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Wind power generation is likely to hinder the safe and stable operations of power systems
for its irregularity, intermittency, and non-smoothness. Since wind power is continuously
connected to power systems, the step length required for predicting wind power is
increasingly extended, thereby causing an increasing cumulative error. Correcting the
cumulative error to predict wind power in multi-step is an urgent problem that needs to be
solved. In this study, a multi-step wind power prediction method was proposed by
exploiting improved TCN to correct the cumulative error. First, multi-scale convolution
(MSC) and self-attentiveness (SA) were adopted to optimize the problem that a single-
scale convolution kernel of TCN is difficult to extract temporal and spatial features at
different scales of the input sequence. TheMSC-SA-TCNmodel was built to recognize and
extract different features exhibited by the input sequence to improve the accuracy and
stability of the single-step prediction of wind power. On that basis, the multi-channel time
convolutional network with multiple input and multiple output codec technologies was
adopted to build the nonlinear mapping between the output and input of the TCN multi-
step prediction. The method improved the problem that a single TCN is difficult to tap the
different nonlinear relationships between the multi-step prediction output and the fixed
input. The MMED-TCN multi-step wind power prediction model was developed to
separate linearity and nonlinearity between input and output to reduce the multi-step
prediction error. An experimental comparative analysis was conducted based on the
measured data from two wind farms in Shuangzitai, Liaoning, and Keqi, Inner Mongolia. As
revealed from the results, the MAE and RMSE of the MMED-TCN-based multi-step
prediction model achieved the cumulative mean values of 0.0737 and 0.1018. The
MAE and RMSE metrics outperformed those of the VMD-AMS-TCN and MSC-SA-
TCN models. It can be seen that the wind power prediction method proposed in this
study could improve the feature extraction ability of TCN for input sequences and the ability
of mining the mapping relationship between multiple inputs and multiple outputs. The
method is superior in terms of the accuracy and stability of wind power prediction.
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INTRODUCTION

The increasing depletion of traditional energy sources (e.g., fossil
fuels and natural gas) has greatly challenged the development of
power systems (Wu et al., 2020). Wind energy will become the
most promising clean energy source for its inexhaustible and
renewable characteristics (Du et al., 2017). The global installed
wind power capacity is expected to reach nearly 800 GW by 2021
(GlobalWind Energy Council, 2021). Because wind power output
is found to be intermittent and stochastic, an accurate wind power
prediction method acts as a vital technical tool to ensure the safe,
stable, and economic operation of the power system (Ye and
Zhao, 2014). Since wind power is continuously connected to the
power system, the requirements for step length of its prediction
are gradually increasing and the accuracy requirements are
gradually becoming higher. However, the conventional multi-
step rolling prediction model should exploit the wind power
predicted at the previous moment to predict the wind power at
the subsequent moment and the prediction result at the
subsequent moment will accumulate the prediction error of
the previous moment. The cumulative error of wind power
will increase as the number of prediction steps rises
continuously (Chen et al., 2017). The phenomenon will
increase the difficulty of the multi-step prediction of wind
power. Accordingly, correcting the cumulative error to
conduct the multi-step prediction of wind power should be
solved urgently.

On the whole, the existing multi-step prediction of wind
power has been conducted based on the single-step prediction.
Relevant researchers have adopted a range of methods for the
single-step and multi-step predictions of wind power. The
mentioned methods can fall into three main categories,
i.e., statistical methods, physical methods (Wu et al., 2017),
and combined prediction methods (Han et al., 2019). The
physical method refers to a wind power prediction method
based solely on the historical wind power data and the
Numerical Weather Prediction (NWP) data (Louka et al.,
2008; De Giorgi et al., 2011; Cassola and Burlando, 2012; Liu
et al., 2020a). The physical methods generally apply to the single-
step prediction. The single-step wind power prediction based on
the physical method exhibits the advantages as follows: the small
amount of data relied on, the simplicity of the model, and the
convenience and speed of prediction. However, large errors exist
between the NWP data and real weather data, and spatial
differences are identified between NWP data and wind farms,
thereby causing the accuracy of the physical method for the
single-step wind power prediction to be generally low. The
statistical method refers to a wind power prediction method,
updating and adjusting the model weights and parameters based
on the error between the predicted and true values. It usually falls
into probabilistic statistical models, machine learning models,
and deep learning models. Probabilistic statistical models consist
of Auto-Regressive Moving Average Model (ARMA) (Wang
et al., 2015a) and Autoregressive Integrated Moving Average
Model (ARIMA) (Cao et al., 2019; Liu et al., 2020b). It can
more effectively follow the wind power forecast than physical
methods. Physical methods can better follow the trend of wind

power, whereas a large get error occurs in the multi-step
prediction. Machine learning models consist of Support Vector
Machine (SVM) (Zhang et al., 2016), Random Forest (RF) (Liu
et al., 2015), and Hidden Markov Model (HMM) (Lahouar and
Ben Hadj Slama, 2017), all of which exhibit better single-step
prediction accuracy than that of conventional probabilistic
models. Deep learning models comprise Neural Network
Model (Zhou et al., 2018), Long Short-Term Memory (LSTM)
(Li et al., 2018; Li et al., 2020; Liu and Liu, 2021), and Gated
Recurrent Unit (GRU) (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014). They are capable of fully exploiting the
temporal and spatial characteristics of the input sequence to
improve further the accuracy of the single-step prediction of wind
power. Statistical methods can effectively extract the linear and
nonlinear relationships of historical data and promote the single-
step prediction of wind power to be more accurate, whereas it is
difficult to conduct an accurate and stable multi-step prediction
of wind power series with strong randomness and obvious noise
signals for their single structure and high data quality
requirements (Tascikaraoglu and Uzunoglu, 2014; Wu et al.,
2019).

The combined prediction method refers to a wind power
prediction method that maintains the advantages of all single
prediction models to achieve more accurate and stable
predictions. It is generally used in wind power multi-step
prediction. The literature (Lin and Liu, 2011; Wang et al.,
2015b; Wang et al., 2020a) has combined VMD (Liu et al.,
2018) and GRU to form a combined model for the multi-step
prediction of wind power. Moreover, compared with a single
model, the combined model single-step prediction results can
better track the variation of wind power; however, it is limited by
the VMD model and the cumulative error occurs in the multi-
step prediction. The literature (Catalao et al., 2010) has employed
a hybrid prediction model with wavelet transform, a particle
swarm algorithm, and an integrated adaptive network fuzzy
inference system. Such a model achieved better mean absolute
percentage error (MAPE) and normalized mean absolute error
(NMAE) of the single-step prediction than those of the single
model; however, the identical problem of cumulative error
existed. The literature (Wang et al., 2020b) has combined
LSTM, RF, VMD, and wavelet transform (WT) to build a
multi-timescale wind power prediction model, and the
combined prediction model outperformed others in multiple
timescales. The above-mentioned combined prediction method
has better prediction performance compared with physical and
statistical methods, while no corresponding solution has been
given for the multi-step prediction cumulative error.

Combined with the above-mentioned methods, given the
cumulative error of existing studies in the wind power multi-
step prediction and the incomplete input sequence feature
extraction of TCN application in the wind power prediction,
this study proposed a wind power multi-step prediction method
based on improved TCN to correct the cumulative error. The
main contributions of this study are as follows:

1) The MSC-SA-TCN model was established to reduce difficulty
in extracting the temporal and spatial features of different
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scales of the input sequence with the single-scale
convolutional kernel of TCN using MSC and SA. It can
recognize and extract different features of the input
sequence to promote the single-step prediction of wind
power to be more accurate and stable.

2) The MMED-TCN multi-step wind power prediction model
was proposed to develop the mapping relationship between
the output and input of TCN multi-step prediction using the
codec of multi-channel time convolutional network with
multiple inputs and multiple outputs. Such an effort aims
to improve the problem that the different nonlinear
relationships between multi-step prediction outputs and
fixed inputs are difficult to mine. It can separate linearity
and nonlinearity between the input and output to reduce the
cumulative error of the multi-step rolling wind power
prediction.

This study is organized as follows. In Design of Multi-Step
Prediction Model Based on Improved TCN, the design of the
improved TCN multi-step prediction model is elucidated. In
Algorithm Flow, the algorithmic process of the wind power
multi-step prediction based on improved TCN for correcting
the cumulative error is illustrated. In Experiment and Analysis,
LSTM, VMD-AMS-TCN, and other models are adopted to
compare the experiments with the MSC-SA-TCN model and
MMED-TCN model proposed in this study. The experimental
results are analyzed specifically to verify the superiority of the
model proposed in this study. In Conclusion, relevant conclusions
and subsequent research directions are given.

DESIGN OF MULTI-STEP PREDICTION
MODEL BASED ON IMPROVED TCN

Introduction to the TCN Model
On the whole, the TCN model consists of causal convolution,
dilated convolution, and residual block. It has a more lightweight
network structure than CNN, LSTM, and GRU (Drdgomiretskiy
and Zosso, 2013; Bai and Koltun, 2018). The perceptual field of
the network can be altered according to the filter size. It is more
conducive to the prediction of time series.

Set the filter F�(f1,f2,...,fK), the number is Fn, and the output
sequence information is Y�(y1,y2,...,ys), where the input is
S�(s1,s2,...,sn), where si,i∈[1,n] is the column vector. The following
equation gives the causal null convolution of st at moment t:

F(st) � (SpdF)(st) � ∑K
k�1

fk · st−d(K−k), (1)

where d denotes the expansion factor, K denotes the filter size, and
the formula for the perceptual field isRF�(K-1)d+1. The causal and
null convolution for K � 3 in TCN are given in Figure 1.

The TCNmodel introduced the residual module. The problem
of gradient explosion and network degradation in deep

FIGURE 1 | Causal convolution and null convolution in TCN.

FIGURE 2 | Residual module of TCN model.
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conventional neural networks was solved. The residual module of
the TCN model is given in Figure 2.

In the figure, zi−1 is the input of the network at layer i-1 and z1

is the output of the network at layer i. The calculation in the figure
can be expressed as follows:

f (x) � W2σ(W1z
i−1 + b1) + b2, (2)

zi � f (x) + zi−1 (3)

where W1, W2, b1, and b2 denote the mapping parameters to be
learned by the TCN; σ(·) is the Rule function.

According to the mentioned brief and literature research, the
current TCN faces difficulty in extracting multi-scale temporal
and spatial features of input sequences and inmining the different
nonlinear mapping relationships between multi-step prediction
outputs and fixed inputs.

MSCSA-TCN Model
To solve the problem that the size of the convolution kernel of the
conventional TCN model is fixed, in order to reduce the difficulty
in extracting themulti-scale temporal and spatial features extracted
from the input sequence, this study proposed an improved TCN
model based onMSC-SA. First, different scales of convolution were
adopted to extract the complete time-space features of wind power
sequences. Subsequently, the self-attentive mechanism was used to
mine the correlation among the features and distinguish the
important features from the non-important ones. Lastly, the
output of MSC-SA acted as the input of TCN. The structure of
the MSC-SA-TCN model is illustrated in Figure 3.

ci is the output of MSC, expressed as follows:

ci � Ki
L×1p[I1×ki pKi,j

1pki] j ∈ [1, n] , (4)

where * is the convolution operation; ki is the layer i convolution
kernel scale; L represents the number of input features; I1xki is the
output of the VMD-AMS module; Ki,n

1×ki denotes the jth temporal
convolution kernel in layer i with size 1xki; Ki

L×1 is the spatial
convolution kernel in layer i with size Lx1.

Q,K,V of the attention mechanism part of the figure can be
expressed as follows:

Q � WQ
n×nISA + bQn×m,

K � (WK
n×nISA + bKn×m)T ,

V � WV
n×nISA + bVn×m,

(5)

where W* and b* represent the weight matrix and bias matrix;
then, the output of theMSC-SAmodule can be derived as follows:

S � softmax(QK)V . (6)

MMED-TCN Model
For the cumulative error in the wind power multi-step prediction
by traditional single TCN, an improved TCN model based on
multiple outputs was proposed in this study. The specific structure
of the model is shown in Figure 4. The model reduced the
cumulative error in the wind power multi-step prediction using
multi-channel TCN to extract the nonlinear mapping relationship
between input and output of different prediction steps.

The input of the multi-output TCN model is the output S of
MSC-SA with dimension kxm, and its individual output is
expressed as TFnx1. Fn is the number of TCN filters, and the
final output was obtained after linear transformation and Relu
function, which can be expressed as follows:

yi � Re lu(W1×Fn,iTFn×1,i + bi) i ∈ [1, s] , (7)

FIGURE 3 | Structure of MSC-SA-TCN model.

FIGURE 4 | Multi-output TCN structure.
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where WFnx1,i, bi are the weights and biases of the predicted
output at step i, respectively.

The MMED-TCNmodel was obtained using the multi-output
TCN model as the decoding layer and using the MSC-SA model
as the coding layer. The structure of the MMED-TCN model is
given in Figure 5.

ALGORITHM FLOW

Based on the design of a multi-step prediction model with
improved TCN, the algorithm flow of wind power multi-step
prediction based on improved TCN to correct cumulative error
proposed in this study is illustrated in Figure 6. The specific steps
are elucidated as follows:

1) First, the input raw wind power sequence P was preprocessed,
mainly including outlier processing (negative value, exceeding
full power value and garbled code) and vacant value filling, and
the wind power sequence after processing is expressed as P′.

2) Then, P′ was decomposed using VMD to obtain the principal
component sequence IMFs� { IMF1, IMF2, ... ,IMFL-1} and the

noise sequence E. The IMFL was obtained by smoothing E
using AMS.

3) Next, theMSC-SAmodel was used to extract the temporal and
spatial features of the IMFs series to obtain the output S.

4) Finally, the final prediction model was selected according to
the number of prediction steps. TheMSC-SA-TCNmodel was
selected for the single-step prediction. The MMED-TCN
model was selected for the multi-step prediction. The
prediction results were evaluated.

EXPERIMENT AND ANALYSIS

Data Source
The wind power data used in this study were obtained from the
actual measurement data of the wind farms in Shuangzitai,
Liaoning, and Kqi, Inner Mongolia, from December 2019 to
October 2020, with a sampling interval of 15 min. Nearly 28,000
data pieces were available for each wind farm, and the first 10,000
were taken as the experimental data in this study, the first 80% of
which acted as the training set and the last 20% as the test set.

FIGURE 5 | MMED-TCN model structure.
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Data Processing
The data employed in this study have negative, overfull, garbled,
and vacant values. In this study, the negative values were processed
by directly setting zero, and the wind power values before and after
the two moments were used to correct or fill the overfull, garbled,
and vacant values. Since the installed capacity of each wind power
station was different, thereby causing the difference of its power
generation, the experimental data were normalized to better assess
the experimental results using the following:

P″i �
P′i −min(P′)

max(P′) −min(P′). (8)

Evaluation Metrics
In this study, six metrics were adopted to assess the performance
of the model, i.e., Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), MAE lift (PMAE), and RMSE lift
(PRMSE) of the prediction results of the two models and MAE

FIGURE 6 | Algorithm flow.
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accumulation (AddeMAE,ij) and RMSE accumulation
(AddeRMSE,ij) from i-step prediction to j-step prediction. The
specific equations are expressed as follows:

MAE � 1
n
∑n
k�1

∣∣∣∣yi − ŷi
∣∣∣∣, (9)

RMSE �
����
1
n
∑n
i�1

√ (yi − ŷi)2, (10)

PMAE � Model2MAE −Model1MAE

Model2MAE
, (11)

PMRE � Model2RMSE −Model1RMSE

Mode12RMSE
, (12)

AddeMAE,ij � MAEi −MAEj i> j , (13)

AddeRMSE,ij � RMSEi − RMSEj i> j , (14)

where yi and ŷi are the true and predicted values at moment i,
respectively. ModelMAE and ModelRMSE represent the MAE and
RMSE of the model, respectively, where Model1 is the combined
model of this study and Model2 is the comparison model. MAEi
and RMSEi denote the MAE and RMSE predicted at step i,
respectively, and MAEj and RMSEj are the MAE and RMSE
predicted at step j , respectively, where i, j ∈ (Chen et al., 2017; Du
et al., 2017) are the prediction steps.

Experimental Analysis ofMSC-SA-TCNModel
Comparison of Experimental Models
To verify the prediction effect of the single-step prediction model
MSC-SA-TCN proposed in this study, five models in Table 1
were used for the experimental comparison in this section, and
the parameter optimization of the mentioned models was not the
focus of this study. For this reason, the main parameters of each
model are listed directly in Table 1.

Experiment and Analysis of VMD-AMS Algorithm
The VMD decomposition algorithm was adopted to decompose
the processed wind power series P″ into 20 main components
IMFs and 1 error component E. Subsequently, the AMS algorithm
was employed to smooth the tracking of the error component E to
determine the 21st IMF component. The results of the VMD
decomposition and the AMS smoothing are presented in Figure 7
(the figure presents the results of 3, 6, 9, 12, 15, 18, 21, and so on

for different IMFs components). As indicated from this figure,
each component processed using the VMD-AMS algorithm was
uniformly distributed in the frequency domain, and the
reconstruction error was negligible below 0.005.

Experiments and Analysis of the Comparison Model
In this study, three single models (i.e., ARIMA, LSTM, and TCN)
were set for the comparative experimental analysis to verify the
superiority of the TCNmodel in the wind power prediction. Next,
two sets of hybrid models (i.e., EMD-TCN and VMD-AMS-
TCN) were set for the comparative experimental analysis to verify
the effectiveness of the VMD-AMS algorithm in improving the
prediction accuracy. Experiments were performed for the
proposed model MSC-SA-TCN and the other five models,
respectively. The experimental results are illustrated in
Figure 8, and the performance of various models under the
evaluation metrics MAE and RMSE is listed in Table 2.

As revealed from the comparison of the prediction
experiments of the two wind farms in Table 2, the MAE of
the single models (e.g., ARIMA, LSTM, and TCN) exceeded 1.5,
and the RMSE reached over 2.0, aking the trend of wind power
difficult to be accurately tracked. The main reason for this
phenomenon was that the single prediction model exhibited
relatively low sensitivity to the noise components in the wind
power series. Among the single models, TCN performs slightly
better than the other two single models in MAE and RMSE due to
the introduction of causal null convolution. Thus, TCN was
endowed with a wider field of perception compared with
ARIMA and LSTM, and it was enabled to more effectively
obtain the temporal characteristics of the wind power series.
Compared with the single model, EMD-TCN and VMD-AMS-
TCN models significantly improved their performance in MAE
and RMSE. The introduction of EMD and VMD-AMS could
effectively separate the noise signals, reduce the effect of noise
signals on the prediction accuracy, and increase the prediction
accuracy. The prediction performance of the VMD-AMS-TCN
model was better than that of the EMD-TCN model. The
prediction performance of the MSC-SA-TCN model proposed
in this study was better than that of the other models, where the
MAE was less than 0.3 and the RMSE was less than 0.4.

To further verify the prediction performance improvement of
the proposed MSC-SA-TCN model compared with other models

TABLE 1 | Experimental comparison model and main parameters.

Number Comparison
model

Main parameters

1 ARIMA LSTM TCN ARIMA VMD

2 LSTM 1) Number of nodes in the input layer: 200.
2) Number of convolution kernels: 10, size: 3.
3) Residual layer: 2.
4) Dilated convolution: Ye and Zhao (2014); Liu et al.
(2015); Du et al. (2017); Liu et al. (2020a); Wu et al. (2020).
5) Training batch size: 32. 6) Maximum number of training
iterations: 100.

1) Number of nodes in the
input layer: 200.
2) Number of implied
layers: 4.
3) Number of nodes in the
output layer: 1.
4) Training batch size: 32.
5) Maximum number of
training iterations: 100.

1) Autocorrelation
order: 24.
2) Moving average
order: 4.
3) Difference order: 1.

1) Number of
decompositions: 20.
2) Penalty factor: 1,000.

3 TCN
4 EMD-TCN
5 VMD-AMS-TCN
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in this study, the performance improvement of the MSC-SA-
TCN model is given in Table 3.

According to Table 3, the proposed MSC-SA-TCN model in
this study improved more than 50% in MAE and more than 40%
in RMSE. The average improvement in MAE compared with
other models was 80.1%. The average improvement in RMSE
reached 80%. The MAE and RMSE predictors of the MSC-SA-
TCN model were significantly improved.

To verify the prediction stability of the MSC-SA-TCN model
proposed in this study, ten comparison experiments were performed
using theVMD-AMS-TCNmodel and theMSC-SA-TCNmodel for
the Nemengkchi wind farm, and the experimental results are shown
in Figure 9. The MAE and RMSE of the MSC-SA-TCN model
fluctuated from 0.1 to 0.3, while those of the VMD-AMS-TCN
model fluctuated from 0.3 to 0.7 and 0.4 to 0.8, respectively. The
fluctuation ranges of the MAE and RMSE of the MSC-SA-TCN
model were smaller than those of the MAE and RMSE.

Experimental Analysis of Multi-Step Wind
Power Prediction
The MMED-TCN wind power multi-step prediction model
proposed in this study reduces the cumulative error of the wind
power multi-step rolling prediction using the multi-channel TCN
technique. To verify the effectiveness of the MMED-TCN model in
reducing the cumulative error, the VMD-AMS-TCN and MSC-SA-
TCN models were employed to compare the 2-step and 5-step

predictions with the MMED-TCN model under two wind farms,
where the VMD-AMS-TCN and MSC-SA-TCN models were used
for rolling prediction. The experimental results are presented in
Figure 10, and the performance comparison of the respective model
is listed in Table 4.

According to Table 4, the 2-step and 5-step wind power
prediction results of the MMED-TCN model proposed in this
study were better than those of the VMD-AMS-TCN and MSC-
SA-TCN models overall under the MAE and RMSE evaluation
metrics. To verify whether the MMED-TCN model could
effectively reduce the cumulative error in the multi-step
prediction, the comparison of the cumulative error of each
model is listed in Table 5.

As indicated from Table 5, the MMED-TCN model proposed
in this study could effectively reduce the cumulative error in the
multi-step prediction, from 2-step prediction to 5-step prediction.
Its AddeMAE,ij was less than 0.16, and its mean value was 0.0737,
which was better than 0.2127 of the VMD-AMS-TCN model and
0.1991 of the MSC-SA-TCN model. Its AddeRMSE ,ij was less than
0.2, and the mean value was 0.1018, which was better than 0.3143
of the VMD-AMS-TCN model and 0.2501 of the MSC-SA-TCN
model. To elucidate the effect of the MMED-TCN model in
reducing the cumulative error of the multi-step prediction, the
histogram of the cumulative error index of eachmodel is presented
in Figure 11. According to Figure 11, the MMED-TCN model
outperformed both the VMD-AMS-TCNmodel and theMSC-SA-
TCN model in terms of AddeMAE,ij and AddeRMSE,ij. The

FIGURE 7 | Experimental results of VMD-AMS algorithm.
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FIGURE 8 | Experimental results of single-step wind power prediction.

TABLE 2 | Comparison of the performance of each prediction model for the two wind farm experiments.

Models Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

MAE RSME MAE RMSE

ARIMA 1.7022 2.5257 1.8374 2.6323

LSTM 1.6911 2.4964 1.6749 2.4041

TCN 1.6896 2.3118 1.5803 2.3431

EMD-TCN 0.8664 1.2362 1.1458 1.5513

VMD-AMS-TCN 0.3361 0.4036 0.5454 0.6116

MSC-SA-TCN 0.1330 0.1755 0.2585 0.3445
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TABLE 3 | Comparison of the performance improvement of the experimental MSC-SA-TCN model for two wind farms.

Contrast model Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

PMAE (%) PRSME (%) PMAE (%) PRSME (%)

ARIMA 92.1 93.1 85.9 86.9

LSTM 93.5 92.9 84.6 85.7

TCN 92.1 92.4 82.0 85.3

EMD-TCN 84.6 85.8 77.4 77.8

VMD-AMS-TCN 60.4 56.5 52.6 43.7

FIGURE 9 | Comparison of prediction stability among models.

FIGURE 10 | Multi-step wind power prediction experimental results.
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effectiveness of the MMED-TCNmodel in reducing the multi-step
prediction error was further verified.

CONCLUSION

To cope with the cumulative error in the wind power multi-step
prediction, a wind power multi-step prediction method based on
improved TCN to correct the cumulative error was proposed in
this study. The MMED-TCN multi-step wind power prediction

model was built by optimizing the TCN single-scale convolution
kernel and single input-output mapping relationship. Based on
the model, several experiments were performed on the actual
measured data of Liaoning Shuangzitai wind farm and Inner
Mongolia Keqi wind farm. The following conclusions could be
drawn based on the experimental results.

1) The MSC-SA-TCN model can effectively fix the ability of the
TCN’s single-scale convolution kernel for input sequence feature
extraction and improve the prediction accuracy and stability of

TABLE 4 | Comparison of the performance of each prediction model for the two wind farm experiments.

Models Metrics Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning

2 steps 3 steps 4 steps 5 steps 2 steps 3 steps 4 steps 5 steps

VMD-AMS-TCN MAE 0.6363 0.8623 1.0494 1.3022 0.6434 0.8453 1.0665 1.2528
RMSE 0.8529 1.1338 1.5191 1.8021 0.8618 1.2052 1.5185 1.7985

MSC-SA-TCN MAE 0.5957 0.6935 0.8766 1.1483 0.4087 0.6876 0.8145 1.0508
RMSE 0.7645 0.9580 1.2159 1.6104 0.7273 0.9636 1.0865 1.4418

MMED-TCN MAE 0.3832 0.4075 0.5098 0.6603 0.5586 0.6116 0.6572 0.7237
RMSE 0.5202 0.5485 0.6925 0.8859 0.7273 0.8198 0.9112 0.9724

TABLE 5 | Comparison of error accumulation of each prediction model for the two wind farm experiments.

Models Metrics Keqi wind farm in inner Mongolia Shuangzitai wind farm in Liaoning Mean

I = 2,j = 3 I = 3,j = 4 I = 4,j = 5 Mean1 I = 2,j = 3 I = 3,j = 4 I = 4,j = 5 Mean2

VMD-AMS-TCN AddeMAE,ij 0.2260 0.1871 0.2538 0.2223 0.2019 0.2212 0.1863 0.2031 0.2127
AddeRMSE,ij 0.2809 0.3853 0.2830 0.3164 0.3434 0.3133 0.2800 0.3122 0.3143

MSC-SA-TCN AddeMAE,ij 0.0978 0.1831 0.2717 0.1842 0.2789 0.1269 0.2363 0.2140 0.1991
AddeRMSE,ij 0.1935 0.2579 0.3945 0.2820 0.2363 0.1229 0.3553 0.2382 0.2501

MMED-TCN AddeMAEij 0.0243 0.1023 0.1505 0.0924 0.0530 0.0456 0.0665 0.0550 0.0737
AddeRMSE,ij 0.0283 0.1440 0.1934 0.1219 0.0925 0.0914 0.0612 0.0817 0.1018

FIGURE 11 | Histogram of error accumulation index of each model.
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the model by extracting the temporal and spatial features of the
input sequence at different scales by MSC-SA. TheMAE and the
RMSE of the MSC-SA-TCN model decrease by 0.2450 and
0.2476 on average in the single-step prediction, respectively,
compared with those of the VMD-AMS-TCN model.

2) TheMMED-TCNmodel is capable of effectively fixing the ability
of a single TCN to mine the mapping relationship between
multiple inputs and multiple outputs, reducing the effect of the
previous step prediction error on the prediction using the multi-
channel TCN technique, and effectively reducing the cumulative
error of the multi-step rolling prediction. In the multi-step wind
power prediction, its MAE cumulative mean value reaches
0.0737, and the RMSE cumulative mean value is 0.1018,
better than those of other models.

3) The MMED-TCNmodel introduced in this study can effectively
reduce the cumulative error of the multi-step prediction of wind
power. Since the PV power series exhibits similar characteristics
with the wind power series, the MMED-TCN model can be
adopted to reduce the cumulative error of the multi-part
prediction of PV power in the future.
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