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As a kind of movable storage device, the electrical vehicles (EVs) are able to support load
shaving through orderly charging. The existing researches mostly focus on the design of
EVs charging control technology with little consideration of trip-chain-based consumer
psychology of EV owners. To fill this gap, this article proposes a price-based orderly
charging strategy for EVs considering both consumer psychology and trip chain. Then, the
load shaving problem is transformed into a multiobjective optimization problem, to
minimize peak-to-valley difference and network loss. A time-of-use price optimization
model based on consumer psychology is established to describe the charging behavior of
EV owners influenced by electricity price. Finally, the examples verify the feasibility of the
proposed strategy by comparing the impact of EVs connected to grid under different
ratios, different load transfer rates, and different scenarios.
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INTRODUCTION

Electric vehicle (EV) is a zero-emission and low-emission green transportation tool, whose large-
scale promotion can effectively alleviate the increasingly severe social problems such as energy crisis
and environmental pollution today. Therefore, it has received extensive attention from all walks of
life. Monte Carlo (MC) simulation is a stochastic simulation method based on probability and
statistical theory. It is a method that uses random numbers to solve many calculation problems,
which connects the problem to be solved with a certain probability model, and realizes statistical
simulation or sampling with an electronic computer to obtain an approximate solution.

The development of vehicle-to-grid (V2G) technology has made EVs a mobile energy storage
device with functions including “peak shaving and valley filling,” frequency modulation, and
increasing reserve capacity (Cheng et al., 2014; Shafie-khah et al., 2016; Tang and Wang, 2015).
Meanwhile, through proper scheduling of EVs charging and discharging, the ability of power system
to absorb wind power, photovoltaic power, and other intermittent renewable energy can be enhanced
(Ashtari et al., 2012; Li and Zhang, 2012; Xing et al., 2021).

As for the EVs charging and discharging control strategy in distribution network, there have been
discussions in various directions at home and abroad. The trip data of household vehicles in the
United States are analyzed by Rautiainen et al. (2012), where it is assumed that EVs and fuel vehicles
have the same trip rules. Probabilistic models of trip start and end time, daily mileage, and charging
characteristics are established through distribution fitting, and MC sampling is adopted to estimate
EVs charging load distribution. Under the premise of considering constraints of EVs charging
demand, a charging and discharging control strategy for EVs participating in power system
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frequency modulation services is proposed by Liu et al. (2013).
For a three-phase unbalanced power distribution system, a
mixed-integer linear programming model for orderly charging
of EVs with the goal of minimizing power generation costs is
established by Franco et al. (2015). A mixed integer programming
model for EVs charging and discharging based on distributed
control is established by Xing et al. (2016), where an efficient
solution method for the characteristics of typical load curves is
proposed. An optimal charging model with the minimum
network loss within a given period as the objective function is
established by Clement-Nyns et al. (2010), where impact of a
large number of EVs on distribution system is analyzed from the
perspective of network loss and voltage offset. The theory of
traffic trip chain is introduced into the study of EVs load
forecasting by Guo et al. (2014), Tang and Wang (2016),
where a dynamic trip chain is assigned to each EV in the area.
It characterizes the all-weather trip trajectory and driving law of
EVs, and simulates the trip and charging behavior of EVs.

In the above-mentioned references, the main focus is on the
design of EVs charging control technology with little
consideration of trip-chain-based consumer psychology of EV
owners. This article creatively considers both consumer
psychology and trip chain, and proposes a price-based orderly
charging strategy for EVs. First, based on the trip characteristics
and charging behavior of EVs, the two characteristic variables of
EV’s daily mileage and daily return time are modeled. Second, the
load shaving problem is transformed into a multiobjective
optimization problem, to minimize peak-to-valley difference
and network loss. Then, a time-of-use price optimization
model based on consumer psychology is established to
describe the charging behavior of EV owners influenced by
electricity price. Finally, the examples are provided to compare
the impact of EVs connected to grid under different ratios,
different load transfer rates, and different scenarios, whose
results verify the feasibility of the proposed strategy.

ESTABLISHMENT OF EVS LOAD MODEL

Classification of EVs
The EVs load model is closely related to the type, charging
characteristics, and trip demand of EVs; meanwhile, the type
of EVs directly determines the required charging characteristics
and trip demand. According to different uses, EVs can be divided
into different types such as electric buses, electric cars, and electric
taxis. Electric taxis need to change shifts frequently, whose daily
mileage, charging time, and location are relatively random, so
their charging controllability is relatively weak. Therefore, this
article mainly investigates two types of EVs, electric buses and
electric cars.

Trip Chain and its Characteristic Variables
The trip chain refers to the connection form of different trip
purposes in a certain time sequence to complete one or several
activities. It is generally described as the process of a user
starting from home and returning home during a scheduling
period. During the process, the user will trip several times, and

each time includes driving process and destination stopping
process, which is the ith drive and the ith stop (i � 1,2, . . . ,n) in
Figure 1.

The trip chain includes time chain and space chain. Similarly,
its characteristic variables can also be divided into two categories.

1) Space chain characteristic variables, which describe the
transfer of user trip in the space during scheduling period,
including daily mileage, daily parking times, etc. This article
mainly considers the daily mileage Ddr of EVs, as shown in
Figure 1, Ddr � ∑

i�1
n
di.

According to reference (Sun et al., 2020; Heinisch et al., 2021),
the daily mileage of buses conforms to normal distribution, and
its probability density function is

fD(Db
dr) � 1���

2π
√

σb
exp⎡⎣ − (Db

dr − μb)2
2σ2b

⎤⎦ (1)

where Db
dr is the daily mileage of buses, μb is the expected

value of the daily mileage of buses, and σb is their standard
deviation.

According to reference (Sun et al., 2020; Heinisch et al., 2021),
the daily mileage of cars conforms to log-normal distribution, and
its probability density function is

fD(Dc
dr) � 1���

2π
√

σcDc
exp[ − (lnDc

dr − μc)2
2σ2

c

] (2)

where Dc
dr is the daily mileage of cars, μc is the expected natural

logarithm value of the daily mileage of cars, and σc is their
standard deviation.

2) Time chain characteristic variables, which describe the
patterns of user trip in the time during scheduling period,
including daily return time, daily trip time, etc. This article

FIGURE 1 | Schematic diagram of trip chain.
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mainly considers the daily return time Tre of EVs, as shown in
Figure 1, Tre � Te n.

According to reference (Muratori et al., 2018; Dagdougui et al.,
2020), the daily return time of buses and cars both conform to
normal distribution, and their probability density functions are

fT(Tre) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1���
2π

√
σT

exp[ − (Tre + 24 − μT)2
2σ2T

]0<Tre ≤ μT − 12

1���
2π

√
σT

exp[ − (Tre − μT)2
2σ2

T

]μT − 12<Tre ≤ 24

(3)

where Tre is the daily return time of EVs, μT is the expected value
of the daily return time of EVs, and σT is their standard deviation.

The probability density functions of characteristic variables of
EVs’ daily mileage and daily return time are taken to carry out
MC simulation. Then the distribution of the above random
variables is taken as input. Starting from the time of first trip,
data are extracted sequentially based on the mutual
determination of each variable, to generate a complete trip chain.

In the trip chain, under the condition that some variables are
known, the remaining variables can be calculated. It is assumed that EV
is fully charged before first trip during the scheduling period, that is the
state of charge (SOC) is 1, so its SOC at the beginning of charging is

Sstart � 1 − Ddr · E100

100 · Cbattery
(4)

where Ddr is the daily mileage of EV, E100 is its energy
consumption per 100 km, and Cbattery is its battery capacity.

It is assumed that EV has enough time to fully charge at night,
and its charging speed can also meet the above requirements, so
its charging duration is

Tch � Ddr · E100

100 · Pch · ηch
(5)

where Pch is the charging power of EV and ηch is its charging
efficiency.

ESTABLISHMENT OF CONSUMER
PSYCHOLOGY MODEL
Price Response Model Based on Consumer
Psychology
The user’s response to electricity prices is embodied in adjusting own
electricity usage periods according to price signals, changing electricity
usage patterns by time periods, and so on. The price elasticity of
electricity demand is the relative change in electricity consumption
caused by the relative change in electricity price, which is

e � Δq
q
(Δρ
ρ
)−1

(6)

where Δq and Δρ are the increment of electricity consumption
and price respectively; q and ρ are the electricity consumption and
price respectively before the electricity price change.

However, the user response model based on the electricity
demand price elasticity matrix cannot reflect consumer
psychology. There is a minimum noticeable difference in
the stimulus of selling electricity price to users. When
electricity price is less than the minimum noticeable
difference, users basically have no response, and when
selling electricity price is greater than an upper limit, users
will no longer provide more transferable loads, whose
response capacity is approaching saturation (Zhou et al.,
2016). Therefore, this section builds a demand response
(DR) model for electricity prices based on consumer
psychology, and the load transfer rate from the peak to
valley period is shown in Figure 2.

For a certain user, the EV load transfer rate from the peak to
valley period is

λEV �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 0≤Δρpv ≤ aEV

KEV(Δρpv − aEV) aEV ≤Δρpv ≤
λEV,max

KEV
+ aEV

λEV,max Δρpv ≥
λEV,max

KEV
+ aEV

(7)

where Δρpv � ρp − ρv is the peak-to-valley price difference;
λEV,max is the upper limit of EV load transfer rate; aEV is the
upper limit of dead zone of EV load transfer rate to peak-to-valley
price difference; KEV is the slope of its linear zone. Since buses are
more sensitive to load changes than cars, KEV of buses is greater
than that of cars.

Under the influence of time-of-use price, EV load will shift
from peak to valley period. Given the value of λEV, the EV load in
each period is

PEV
t � (1 − λEV)PEV,base

t + λEVP
EV,optimal
t t ∈ T (8)

where PEV,base
t is the baseline load at time t when EVs do not

adopt any orderly charging control strategy; PEV,optimal
t is the

optimal load at time t after load is completely transferred when
the orderly charging control strategy is adopted; T is the
scheduling period.

Except for EVs, other loads will also respond to changes in
electricity prices. Similarly, the other load transfer rate from peak
to valley period is

λelse �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 0≤Δρpv ≤ aelse

Kelse(Δρpv − aelse) aelse ≤Δρpv ≤
λEV,max

Kelse
+ aelse

λelse,max Δρpv ≥
λelse,max

Kelse
+ aelse

(9)

where λelse,max is the upper limit of other load transfer rate; aelse is
the upper limit of dead zone of other load transfer rates to peak-
to-valley price difference; Kelse is the slope of its linear zone. Then
the other load in each period is

Pelse
t � {Pelse,base

t − λelseP
else,ave
t t ∈ Tp

Pelse,base
t + λelseP

else,ave
t t ∈ Tv

(10)
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where Pelse,base
t is the baseline of other load at time t; Pelse,ave

t is the
average of other load in the period of time t; Tp is the peak period;
Tv is the valley period, T � Tp + Tv .

In summary, the baseline load of distribution network at each
period without considering consumer psychology is

Pbase
t � PEV,base

t + Pelse,base
t t ∈ T (11)

Considering consumer psychology, the total load of
distribution network at each period is

Pt � PEV
t + Pelse

t t ∈ T (12)

Time-of-Use Price Optimization Model
Objective Function
Taking peak price ρp and valley price ρv as decision variables, the
problem of EVs charging with consumer psychology is
transformed into an optimization problem. As a control
variable, time-of-use price will directly determine the
performance of peak shaving and valley filling, and then
affect peak-to-valley difference, network loss, voltage
deviation, and other indicators. By minimizing such
indicators, the optimal peak-valley price for distribution
network can be determined. The weighted sum of peak-to-
valley difference rate and network loss rate of total
distribution network load is selected as the multiobjective
function, which is

min Ftotal � ω1F1 + ω2F2 (13)

where ωi(i � 1, 2) is weight coefficients, which can be set
according to actual needs, ω1 + ω2 � 1; Fi is indicators, as follows:

1) F1: Peak-to-valley difference rate, used to measure the
improvement of orderly charging and discharging of EVs
on load curve, which is

F1 � Pmax − Pmin

Pmax
(14)

where Pmax and Pmin are themaximum andminimum loads of the
distribution network during scheduling period, respectively.

2) F2: Network loss rate, used to measure the improvement of
orderly charging and discharging of EVs on electricity
utilization, which is

F2 �
∑
t∈T

Ploss
t · Δt

∑
t∈T

Pt · Δt (15)

where Ploss
t is the network loss at time t; Δt is the time interval.

Constraints
The model needs to meet five types of constraints. Constraints
(1)–(2) ensure the operation requirements of distribution
network, and constraints (3)–(5) maintain the benefits of EVs’
users to encourage users to follow the strategy to orderly charge.

1) Load change speed constraint

To prevent transferred load from exceeding the regulating
capacity of generators, load change at adjacent moments needs to
meet

−RD ≤ Pt − Pt−1 ≤RU t ∈ T (16)

where RU and RD are the upper and lower limits of load change at
adjacent moments, respectively.

2) Load transfer rate constraint

{ 0≤ λEV ≤ λEV,max

0≤ λelse ≤ λelse,max
(17)

3) Average price constraint

The average price after implementation of time-of-use price is

ρpv �
ρp ∑

t∈Tp
PtΔt + ρv ∑

t∈Tv
PtΔt

∑
t∈T

PtΔt
(18)

The average price before and after implementation of time-of-
use price is required to remain unchanged, which is

FIGURE 2 | Load transfer rate from peak to valley period. (A) Electric buses. (B) Electric cars.
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ρ0 � ρpv (19)

where ρ0 is the constant price before implementation of time-of-
use price.

4) Users charging cost constraint

The charging cost of users before and after implementation of
time-of-use price are respectively

⎧⎪⎪⎨⎪⎪⎩
M0 � ρ0 ∑

t∈T
Pbase
t Δt

Mpv � ρp ∑
t∈Tp

PtΔt + ρv ∑
t∈Tv

PtΔt
(20)

Users respond to time-of-use price by changing original
electricity consumption habits, whose purpose is to make
charging cost not higher than the original one after
implementation of time-of-use price, which is

M0 ≥Mpv (21)

5) Users satisfaction constraint

Generally, the less the load changes, the higher the user
satisfaction, so users satisfaction is defined as

Suser � ∑
t∈T

ε(t)[1 −
∣∣∣∣Pt − Pbase

t

∣∣∣∣
Pt

] (22)

Suser ≥ Smin
user (23)

where Smin
user is the minimum value of users satisfaction; ε(t) is the

satisfaction coefficient of users responding to time-of-use price at

time t, which depends on the impact degree of load transfer on
users, and satisfies

∑
t∈T

ε(t) � 1 (24)

MODEL SOLVING METHOD

The price response model based on consumer psychology is
solved by matlab with MC simulation. The time-of-use price
optimization model is solved by matlab with yalmip/gurobi
toolboxes, which transforms the original load distribution
problem into a large-scale mixed integer programming (MIP)
problem. Specifically, on the basis of branch and bound method,
outer approximation method and tangent secant method are
introduced, which reduces invalid branches in the optimization of
binary tree, and finally the optimal solution within tolerance
range is obtained.

The power flow and node voltage of distribution network
containing EVs are solved by matlab with matpower toolbox,
specifically using the standard Newton-Raphson method. The
testing process in this article is carried out on Gurobi 9.1.1 and
Matpower 7.1.

CASE STUDY

Basic Data and Parameter Settings
In this article, the IEEE-33 node distribution network with buses
and cars is used for simulation verification, whose topology is
shown in Figure 3.

According to the structure of trip chain and function of
plot, the IEEE-33 node distribution network is divided into
two functional districts, a residential district and a
commercial district. Nodes 1–3, 19–25 are divided into

FIGURE 3 | IEEE-33 node distribution network (node-numbering
diagram).

FIGURE 4 | Schematic diagram of distribution network functional
districts.

FIGURE 5 | Baseline load curve.
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commercial district, and nodes 4–18, 26–33 are divided into
residential one, as shown in Figure 4. It is assumed that the
final arrival of buses during scheduling period are all in
commercial district, similarly, that of cars are all in
residential district. EVs are only charged after daily
returning, which has no effect on distribution network load
during the driving process. It is assumed that each plot
contains sufficient charging piles. The influence of location
distribution of charging piles on charging behavior and route
selection of EVs is not considered.

Based on actual situation, the day-ahead scheduling period
with a time interval of 1 h is adopted. The baseline load curves
of residential and commercial districts on a typical day in
Shenzhen city are selected, as shown in Figure 5. The total
load of two functional districts is distributed to each node in
proportion.

The parameters of EVs are set as listed inTable 1. Users’parameters

are set as RD
Pmax

� RU
Pmax

� 0.05 , Smin
user � 0.6, ε(t)

t∈Tp

� 1
40, ε(t)

t∈Tv

� 1
25. Relevant

parameters of other load transfer rate areKelse � 1.2¥−1,
aelse � 0.15¥, λelse,max � 0.39, respectively.

According to formula Equations 1–3 and the parameters in
Table 1, the probability distributions of daily return time and
daily mileage of buses and cars are shown in Figure 6.

Performance of EVs Charging Under
Different Proportions
According to the probability density function of EVs’ daily
return time and daily mileage, the situation of EVs connected
to grid is simulated by MC simulation. It is assumed that EV
starts charging immediately when it returns, until its battery
is fully charged, which is a kind of disorderly charging
strategy. The characteristic variables data of nb buses and
nc cars are obtained by simulation, then the situations when
EVs account for 25, 50, and 100% of total number of vehicles
are considered respectively. The results are shown in
Figure 7.

Enlarging the nonoverlapping part of curves
corresponding to different proportions of EVs, it can be
seen that: 1) Compared with buses, cars have a greater
impact on the load of their district due to their larger
number. 2) Since daily return times of buses are already in
valley period of commercial district load, if buses start
charging immediately when they return, their charging
period will coincide with valley period, which has certain
“valley filling” effect. 3) Since daily return times of cars are
just close to starting time of evening peak period of
residential district load, if cars do that, their charging
period will coincide with evening peak period, resulting in
“peak plus peak” situation.

Performance of EVs Charging Under
Different Load Transfer Rates
Taking the load transfer rate as a control variable,
simulations are performed on nb buses and nc cars. Since
KEV of buses is greater than that of cars, it is assumed that KEV

of commercial district is increased from 0 to 1 with a step of
0.25, and that of residential district is increased from 0 to 0.8
with a step of 0.2.

The results are shown in Figure 8. It can be seen that: 1) The
greater the load transfer rate, the smaller the peak-to-valley
difference, and the more obvious the effect of peak shaving
and valley filling. 2) Since buses’ charging period coincides
with valley period, and cars’ charging period coincides with
evening peak period, impact of changes in load transfer rate
on the load in commercial district is mainly reflected in “valley
filling,” while that in residential district is mainly reflected in
“peak shaving."

TABLE 1 | Parameters of EVs.

Parameters Buses (commercial
district)

Cars (residential
district)

Parameters Buses (commercial
district)

Cars (residential
district)

ubˎuc 10 500 μT /h 21 19
Cbattery/kWh 324 60 σT /h 1 1
E100/kWh 140 20 tvs ∼ tve 23:00–9:00 + 1 21:00–7:00 + 1
Pch/kW 45 14 aEV/¥ 0.05 0.05
ηch 0.9 0.9 KEV/¥

−1 2.5 1.5
ubˎuc/km 170 2.98 λEV,max 1.0 0.8
σbˎσc/km 20 1.14 ρ0/(¥·kWh−1) 0.6715 0.5483

FIGURE 6 | Probability distribution. (A) Daily return time. (B) Daily
mileage.
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Comparison of Different Charging
Strategies of EVs
The following 3 scenarios are considered:

Scenario 1: The disorderly charging strategy for EVs is
adopted. EVs start charging immediately when they return.

Scenario 2: The traditional orderly charging strategy for EVs is
adopted. It is assumed that EV users are completely rational.
Under the influence of time-of-use price (the whole day only
includes peak and valley periods), EVs start charging at the
beginning of valley period.

Scenario 3: The orderly charging strategy considering
consumer psychology and trip chain is adopted. It is
assumed that charging time of EVs is evenly distributed in
valley period through the intelligent charging control

technology. The probability density function of EVs charging
starting time is

fT(Tstart) �
⎧⎪⎪⎨⎪⎪⎩

1
tve − tvs − Tch

tvs ≤Tstart < tve − Tch

0 else

(25)

where Tstart is the charging starting time of EVs; tvs and tve are the
start and end time of valley period respectively.

In each scenario, simulations are performed on nb buses and nc
cars. The results are shown in Figure 9. It can be seen that: 1) Due
to the unreasonable control of charging load in scenario 1,
charging of EVs at night is mostly concentrated before 24:00,
which makes load distribution at night more uneven and
increases local peak-to-valley difference. 2) Compared with

FIGURE 7 | Disorderly charging load of different EVs proportions. (A) Electric buses. (B) Electric cars.

FIGURE 8 | Disorderly charging load of different load transfer rates of EVs. (A) Electric buses. (B) Electric cars.
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FIGURE 9 | Charging load of different scenarios of EVs. (A) Electric buses. (B) Electric cars.

FIGURE 10 | Nodal voltage surface diagram. (A) Baseline load. (B) Scenario 1. (C) Scenario 2. (D) Scenario 3.
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Scenario 1, Scenarios 2 and 3 can transfer charging load under the
influence of time-of-use price. However, Scenario 2 still lacks
sufficient control of charging load, so a large number of EVs are
integrated into grid for charging at the same time, causing a
sudden load change at the beginning of valley period. 3) Since cars
have a more obvious impact on load than buses, the sudden load
change is also more obvious in Scenario 2, which has reached the
level of impacting grid. 4) Scenario 3 evenly distributes charging
time of EVs in valley period, which makes full use of power
generation potential of valley period. It has the least impact on
grid without generating new load peaks, and truly realizes “valley
filling.”

In each scenario, voltage of each node when nb buses and nc
cars trip in the distribution network is calculated. The results are
shown in Figure 10. It can be seen that: 1) Since the access of EVs
will increase total load of distribution network, voltage per unit
values of three scenarios are all slightly lower than that of baseline
load. 2) It is generally required that safety voltage per unit value is
between 0.95 and 1.05. Owing to the sudden load change at the
beginning of valley period in Scenario 2, the voltage drops below
the lower limit. 3) The charging process in Scenario 3 has the least
impact on grid, whose voltage deviation is smaller than Scenarios
1 and 2.

The calculation results of total load indicators in different
scenarios are shown in Table 2. It can be seen that: 1) Scenarios 1
and 2 have no obvious improvement effect on peak-to-valley
difference and network loss. Even due to the sudden load change

in Scenario 2, the peak-to-valley difference rate slightly increases.
2) Scenario 3, where the orderly charging strategy considering
consumer psychology and trip chain is adopted, can greatly
reduce peak-to-valley rate and network loss rate, and play a
role in fully improving load curve.

Optimization Results of Time-of-Use Price
The function surface diagrams of peak-to-valley difference rate
and network loss rate with respect to load transfer rate in
residential district and commercial district are drawn
respectively, as shown in Figure 11. It can be seen that: the
greater the two load transfer rates, the peak-to-valley difference
rate generally tends to decrease, and the network loss rate shows a
slower growth trend.

To solve the optimization problem established in Trip
Chain and its Characteristic Variables, the relative MIP gap
tolerance in gurobi is set to 0.01%. Considering that peak-to-
valley difference rate and network loss rate are both
dimensionless physical quantities, and the two have little
difference in their status when measuring the qualities of
load curve, so the weight coefficients of multiobjective
function are selected as ω1 � ω2 � 0.5. Total load curve
before and after optimization is shown in Figure 12, and
optimization results of time-of-use price in commercial and
residential district are listed in Table 3.

It can be seen that: 1) The optimal load curve considering
consumer psychology is relatively stable on the whole,
showing an obvious effect of “peak shaving and valley
filling.” 2) The load during peak and valley periods both
have a certain amount of transfer. Moreover, EVs load
transfer rate in residential and commercial district and
other load transfer rate are all in linear region. In
summary, by establishing the time-of-use price
optimization model, EVs can be guided to charge orderly,
which can reduce peak-to-valley difference and network loss,
and provide a theoretical basis for system operators to
determine time-of-use price.

TABLE 2 | Total load indicators in different scenarios.

Scenario Peak-to-valley
difference rate

Network loss rate

Baseline load 0.7568 0.0968
Scenario 1 0.7008 0.0833
Scenario 2 0.8416 0.0901
Scenario 3 0.6451 0.0735

FIGURE 11 | Function surface diagram of indicators. (A) Peak-to-valley difference rate. (B) Network loss rate.
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CONCLUSION

Aiming at the hot issue of impact of large-scale EVs connected to
grid on distribution network load, this article proposes a price-
based orderly charging strategy for EVs considering both consumer
psychology and trip chain. A time-of-use price optimization model
based on consumer psychology is established to describe the
charging behavior of EV owners influenced by electricity price.
The examples are provided to compare the impact of EVs
connected to grid under different ratios, different load transfer
rates, and different scenarios. The conclusions are as follows:

1) The impact of disorderly charging for EVs without
considering consumer psychology on distribution network
is related to their daily return time. Disorderly charging of
buses can achieve a certain “valley filling” effect; that of cars
can result in “peak plus peak” situation.

2) When considering consumer psychology, the greater the load
transfer rate, the smaller the peak-to-valley difference, and the
more obvious the effect of peak shaving and valley filling.
Impact of changes in load transfer rate on the load in
commercial district is mainly reflected in “valley filling,”
while that in residential district is mainly reflected in “peak
shaving."

3) Among a variety of charging strategies, the orderly charging
strategy considering consumer psychology and trip chain can
greatly reduce peak-to-valley difference and network loss, and
make voltage deviation smaller.

4) Time-of-use price optimization model, established based on
consumer psychology and trip chain, can guide EVs to charge
orderly, and provide a theoretical basis to determine time-of-
use price.

In the future work, the uncertainty of renewable energy power
will be considered, combined with the SOC transition probability
of EVs based onMarkov Chain, to further investigate impact of the
SOC of EVs on distribution network load in different scenarios.
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