraints and Parameters
In the past decade, China’s economy has shifted from fast growth
to medium-high growth, and the GDP growth rate has gradually
decreased from 10 to 6% (Qi and Li, 2020). The impact of
COVID-19 reduced China’s GDP growth rate to 2.3% in 2020
(National Bureau of Statistics, 2021). To reflect the moderate
slowdown of China’s economic development as well as the impact
of the pandemic, the paper refers to Qi and Li (2020) for the GDP
growth rate from 2021 to 2050.

As a renewable energy source, CSP is capable of continuous
and stable power generation, thus becoming the focus of R&D in
some developed countries. The development of CSP technology
in China started late, with the first demonstration projects
launched in 2016. However, CSP is more competitive than
other renewable energy sources due to its low cost, long
service life, and stable output power. Nevertheless, incentives
and subsidies must be adopted to stimulate CSP development.
For this reason, 25.7 billion dollars were invested in China’s solar
industry in 2019 (International Renewable Energy Agency, 2020a;
International Renewable Energy Agency, 2020b), accounting for
0.18% of GDP. The percentage in 2017 was 0.69%, including
0.01% for CSP investment (International Renewable Energy
Agency, 2018). Due to its large planned installed capacity,
China is likely to invest more in CSP development. Therefore,
the investment ratio for CSP was set at 0.02% of GDP.

The proportion of CSP generation should be continuously
increased so that it can become a power source for peak load
regulation and intermediate power loads and form a stable and
high proportion of a renewable energy power generation system
together with wind power and PV power generation to achieve
price competitiveness with conventional energy. According to
data released by the International Energy Agency, China’s CSP
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generation reached 300 GWh in 2019, accounting for 0.016% of
renewable (non-combustible) power energy generation.4

According to the target proposed in the China Renewable
Energy Development Roadmap 2050, electric generation by
CSP is expected to reach 720,000 GWh by 2050. Therefore, the
annual growth rate of power generation must exceed 28.45% to
achieve the above target. With the gradual development of the
grid, the growth rate of power connected to the main grid is
included in the constraint to reflect the absorptive capacity of the
grid. In addition, because of its advantages such as stable and
continuous power generation, CSP will certainly become the
focus of future development. To reflect this trend, the paper
assumed that the grid absorptive capacity would grow at a rate of
35% per year.

In the general debate of the 75th session of the United Nations
General Assembly, President Xi Jinping emphasized that China
would adopt stronger policies and measures to achieve carbon
neutrality by 2060. In 2019, the power sector accounted for more
than 40% of the country’s total carbon emissions (National
Energy Information Platform, 2020b). Therefore, during the
14th Five-Year Plan period, it is imperative to demonstrate
and promote the carbon trading market mechanism in the
power industry. The national carbon market is a policy tool
based on market mechanisms, and neither a high nor a low
carbon price can achieve the most cost-effective emission
reductions. The carbon permit price in most Chinese cities
(except Beijing) fluctuates between 1.5 and 7.5 USD/ton
(Website of Carbon trading, 2020). Because the pressure to
reduce emissions is increasing, this study set the price of
carbon at 12 USD/ton for the baseline condition.

The related parameters to clarify the above statements are
listed in Table 1, which will be used as a base case.

In view of the factors just described, the constraints in this
model can be expressed as follows:

n(t)≤N(t), (11)

C(t) × x(t) + (V −M × L) × n(t) × T≤GDPt × u, (12)

(n(t) + x(t)
2

) × T≤(n(t − 1) + x(t − 1)
2

) × T × (1 + g),
(13)

C(t) � C0 × n(t)−α × eμt , (14)

n(t + 1) � n(t) + x(t) − r(t), (15)

x(t)≥ 0
t � 2020, . . . , 2050.

(16)

Constraint Eq. 11 says that the cumulative installed capacity
cannot exceed the possible maximum development potential in
year t. Constraint Eq. 12 states that the total investment cost of
the newly added capacity cannot surpass a certain percentage of
GDP. Constraint Eq. 13 expresses the limitation of grid
absorptive capacity to avert explosive growth of CSP. Equality
constraint Eq. 14 is a forecast of investment cost, and Eq. 15 is the
state transition function of the dynamic programming model.
Constraint Eq. 16 expresses a non-negative constraint.

The flowchart of this section and the following two sections
(Models, Results, and Discussions) is shown in Figure 2.

Hypotheses
With an increasing share of renewable energy in the grid, energy
storage will be a key factor in further decarburization (Pelay et al.,
2017). From the perspective of reality, the new energy base of 10
billion watts level will inevitably form a base with integrated wind,
PV, and storage and will need to be equipped with flexible
regulating power sources such as energy storage. A CSP
station is a kind of power source with a regulating ability and
a moment of inertia, and its regulating ability is better than
battery energy storage. Therefore, CSP is bound to become a focus
of future development (National Energy Information Platform,
2020a). However, the actual progress of CSP has not been as fast
as expected (Zhao et al., 2017). Further development still needs
the guidance and support of the government, which can be

TABLE 1 | The parameters in the model.a

No. Parameter Value Units Description

1 C0 3.46 USD/W Unit investment cost of CSP in 2019
2 V 0.021 USD/kWh Unit operation cost of CSP plant
3 n (2019) 421 MW Cumulative installed capacity in 2019
4 T 4000 h Annual average operational hours
5 M 12 USD/ton Carbon trading permit price
6 L 0.36 ton/MWh Carbon emission coefficient
7 r 0.06 None Discount rate
8 GDP0 1.43 × 1013 USD GDP in 2019
9 P (2020) 5 GW Planned cumulative capacity in 2020
10 P (2030) 30 GW Planned cumulative capacity in 2030
11 P (2050) 180 GW Planned cumulative capacity in 2050
12 u 0.02% None Investment proportion of GDP
13 g 35% None Annual growth rate of CSP production

aParameter 2 is obtained from Renewable Power Generation Costs in 2019 issued by the IRENA. Parameter 3 is obtained from the IRENA (https://www.irena.org/solar). Parameter 8 is
acquired from the National Bureau of Statistics, 2020. Parameters 9–11 are collected from the China Renewable Energy Development Roadmap 2050. The others are estimates based on
relevant reports and literature.

4The data are collected from the IEA (https://www.iea.org/countries/china).
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reflected through incentive policies. Therefore, this paper
hypothesizes that:

H1. Incentive policy is the key factor influencing CSP
development.

Next, there is also a close relationship between GDP and social
and economic development. The impact of economic
development is reflected by analyzing different GDP growth
rates (Lu et al., 2015; Xu et al., 2020). The more prosperous
the economy, the higher is the GDP growth rate, and the greater
will be the investment in CSP. Therefore, this paper proposes that:

H2. GDP growth rate is the key factor that influences CSP
development.

Next, installed CSP capacity is small now. However, with
large-scale deployment and the accumulation of industry
experience, there is still much room to reduce investment cost
(International Renewable Energy Agency, 2016). Therefore, the
learning rate must necessarily be included in the analysis. Hence,
this paper proposes that:

H3. The learning rate is the key factor influencing CSP
development in the later phase.

Next, the absorptive capacity of the power grid is also an
important factor affecting CSP development (Lu et al., 2015).

Insufficient absorptive capacity leads to excess power generation,
and excessive construction leads to waste of investment.
However, the development of China’s CSP is slow in the early
stages, while the development of power grid construction is in
step with it. Therefore, the following hypothesis is presented:

H4. The absorptive capacity of the grid is a potential factor
influencing construction cost, but has limited impact on
CSP development.

With the goal of being carbon-neutral by 2060, the pressure to
cut emissions will increase further (Xu et al., 2020). The price of
carbon permits directly affects the benefits of emissions reduction
and thus the total cost. At present, China’s carbon trading
mechanism, relevant laws, and regulations are gradually
improving. Therefore, this paper hypothesizes that:

H5. The carbon permit price is a potential factor influencing
construction cost, but has limited impact on CSP
development.

RESULTS

It is very important to forecast the investment cost of CSP because
substantial cost reductions are the key to gaining market
acceptance (Wang, 2010), as well as ensuring the rationality of
goals due to the small number of stated goals that could be

FIGURE 2 | Flowchart of models, results, and discussions.
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attained in China. Therefore, the results for CSP cost forecasts,
development trends, and the optimal development path under
minimum cost are discussed in this section.

Cost of CSP
Data for the unit investment cost of CSP generation were derived
from statistical reports released by IRENA and adjusted
according to the actual situation in China. Table 2 presents
the parameter estimation results of the learning curve model.
The learning rate LR was 4.4%, which shows that the unit
investment cost will decrease by 4.4% for each doubling of
CSP cumulative installed capacity. Figure 3 reveals the change
in CSP generation cost due to the learning curve model. The cost
reduction trend is slowing down, which shows that the effect of
experience accumulation on cost reduction is gradually being
weakened. The unit investment cost is expected to fall to
2.521 USD/W by 2050, a reduction of 27.14% from the base year.

Innovation Diffusion of CSP Generation
Technology
Estimated parameters have been shown in Table 2. It is apparent
that the innovation diffusion model fits relatively well with the
historical data in Figure 4.

This study used GA to estimate parameters of the Bass model.
Correlative matrix is shown in Table 3. Consistently with
previous literature, that the innovation coefficient p is far less
than the imitation coefficient q (Xu et al., 2020). China’s CSP

market potential is about 350 GW, which is far less than the
1357 GWof solar PV power (Xu et al., 2020). This may be the case
because CSP is still in its early development stage and the
cumulative installed capacity is small in China. Therefore,
these historical data led to relatively small results. However,
the market potential of 350 GW is higher than the target of
180 GW in 2050, which demonstrates that CSP development in
China has a long way to go.

Optimal Development Path
Figure 5 shows the optimal CSP development path in the base
case. Cumulative installed CSP capacity in China will attain

TABLE 2 | Parameter estimation of the learning curve model and innovation
diffusion model.

Parameter Estimate LR (%) R2

α 0.065 4.4
m 3.5 × 105

p 5.8 × 10−6 0.9308
q 0.6

FIGURE 3 | Unit investment cost changes under different learning rates.

FIGURE 4 | Fitted model of cumulative installed capacity.

FIGURE 5 | Optimization path of CSP development in the base case.

TABLE 3 | GA settings.

Quantity Setting

Population size 50
Crossover rate (Pc) 0.85
Mutation rate (Pm) 0.01
Crossover type One-point crossover
Selection type Roulette wheel selection
Generation 20,000
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54.84 GW in 2050 under this scenario, which leaves a big gap to
reach the target of 180 GW. Furthermore, significant differences
exist between forecasts and targets in 2020 and 2030, which
illustrates the targets that were established could not be realized.
Figure 5 shows that the new installed capacity will increase rapidly
before 2030 and then more steadily after 2030. The retired installed
capacity will be very small until 2040 due to the small base of new
installed capacity before 2020. The retired installed capacity will
increase steadily after 2040, keeping in step with previous growth.

This study investigated a way to achieve the target in 2050 by
adjusting parameters. The results show that the goal established
for 2050 could be attained if the investment ratio were at least
0.09%. However, it is impossible to realize the stated goal by
adjusting other parameters because of the limited impact of these
parameters on CSP development (The analysis can be found in
Sensitivity Analyses). According to Figure 6, CSP is expected to
develop slowly before 2040 and rapidly after 2040 under this

investment ratio. One possible reason is that strong government
support leads to an influx of numerous investors and fierce
market competition, which does not provide a good ecological
environment for the CSP industry in the early stage.

DISCUSSIONS

In addition to the optimal path of CSP development, it is also crucial
to study the potential factors affecting its development. The
following section describes the application of sensitivity and
scenario analyses to explore the key factors impacting CSP
development under different conditions. In the various scenarios,
there was little difference in the early path, with change occurring
mainly in the later period. This conclusion was also reached in
previous studies (Xu et al., 2020). Notably, the government’s stated
goal is not achieved in any of the following cases.

Sensitivity Analyses
GDP Growth
Based on Qi and Li (2020), China’s GDP growth rate will fall to
3.81% by 2050. This study assumed that the base case GDP
growth rate would decline by 0.07% per year from 2019 to 2050.
Under the high-speed and low-speed scenarios, the annual
growth rate would fall by 0.02 and 0.12%, respectively, which
implies that the GDP growth rate would fall to 5.38% and 2.28%
by 2050. Figure 7 shows the variation in cumulative installed
capacity under different GDP growth rates. The development
path is the same under all growth rates until 2035, which implies
that the economic growth rate is not a decisive factor for early
CSP development. However, the higher the GDP growth rate, the
more the cumulative installed capacity grows after 2035. This
indicates that economic growth rate is one of the key factors
affecting later CSP development, meaning that H2 is partially
supported. One reason for this may be that PV power generation
in China is in a period of rapid development (Xu et al., 2020), and
that CSP is expected to flourish after 2035.

FIGURE 6 | Cumulative installed CSP capacity under different
investment proportions.

FIGURE 7 | Cumulative installed CSP capacity under different GDP
growth rates.

FIGURE 8 | Cumulative installed capacity of CSP under different
learning rates.
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Learning Rate
The increase in cumulative installed CSP capacity
(i.e., accumulated experience) leads to a decrease in costs
according to the learning curve. The learning rate in the base
case is 4.4% according to least-squares estimation. Lu et al. (2015)
pointed out that the variation would not exceed 2% even if there
was a technical breakthrough. Therefore, this study assumed that
the variation in learning rate was 1%, that is, the learning rate in the
favorable case was 5.4% and in the unfavorable case was 3.4%.
Figure 8 shows the variation of the development path for different
learning rates. The paths are almost the same in the early stages.
However, in the later period, a higher learning rate results in a
larger cumulative installed capacity, indicating that learning rate is
one of the key factors affecting the development of CSP in the later
period, which supports H3. From Figure 3, the unit investment
cost in 2050 will drop to 2.72, 2.521, and 2.332 USD/W when the
learning rate is 3.4, 4.4, and 5.4%, respectively.

Grid Absorptive Capacity
Previous studies (Lu et al., 2015; Xu et al., 2020) have pointed out
that insufficient grid absorptive capacity leads to excess
generation and idle power plants, whereas overbuilding the
grid results in wasted investment. Due to the large installed
CSP capacity planned for the future, this paper has set a
higher grid absorptive capacity in the base case, with an
annual growth rate of 35%. The variation in the other two
cases is 1%. The optimal development paths under different
grid absorptive capacities are presented in Figure 9.

The development curves in different periods—before 2025 and
from 2029 to 2039—are relatively flat, with essentially the same
path for different absorptive capacities. The period 2025–2029
shows slight fluctuations, which implies that grid absorptive
capacity is insufficient to keep up with the development of
CSP generation. After 2040, the base case develops slightly
better than the other two scenarios, indicating that grid
absorptive capacity should develop in parallel with CSP
generation. Taken together, there is no significant difference in

new installed capacity among the three scenarios, and H4 is
supported by the indication that grid absorptive capacity has a
limited impact on CSP development.

Carbon Permit Price
The carbon permit price in the Chinese market (excluding
Beijing) fluctuates between 1.50 and 7.50 USD/ton. With the
vision of achieving carbon neutrality by 2060, there is
increasing pressure to reduce emissions. Therefore, this study
set the price at 12 USD/ton under the base condition, with a
variation range of 6 USD/ton.

Figure 10 shows the optimal development paths under
different carbon permit prices. The path remains the same
until 2028, regardless of the changes in carbon permit price.
After 2028, higher prices contribute to larger cumulative installed
capacity. This indicates that the carbon permit price is one of the
factors affecting later development of CSP, but that the impact is
limited, which supports H5. The impact of different carbon
permit prices on the total cost is shown in Figure 11. Under

FIGURE 9 | New installed capacity under different grid absorptive
capacities.

FIGURE 10 |Cumulative installed capacity under different carbon permit
prices.

FIGURE 11 | Total cost changes under different carbon permit prices.
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the unfavorable case, the total cost will fluctuate in 2028 because
zero new installed capacity ensures that only operating cost is
taken into consideration. Except for 2028, the development
paths under different carbon permit prices are basically
identical in other years, i.e., the new installed capacity and
the cumulative installed capacity are essentially the same each
year, and therefore the total costs under various carbon permit
prices remain almost unchanged. This also confirms the limited
impact of carbon permit prices on CSP development. Overall,
total cost is trending upward by 2050, indicating that CSP in
China is still immature at this stage and that the emissions
reduction benefits are still lower than construction and
operating costs.

Investment Proportion
The ratio of CSP investment to GDP can, to some extent, reflect
the strength of government incentives. China currently invests a
small percentage of GDP in CSP generation, at most 0.01%.
Given the huge installed CSP capacity under construction and
in the planning stage, it is highly possible that China will
increase its investment in CSP. Therefore, in the base case,
the investment ratio was set to 0.02%. In the other two cases, the
ratios were 0.03 and 0.01%. The optimal development paths
under different investment ratios are shown in Figure 6. There
is a huge gap in the cumulative installed capacity for different
ratios, indicating that strengthening the incentive policy is
beneficial to accelerate the achievement of CSP goals.
Therefore, H1, stating that incentive policy is the key factor
influencing CSP development, is supported. Note that in the
unfavorable case, the considerable gaps between cumulative
installed capacity and the other two cases indicate that China
should invest more to accelerate CSP construction. However,
the gap between the base case and the favorable case gradually
narrows in the later stage of development, which implies that
the incentive effect of the policy gradually diminishes. This is
when the influence of other factors such as grid absorptive
capacity should be considered.

However, the government can achieve the established target of
180 GW by expanding the investment ratio to a minimum of
0.09%. Note the limited influences of learning rate, power grid
absorption capacity, and carbon permit price on CSP
development when the investment ratio is 0.09%. However,
under this investment ratio, there is an exception that CSP
develops steadily when GDP growth rate is low, but rapidly in
the later stage when GDP growth rate is high. For higher
investment ratio (e.g., 0.17%), the influence of GDP growth
rate can be ignored. Therefore, the conclusion can be drawn
that as investment in CSP is increased, the influence of all factors
will be gradually weakened. (The figures can be seen in
Supplementary Materials.)

Scenario Analyses
Some other possible development paths are explored in this
section. The parameters of all elements are the medium-range
values in the basic situation. For the sake of simplification, only
two extreme cases are discussed, the optimistic scenario (all
favorable conditions) and the pessimistic scenario (all

unfavorable conditions). The development paths of the
optimistic and pessimistic scenarios are greatly different.
Figure 12 shows the optimal CSP development paths under
optimistic, basic, and pessimistic scenarios. CSP is predicted to
enter a stable and fast growth period from 2042 under the
optimistic scenario, but will maintain extremely slow growth
from 2031 onward in the pessimistic scenario. Note that the
government’s stated target is still not achieved, even under the
optimistic scenario. A detailed description and analysis of the
development paths in the two scenarios are given in following
paragraphs.

Optimistic Scenario
Considering the continuous progress of China’s economy and of
CSP technology, the increasing proportion of investment, the
steady increase in grid absorptive capacity, and future pressure to
reduce emissions, there is a growing call for sustainable
development. Therefore, changes in these factors must be
considered together. In this section, it is assumed that China’s
GDP growth rate will decline at 0.02% per year, the investment
ratio will be 0.03%, the learning rate will be 5.4%, the grid
absorptive capacity will be 36%, and the carbon emission
permit price will be 18 USD/ton.

In the optimistic scenario, CSP development fluctuates in 2042
and then enters a period of steady growth; the process is faster
than in the baseline case. Large-scale development starts from
2029. The cumulative installed capacity is expected to reach
83.46 GW by 2050, which is much larger than the 54.84 GW
in the baseline case, but still far from the target of 180 GW.
Therefore, the government should continue to create a favorable
environment for CSP development to achieve the set targets.

Pessimistic Scenario
Contrary to the optimistic scenario, future funding for CSP
research and development is likely to decrease in light of
mature wind power and PV technologies that are competitive

FIGURE 12 | Comparison of optimistic, basic, and pessimistic
scenarios.
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with conventional energy sources. For this reason, a
comprehensive analysis of the relevant factors in the
pessimistic scenario, i.e., considering all adverse conditions, is
crucial. In this section, it is assumed that China’s GDP growth
rate decreases at 0.12% per year, the investment ratio is 0.01%, the
learning rate is 3.4%, the grid absorption capacity is 34%, and the
carbon emission permit price is 6 USD/ton.

In the pessimistic scenario, there is very little new installed
capacity until 2028, and even a few years of zero growth. There
will be a variation from 2028 to 2031, but after 2031, there will
be a stable growth phase with a very low rate compared to the
base case. By 2050, the cumulative installed capacity is expected
to be 20.24 GW, which is well below the base case. CSP
development costs will increase further under unfavorable
conditions such as slow economic growth, weakening
incentives, and slow grid construction. If the scenario
worsens, China’s planned development goals will be even
harder to achieve.

CONCLUSIONS

Taking the cumulative installed capacity of 180 GW by 2050 as
the target, a dynamic programming approach based onminimum
cost has been used to explore the optimal development path of
CSP generation in China. A learning curve model and a
technology diffusion model were adopted as constraints. The
impact of related factors is discussed in the context of sensitivity
analysis and scenario analysis. The study has reached the
following conclusions:

1) In the base case, the government will fail to achieve the set
development target, with a projected cumulative installed
capacity of 54.84 GW by 2050. New installed capacity will
maintain a high growth rate until 2030 and enter a stable
growth phase after 2030. The incentive policy is closely
related to construction cost, which is the key factor
impacting CSP development. Further development of CSP
in China still needs guidance and support from the
government, but the investment mainly comes from
enterprises. Preferential policies will lead to an expanded
proportion of investment, which in turn will help the
government achieve its development goals more quickly.
However, the incentive function of policies will weaken
gradually in the later phase. Hence, other influencing
factors should be considered, and the incentive policy
should be gradually weakened. China’s CSP is expected to
usher in rapid development in the later period if the
government maintains a more favorable support policy,
and then the established goals of the government would
be achieved. However, under this policy, market dominance
is poor, and other factors have little influence on CSP
development.

2) GDP growth rate and learning rate are important factors
influencing the development path in the later stages. Affected
by the learning curve, the cost decreases in these stages. Fast GDP
growth ensures heavy investment in R&D and construction. The
higher the learning rate, the easier it is to reach a certain installed
capacity target. This indicates that in the later stages of
development, industry experience can be accumulated,
economies of scale can be realized, and the market will
gradually gain more dominance. Grid absorptive capacity and
carbon permit prices are potential factors affecting construction
costs, but they have limited impact onCSP development, which is
a slow process that must be synchronized with grid construction.
With the gradual maturity of wind power and PV power
generation, China’s carbon trading mechanism and related
laws and regulations are also developed gradually and
therefore have a limited impact.

3) The scenario analysis shows that even under the optimistic
scenario, the government cannot realize the 180 GW
development target of cumulative installed capacity by 2050.
However, the time required to achieve the target will be shorter
than in the base case. This target will be achieved sooner if
relevant factors are more favorable, such as better economic
development and further increases in investment ratio and R&D
funding. On the contrary, in the pessimistic scenario, economic
growth will slow down, incentives and R&Dwill weaken, and the
cost of CSP development will further increase. These
developments will make the goal more difficult to achieve.

The main contributions of this study are as follows: 1) The
impact of realistic factors on economic development is considered.
China’s GDP growth rate decreased to 2.3% in 2020 due to the
impact of COVID-19. Many projects were put on hold, placing
roadblocks in the path of CSP development in China. 2) A genetic
algorithm was used to estimate the parameters of the technology
diffusion model. By 2019, only eight years of data were available
due to the late start of CSP in China. Because the parameter
estimation is prone to large bias, using a genetic algorithm makes
up for this deficiency and results in more accurate prediction. 3)
Unit investment cost data for CSP are extremely hard to obtain.
Only global data could be retrieved by consulting a large number of
IRENA reports. Therefore, reviewing many references and
adjusting global data according to the specific situation of China
(e.g., low land acquisition cost, low labor cost) are the best means of
estimating the unit investment cost of CSP in China. 4) The path of
how to achieve the goal of 180 GW by 2050 and the related
influencing factors have been explored.

In addition, the paper is instructive for the development of
CSP generation in China, but improvement is still needed. The
optimal CSP development path in China by 2050 has been
explored with the goal of minimizing cost, and therefore the
path may be stable with little variation in the early stages (Xu
et al., 2020). Changing the goal, however, will lead to different
results. The need remains to improve the accuracy of the forecast
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parameters (Lu et al., 2015), such as the theoretical maximum
installed capacity and the learning rate, which will be improved in
further studies.
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