
Salt-Resistive Photothermal Materials
and Microstructures for Interfacial
Solar Desalination
Xiaoqiang Yu1*†, Qian Zhang2†, Xin Liu1, Ning Xu2 and Lin Zhou2*

1School of Physics, Southeast University, Nanjing, China, 2National Laboratory of Solid State Microstructures, College of
Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing,
China

Solar interfacial evaporation, featured by high energy transfer efficiency, low cost, and
environmental compatibility, has been widely regarded as a promising technology for solar
desalination. However, the interplay between energy transfer and water transport in the
same channels suggests that the tradeoff between high efficiency and long-term stability
inherently exists in conventional photothermal nanomaterials. We summarize state-of-the-
art research on various anti-salt clogging photothermal microstructures as long-term
stable interfacial solar evaporators for solar desalination. The review starts with an overview
of the current status and the fundamental limit of photothermal materials for solar
desalination. Four representative strategies are analyzed in detail with the most recent
experimental demonstrations, including fluid convection enhancement, surface wettability
engineering, energy-mass-path decoupling, and surface chemistry engineering. Finally,
this article focuses on the challenges in anti-salt clogging solar interfacial evaporators and
potential point-of-use applications in the future.
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INTRODUCTION

The shortage of freshwater resources has become one of the most severe global challenges nowadays
(Shannon et al., 2008; Elimelech and Phillip, 2011; Cetrulo et al., 2019). To address the current
situation of global water scarcity, widespread concerns have been garnered about freshwater
extraction from seawater (Dobson et al., 2002; Gude, 2011). Solar desalination is an
environment-friendly water treatment technology without the additional consumption of fossil
energy (Kalogirou, 1997; Abdel-Rehim and Lasheen, 2005; Qiblawey and Banat, 2008). In recent
years, a promising route, interfacial solar vapor generation, has been proposed and developed to
promote the photothermal conversion efficiency of liquid-gas phase transition of water, dramatically
improving vapor production (Tao et al., 2018; Zhou et al., 2019; Vaartstra et al., 2020). The
performance of solar vapor generation can be significantly enhanced by floating the absorber or
evaporator at the water-air interface to evaporate the water at a relatively localized photothermal area
(the liquid/air interface), which is therefore named interfacial solar vapor generation (Ghasemi et al.,
2014; Wang et al., 2014). The rapid development of solar water treatment technologies has thus been
essentially improved.

However, most of the proposed interfacial solar evaporators have beenmore or less suffering from
the rapid decay of energy transfer efficiency and poor stability during the long-term operation of
solar desalination (Li et al., 2020; Zhang Q. et al., 2020). Therefore, it is vital to inhibit salt deposition
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to maintain long-term solar vaporization. Traditional methods
are rinsing and washing in the post-treatment process (Finnerty
et al., 2017; Jin et al., 2018; Zhang et al., 2018; Xiao et al., 2019;
Zhu et al., 2019). However, they introduced extra treatment costs
and merely worked for washable and flexible membrane
absorbers. In addition, by logically segregating the light-
absorbing surface from the surface of salt precipitation,
rationally designed absorbers can precisely monitor the
position of salt precipitation to allow long-lasting, high-
performance, and ZLD solar desalination (Shi et al., 2018;
Zeng et al., 2019; Zhang et al., 2020b; Wu et al., 2020; Xia
et al., 2020; Zhuang et al., 2020). However, the imperfections
of the above methods are that the threat of salt accumulation on
the absorber surface to light absorption and permeability can
interrupt the generation of stable and high-efficiency steam in
long-term desalination and highly concentrated brine.

Aiming to solve or alleviate the salt clogging issue, the
researchers have developed a couple of effective strategies to
develop stable solar desalination devices with anti-salt clogging
properties. We evaluate the state-of-the-art solar interfacial
desalination as shown in Figure 1. It illustrates that the
reported anti-clogging mechanisms for solar interfacial systems
can be categorized into four major groups: 1) fluid convection can
dilute the formed high concentration brine in the absorbers
during desalination; 2) Hydrophobic designs can prohibit the
contact of salt ions with the solar absorber; 3) Thermal
engineering by re-radiating infrared photons can entirely avoid
fouling via the physical separation from the brine; 4) Donnan that

can prevent ions upward movement by creating the double
electrode layer.

ENHANCED FLUID CONVECTION:
MULTISCALE HIERARCHICAL
STRUCTURES
In the past years, various research groups have suggested that the
primary issue that accounts for the salt accumulation is the
emergence of the saturated salt solution on the solar absorber
surface during the highly efficient interfacial solar desalination
process. Therefore, it is of tremendous importance but rather
challenging for rationally designing structures capable of high-
flex ion diffusion. A variety of concepts have been proposed and
demonstrated experimentally, including multi-scale precise
manipulation of the structures of solar evaporators across the
microscale to the macroscopic scale. One of the most
representative strategies, reported by Chen group (Ni et al.,
2018), is the regulation of micro/macro structures because of
the rapid diffusion of ions through the micro/macro channels
(Fang et al., 2019; He et al., 2019; Liu et al., 2019; Wang C. et al.,
2020; Zhu et al., 2017). As shown in Figure 2A, in this salt-
rejecting evaporator proposed by Chen et al., the hydrophilic
white fabric is composed of microstructured pores and channels
and artificially confined in macroscale narrow gaps among
thermal insulation foams, which can finally wick the
underlying water into the absorber layer. At the same time,
the highly concentrated salt solution can be effectively diffused
back into the remaining water. When the intriguing design
integrated with a cost-effective polymer film condensation
cover, the overall system can produce clean water at a rate of
2.5 L m2 per day at a total system cost of about $3 m2, which is
sufficient to meet individual drinking requirements without
energy framework while cheaper than conventional solar stills
by order of magnitude, ideal for water-stressed and disaster-
ridden populations with affordable drinking water. Similarly,
inspired by banyan, a hierarchical evaporator consisting of an
activated carbon-cotton fabric, a polyester pillar, and an
expandable polyethylene foam was suggested by Zhang et al.
(Zhang et al., 2020c). A banyan tree in nature grows with several
aerial prop roots to meet the growth of plants, growing eventually
into the soil for additional water availability. By modifying the
amount of PPs during desalination, the suggested hierarchical
evaporator was shown to exhibit anti-salt clogging ability.

In addition, macro-pores of solar absorbers can also be utilized
as efficient water channels to prevent salt deposition through
enhanced fluid convection. Porous wood-based solar evaporators
were reported by the Hu group (Zhu et al., 2017; He et al., 2019)
for effective and safe high-salinity water desalination. The
outstanding antifouling characteristics are due to its distinctive
porous bimodal and 3D interconnected microstructure. During
desalination, the rapid diffusion and evaporation of water and the
capillary pumping of micro-channels in the system lead to a rapid
re-supply of surface vaporized brine to maintain consistent and
rapid production of water vapor. Further research has shown that
a self-regenerating solar evaporator with outstanding anti-

FIGURE 1 | An overview of the anti-clogging interfacial solar
desalination. The anti-clogging principle can be divided into four main
categories: fluid convection, hydrophobic design, contactless solar
evaporation, and the Donnan effect. Adapted from (Kuang et al., 2019).
Adapted from (Xu et al., 2018). Adapted from (Cooper et al., 2018). Adapted
from (Epsztein et al., 2018).
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properties is recognized via a rationally designed virtual channel
array in a natural wood substrate (Liu et al., 2018). Artificial
polymer porous foams (Zhang et al., 2019a; Wang X. et al., 2020;
Dong et al., 2020; He et al., 2020) with super-hydrophilic
wettability have also been introduced. The sufficient water
transport in these solar evaporation systems have been widely
regarded to be beneficial to resolve the crystalline salt through
enhancing fluid convection.

SURFACE WETTABILITY ENGINEERING:
HETEROGENEOUS HYDROPHILICITY

By enhancing fluid convection, the anti-salt evaporators cannot
maintain efficient evaporation out of high-salinity brine (over
10 wt%) because of the excessive salt solubility on the solar
absorbers during desalination. Hence, the effective way to
prevent salt deposition on the absorber is to blocks water
molecules while allowing steam. It is also noteworthy that the
hydrophobic surface of a solar absorber can effectively prevent
water while blocking salt ions from penetrating into the absorber
and thus water evaporation happens at the bottom of the absorber
(Gao S. et al., 2019; Chen et al., 2020; Peng et al., 2021). The

hydrophobic surface of solar absorbers has been gradually
recognized as salt-rejective solar evaporators by a couple of
groups (Kashyap et al., 2017).

As illustrated in Figure 2B, Xu et al. (Xu et al., 2018) indicate
that safe and effective solar desalination can be facilitated by a
sequential electrospinning flexible Janus absorber. The
membrane can be divided into two primary parts-the
hydrophobic upper levels for salt-resistance and the porous
and hydrophilic lower level for water supply. Benefiting from
Janus’ unique structure, solar absorption and water pumping are
split into various layers with polymethylmethacrylate (PMMA)
coating of the hydrophobic upper carbon black nanoparticles
(CB) for light absorption and the lower polyacrylonitrile (PAN)
hydrophilic layer for water pumping. As a result, salt can only be
accumulated in the PAN hydrophilic layer and easily dissolved
due to consistent water pumping. High efficiency and steady
water generation (1.3 kg m-2 h-1, over 16 days) under one Sun is
shown by the Janus absorber, which has not been obtained in
many previous absorbers. Similar Janus cotton fabrics with salt-
rejection properties may also be reported by Lai et al. (Gao T.
et al., 2019). However, the absorbers mentioned above are in
direct contact with the volume of water, resulting in heat
dissipation through the water. The vertically oriented Janus

FIGURE 2 | Salt diffusion is used to realize the salt-resistant solar desalination. (A) A floating solar salt-rejecting still for long-lasting and steady desalination.
Schematic design of evaporation structure and advection of salt discharge. Adapted from (Ni et al., 2018). (B) Janus-structure based absorber for interfacial solar
desalination processes. The schematic of a highly efficient solar steam generation system and a salt resistance strategy. Adapted from (Xu et al., 2018). (C) Surface
heating using mid-infrared radiation (non-contacting heat localization). Schematic of a conventional evaporation pond and the proposed non-contact heat
localization. Energy balance and heat transfer modes for the umbrella and water. Adapted from (Menon et al., 2020). (D) Salt-resistant solar desalination based on
Donnan Effect. Adapted from (Zhao et al., 2021).
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MXene aerogel with a hydrophobic upper layer and a hydrophilic
lower layer was designed by Quan et al. (Zhang et al., 2019b).
MXene, which has a theoretical light-to-heat conversion
capability of 100 percent, can easily convert light to heat in
combination with the Janus structure and protect the
photothermal layer from direct bulk water interaction with the
hydrophobic upper layer, thereby reducing heat loss and thus
effectively inhibiting the crystallization of salt owing to its fast
dissolution with continuous pumping water.

Among most Janus absorbers, the hydrophobic upper layer of
the absorber was generally generated by manipulating with a
polymer solution, which may block the steam escape pathways.
An innovative double-layer hydrophilic/hydrophobic nonporous
structure was designed by Que et al. (Yang et al., 2018). A porous
hydrophobic layer can withstand salt deposition and supply
pathways for vapor evaporation. Water vapor is generated and
then lost through the stomata on the upper epidermis in the
natural water lily. The hydrophobic surface is the root cause of the
self-cleaning property. Xu et al. modeled a water lily-inspired
hierarchical structure composed of a bottom bracket and a top
solar absorber (Xu et al., 2019). Unlike most conventional
structures of salt rejection, there was a thin water film at the
interface between the bottom supporter and the top hydrophobic
absorber. This sandwich structure plays a vital role in achieving
safe and efficient high-concentration brine evaporation in this
design. The formed salt particles or high salt solution gradually
diffused to the bulk brine along the one-dimensional channel
rather than accumulating in the absorber during desalination.

DECOUPLING ENERGY-MASS
TRANSPORT PATHS: NON-CONTACTING
OPTICAL HEATING BY THERMAL
EMISSION ENGINEERING

As in most of interfacial solar evaporation systems, mass
transport and thermal energy transfer are basically existing in
the same channel, in which case the high evaporation rate is
accompanied with more salt reservation on the absorbers. The
deposition of salt on the top surface of solar absorbers typically
results in lower stability and efficiency degradation, which is
difficult to prevent due to the direct interaction of the solar
absorber with saline. Hence, the physical separation of the
absorbers from the brine is an effective way to prevent salt
deposition caused by evaporation. Non-contact solar interfacial
evaporation is a new type of evaporation structure that fouling is
entirely avoided. The brine absorbs solar radiation and transfers
the heat from solar to the brine to generate steam by infrared
radiation (Bian et al., 2020). Thomas A. Cooper et al. recently
described a structure that can absorb solar radiation and re-
radiate infrared photons absorbed directly by water within a
penetration depth of sub-100 μm (Cooper et al., 2018). Due to
thermal isolation, the structure is no longer modified at the
boiling point and is used to overheat the steam generated.
Steam was produced at temperatures up to 133°C, showing
superheated steam in a single sunlight system in a non-pressurized

system. Akanksha K. Menon et al. (Menon et al., 2020) recently
used a photothermal system that converts sunlight into mid-
infrared radiation where water is significantly absorbed to
increase evaporation by more than 100 percent by a passive
and non-contact procedure (Figure 2C). Apart from traditional
evaporation ponds, heat is located by radiative coupling at the
water’s surface, leading to better use of solar energy with 43%
conversion efficiency. The non-contact design of the system
makes it ideally suited for treating a wide variety of
uncontaminated wastewater. The usage of industrial materials
facilitates relatively cheap and highly efficient technology for
effective wastewater management, with the additional
advantage of the salt recovery.

SURFACE CHEMISTRY ENGINEERING:
DONNAN EFFECT FOR
PRE-INTERCALATION OF SALT IONS
As discussed in the previous part, the deposition of salt is mainly
due to the increasing concentration of salt on the top surface of
the solar absorber. The regulation of the local salt concentration
in the absorbers is an effective and desirable way to avoid salt
deposition. The salt ion has positive/negative charges on the top
surface of the solar absorber. Hence, the key is to regulate the
number of salt ions in the absorbers according to the boundary-
layer differential equation for mass transfer (Pantoja et al., 2015).
Donnan effect can prevent ions upward movement by creating a
double electrode layer due to electric neutrality, which can be a
good way for enhanced anti-fouling performance (Chang and
Kaplan, 1977; Cumbal and SenGupta, 2005; Galama et al., 2013;
Ma et al., 2020).

Depending on the pH of the polyamide NF membrane, the
rejection behavior of sodium cation-containing ternary ion
solutions (Na+) and two monovalent anions has been
consistently examined by Razi Epsztein et al. (Epsztein et al.,
2018). The Donnan (charge) exclusion mechanism in the NF is
more likely to affect anion with a smaller ion radius and a
relatively high charge density. Membranes based on graphene
oxide (GO)-based suffer from either low water flow or low ion
rejection when employed for desalination. Chengzhi Hu et al. (Hu
et al., 2018) successfully created an electroconductive three-
dimensional hybrid membrane by employing reduced GO and
carbon nanotubes (GCN) and showed significant ability to
overcome the tradeoff between selectivity and permeability
when performed concurrently as a philter membrane and
electrode. In addition to developing various water transport
channels to facilitate permeability, the intercalation of carbon
nanotubes (CNTs) in the reduced GO matrix has also improved
the active adsorption sites for salt ions, contributing to an
improved Donnan effect and extraordinary salt rejection. An
exceptional NaCl rejection of 71 percent was accomplished by the
optimized GCN (containing 15 percent CNTs), three times
higher than without bias. As shown in Figure 2D, Zhu et al.
recently described a hierarchically designed evaporator with salt-
resistant ability based on the Donnan effect (Zhao et al., 2021).
Due to the Donnan distribution equilibrium, this structure can
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minimize the number of salt ions in the absorber while supplying
water. This hierarchically designed evaporator is shown by high
efficiency (80%) and steady water generation under one Sun in
high-salinity brine (15 wt% NaCl).

CONCLUSIONS AND OUTLOOK

Interfacial solar desalination has been intensely pursued as the most
effective method for obtaining cleaner freshwater, attributing to an
intrinsic low cost, high conversion efficiency, and eco-friendliness.
However, the accumulated salt on the absorbers during desalination
blocks continues the solar energy input and the vapor escape
channels, leading to a significant decrease in the steam yield. In
response to this problem, tremendous efforts have been dedicated to
developing solar interfacial evaporators with an antifouling
performance for long-term and stable desalination. This mini
review summarized different solutions for inhibiting the salt
deposition on absorbers’ surfaces, including enhancing fluid
convection, surface wettability engineering, decoupling energy-
mass transport paths, and surface chemistry engineering. These
researches are of paramount importance in improving our insight
into the development of stable and continuous desalination.

There is still a wide gap between the current strategy and the
practical uses due to the complicated process of crystalline salts.
Therefore, the deep study still needs more effort in future studies.
1) The yield of freshwater is critical for practical application in the
solar interfacial desalination process. However, most of the
previous devices still focus on the steam yields rather than the

water yield to date. Therefore, the high yield of freshwater from
seawater is still a fundamental challenge in solar interfacial
desalination. 2) Based on the deep understanding of the
principles of water transport, salt crystallization, evaporation,
continuous steam production, and solid salts harvesting were
proposed (Xia et al., 2019; Shao et al., 2020; Xia et al., 2020; Xu
et al., 2021), which provides a new direction in further research.
Hence, the collection of salt or chemicals of economic value
should be consecrated deserves some attention in the process of
solar interfacial desalination. 3) Regarding the current solar
interfacial desalination devices, the main obstacle to solar
interfacial desalination in practical uses is commercial-scale
manufacturing.
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