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Event detection is an important application in demand-side management. Precise event
detection algorithms can improve the accuracy of non-intrusive loadmonitoring (NILM) and
energy disaggregation models. Existing event detection algorithms can be divided into four
categories: rule-based, statistics-based, conventional machine learning, and deep
learning. The rule-based approach entails hand-crafted feature engineering and
carefully calibrated thresholds; the accuracies of statistics-based and conventional
machine learning methods are inferior to the deep learning algorithms due to their
limited ability to extract complex features. Deep learning models require a long training
time and are hard to interpret. This paper proposes a novel algorithm for load event
detection in smart homes based on wide and deep learning that combines the
convolutional neural network (CNN) and the soft-max regression (SMR). The deep
model extracts the power time series patterns and the wide model utilizes the
percentile information of the power time series. A randomized sparse backpropagation
(RSB) algorithm for weight filters is proposed to improve the robustness of the standard
wide-deep model. Compared to the standard wide-deep, pure CNN, and SMR models,
the hybrid wide-deep model powered by RSB demonstrates its superiority in terms of
accuracy, convergence speed, and robustness.

Keywords: index terms-event detection, event classification, non-intrusive load monitoring (NILM), smart home,
wide and deep learning, convolutional neural network, soft-max regression, backpropagation

INTRODUCTION

Event detection is a crucial technique in power systems to avoid emergencies, such as blackouts and
equipment impairments, through fault and disturbance detection (Ma et al., 2019). Due to the
importance of maintaining the stability and reliability of the power system, traditional research
focuses on system-side event detection which perceives extreme events using the high-frequency
phasor measurement unit (PMU) data (Biswal et al., 2016; Liu et al., 2019; Ma et al., 2020). As smart
meters become more accessible, many researchers focus on demand-side event detection that
monitors smart home activities using low-frequency data. Smart home activities occur when
homeowners switch on or off their appliances. These two events are significant because they
contain plenty of behavioral information about the homeowners. This information helps users
understand their electricity usage behaviors and reduce energy costs.
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Existing research in event detection can be divided into four
categories: rule-based, statistic-based, conventional machine
learning, and deep learning. For rule-based methods, (Shaw
and Jena, 2020), observes an event if the standard deviation
(std.) of the phase angle difference or the rate of change of
frequency (ROCOF) exceeds a given threshold. In (Pandey
et al., 2020), a physic-based rule is applied to classify active
power, reactive power, and fault events according to the cluster
change. For statistic-based methods, (Pandey et al., 2020), also
designs base event detectors using linear regression and
Chebyshev inequality, both of which require manually
specified thresholds. Subsequently, synchrophasor anomaly
detection is carried out by maximum likelihood estimation.
For conventional machine learning methods, the K-Nearest
Neighbor (KNN) approach is used for the feature selection
task that discovers typical characteristics of disturbance types
(Biswal et al., 2016). In (Mishra et al., 2015), the decision tree
algorithm is used for fault detection and classification in
microgrid protection based on 15 independent wavelet
coefficients. For deep-learning algorithms, (Wang et al., 2020),
indicates that GPU-based deep learning has been applied to solve
various problems in power systems including event classification,
NILM, and load forecasting. In their work, ROCOF and relative
angle shift are converted into images before being analyzed by
two CNNs. In (James et al., 2017), a deep neural network based on
Gated Recurrent Units and Discrete Wavelet Transform is used
for solving the microgrid fault detection problem. Li et al. (2021)
proposes a deep learning framework for load recognition based
on a deep-shallow model and a fast backpropagation algorithm.

The rule-based approach for event detection has lower model
complexity and requires less computation time (Shaw and Jena,
2020). However, it has three main disadvantages. First,
tremendous efforts are required for manual feature
engineering. Second, thresholds need to be carefully calibrated
based on human expertise. Third, rule-based models may not
adapt well to the new data. As for statistics-based or conventional
machine learning methods, although the training time is short
and the interpretability is good, the accuracy is inferior to deep
learning models caused by the complex feature under-fitting. The
performance of deep learning algorithms has significantly
surpassed the competitors from the conventional machine
learning field and other hand-crafted AI systems (Goodfellow
et al., 2016) partly because of their excellent automatic feature
extraction capability. However, training a deep learning model is
time-consuming and requires an intensive amount of
computational resources. Also, the inherent complexity of
deep models makes them elusive to interpret.

Therefore, by combining statistics-based methods,
conventional machine learning approaches, and deep learning
algorithms, a model can be created that is fast to train, easy to
interpret, and most importantly, possesses great generalization
ability. The Wide and Deep Learning (Cheng et al., 2016)
proposed by Google offers a solution to this task in that both
memorization and generalization are attenable by jointly training
a linear model and a deep neural network. The DeepFM model
(Guo et al., 2017) is proposed for recommendation systems in
which the deep model is used for feature learning and

recommendation is accomplished by the wide factorization
machine model.

This paper focuses on load event detection in smart homes. A
load event is defined as a sudden change of load caused by the
activities of users. The switch-on and switch-off events are two
common load events that happen in residential buildings. To
detect a load event, a wide-deep model is created based on the
idea of Wide and Deep Learning to jointly train a deep CNN and
a wide SMR for detecting the occurrence of an appliance switch-
on or switch-off event. The deep model uses the normalized
active and apparent power time series as inputs. The wide model
uses outputs from the deep model and the percentile
information of the power time series as inputs. To prevent
the model quality degradation problem in CNN caused by the
noisy, incomplete, and low-quality training data, the
randomized sparse backpropagation (RSB) algorithm for
weight filters is proposed to improve the robustness of the
standard wide-deep model. The pure CNN model, pure SMR
model, and KNN algorithm are compared with the standard
wide-deep model. And a hybrid wide-deep model with RSB
applied to the last convolution layer of the deep model is
compared with the standard wide-deep model.

This Paper Makes the Following
Contributions
1) The standard wide-deep model is proposed that combines

CNN and SMR to detect smart home appliance switch-on and
switch-off events. The proposed model has a faster
convergence speed and a higher accuracy compared to
pure CNN and SMR.

2) Percentile information of active and apparent power time
series is utilized by SMR to facilitate training and improve
interpretability.

3) The randomized sparse backpropagation algorithm for weight
filters is proposed to improve the robustness of the standard
wide-deep model and accelerate training by reducing the
number of multiplications.

This paper is organized as follows: Section 2 introduces the
proposed wide-deepmodel that combines CNN and SMR; Section 3
describes the RSB algorithm in detail; Section 4 describes how
training data is collected and compares the performance of the wide-
deepmodel (hybrid and standard), pure CNN, pure SMR, andKNN.
Section 5 summarizes the entire paper.

WIDE-DEEP MODEL

A wide-deep model that combines the statistics-based
method, conventional machine learning, and deep learning
is proposed for load event detection in smart homes, inspired
by Wide and Deep Learning (Cheng et al., 2016). The deep
model is a CNN that analyzes complex features of the active
and apparent power time series. The wide model is an SMR
that accepts CNN outputs and the percentile information of
the power time series as inputs before event detection. There
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are two kinds of detectable events in this work: switch-on and
switch-off events. Other than that, the model outputs a
null event.

Deep Model
Local connection, shared weights, pooling, and usage of multiple
layers are four remarkable characteristics of CNN (LeCun et al.,
2015). CNN is suitable for event detection tasks for three reasons:
First, local power time series data are highly correlated. Second,
the location invariance of load, e.g. switch-on events in a time
window show similar characteristics no matter when they
happen, makes it appropriate to use shared weights. Third,
composing lower-level features of the power time series to
obtain higher-level features greatly improves the model’s
analytical abilities.

Although recurrent neural networks (RNN) (Schuster and
Paliwal, 1997) are also suited for sequence processing, vanishing
and exploding gradients problems should be effectively addressed
(Hochreiter and Schmidhuber, 1997). Unlike hardware-accelerated
CNN that takes full advantage of graphical processing units (GPU),
RNN requires a much longer training time due to the necessity to
create a long chain of RNN cells. Stand-alone artificial neural
networks (ANN) ignore the correlation information in the time
domain which is crucial for time series data processing (James
et al., 2017). When the dataset is large and the dimension is high,
KNN becomes time-consuming because of the requirement for a
myriad of distance calculations. Above all, CNN is chosen by the
deepmodel for event detection. This is contrary to the original wide
and deep learning (Cheng et al., 2016) in which the deepmodel is a
pure ANN.

To fully exploit the automatic feature extraction ability of
CNN, input data should be properly pre-processed. For each
training sample, the input is a 2 × (T + 1) matrix, where T is the
length of the time window. In this paper, a 30-s time window is
used whichmakes T � 30. The first and second rows of the matrix
store the normalized active and apparent power time series. The
raw power time series are normalized in two steps: Firstly, define
either the active or apparent power time series as a vector p, the
series is normalized using the following min-max approach:

pm � p −min(p)
max(p) −min(p) (1)

Secondly, pm is further normalized by its mean and standard
deviation:

pn �
pm −mean(pm)

std(pm) (2)

Besides, the deep model focuses more on the relationships
among or the relative positions of the locally connected scalars in
the power time series rather than their actual magnitude, which
makes input normalization suitable for this scenario.

Although the shapes of active and apparent power time series
are highly correlated, using both for CNN training augments the
data set and may alleviate the over-fitting problem because power
factor difference among various appliances increases data
diversity. When training data are limited, CNN can be easily

down-scaled to a simpler one that only uses either the active or
apparent power time series as the inputs.

The CNN in this paper consists of three convolution layers
and one fully connected (FC) layer. The first convolution layer
has 24 filters, each filter has a height of 1 and a width of 9. The
second convolution layer has 48 filters, each filter has a height of 1
and a width of 7. The third convolution layer has 96 filters, each
filter has a height of 1 and a width of 5. The FC layer accepts
outputs from the third convolution layer and has an output
feature dimension of 60. The row and column strides for all filters
are 1. Normalization and leaky-relu activation function with a
slope of 0.01 on the negative side are applied to all convolution
and FC layers. Max-pooling is not used by the convolution layers
because it shrinks the length of the power time series and causes
information loss. Figure 1 shows the architecture of the
deep model.

Wide Model
The CNN-based deep model automatically extracts and analyzes
complex features from input data and shows great generalization
ability when given unforeseen data. However, CNN has
drawbacks in several aspects: First, training large CNN models
is time-consuming. Second, plenty of high-quality statistics, e.g.
mean, std., percentiles, etc., are submerged in the input data,
which makes CNN harder to converge. Third, deep models are
always difficult to interpret.

Therefore, a wide model based on SMR is designed to
compensate for the downsides of the deep model. The wide
model accepts outputs from the final FC layer of CNN,
collects percentile information of the active and apparent
power time series, and combines two parts of the data before
training the SMR for event detection using the cross-entropy loss
(Goodfellow et al., 2016).

The power time series percentile information is collected as
follows. Let p � (p1, p2, . . . , pT+1) be the active or apparent
power time series vector. Perform the one-step differentiation
to extract features of abrupt changes:

Δp � (p2 − p1, p3 − p2, . . . , pT+1 − pT) (3)

If p is stable, the mean of Δp is zero. When a switch-on event
occurs, there will be a positive scalar in Δp which is significantly

FIGURE 1 | Architecture of the deep model. Notes: Conv denotes
convolution; The blue cubic bars represent feature map tensors of CNN.
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larger than the rest due to the overall load increase. Likewise,
when a switch-off event happens, there will be a negative scalar in
Δpwhich is significantly lower than the rest because of the overall
load drops. If p is unstable, half of the scalars in Δp may be
positive while the rest are negative. Since the wide model is not
designed to process a large amount of data like the deep model,
only a part of scalars are chosen from Δp as the inputs. To extract
representative features, the 0th, 25th, 50th, 75th, and 100th

percentiles of Δp are selected to form a vector ρ:

ρ � (ρ0, ρ0.25, ρ0.5, ρ0.75, ρ1)
Pr(Δp≤ ρθ) � θ,Δp ∈ Δp
θ ∈ {0, 0.25, 0.5, 0.75, 1}

(4)

Where ρθ is the θth percentile of Δp. To prevent precision
overflow, ρ is normalized using the min-max approach:

ρm � ρ −min(ρ)
max(ρ) −min(ρ) (5)

Figure 2–4 offer diagrams of normalized percentiles for active
and apparent power time series considering switch-on, switch-
off, and null events. It can be observed that for the switch-on
event, the normalized 100th percentile is close to 1; for the switch-
off event, the normalized 0th percentile is close to -1; for the null
event, the normalized 0th percentile and 100th percentile tend to
be -1 and 1 respectively. These features are easily understood by
SMR which speeds up the model convergence.

Figure 5 shows the architecture of the wide model, where
ρactivem and ρapparentm are ρm calculated using the active and
apparent power time series. Notes that the wide model
degenerates into a pure SRM if CNN outputs are not used.

The training example of the wide model is a 3-dimension
one-hot vector, where (1, 0, 0)T represents a null event,
(0, 1, 0)T represents a switch-on event, and (0, 0, 1)T
represents a switch-off event. Since the cross-entropy loss
is utilized, each scalar in the SMR outputs describes the
probability of each event.

RANDOMIZED SPARSE
BACKPROPAGATION

Noisy, incomplete, or low-quality training data for event
detection hampers the CNN model quality. Inspired by the
drop-out regularization (Srivastava et al., 2014) that prevents
over co-adaptation by randomly disabling units and
connections, this work improves the robustness of the
standard wide-deep model, e.g. evading bad local minima
and alleviating over-fitting problems, by balancing
exploitation and exploration search. To speed up training,
the number of multiplications can be reduced by creating
sparsity in the feature map gradient tensors. This paper
proposes a randomized sparse backpropagation algorithm
that adds exploration search to the optimization process
and speeds up gradient calculations.

Symbol Definition
DefineN as the number of training data points; h as the training
data point index, h ∈ [1, N]; Lh as the loss function for the hth

training data point; R as the number of filters; r as the filter index,
r ∈ [1, R];Wr as the rth 3-D filter tensor; w as a scalar ofWr for a
certain input channel, w ∈ Wr; u, v as the row and column
indexes of w; rs, cs as the filter row and column strides;
zLh/zWr as the 3-D filter gradient tensor; Xh as the hth 3-D

FIGURE 2 | Normalized active and apparent power percentiles for a
typical switch-on event.

FIGURE 3 | Normalized active and apparent power percentiles for a
typical switch-off event.

FIGURE 4 | Normalized active and apparent power percentiles for a
typical null event.

FIGURE 5 | Architecture of the wide model.
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input tensor; x as a scalar ofXh in a certain input channel, x ∈ Xh;
Zh as the hth 3-D feature map tensor; Zh,r as the rth output
channel of Zh; P,Q as the height and width of Zh; z as a scalar of
Zh in the rth output channel, z ∈ Zh; zLh/zZh as the 3-D feature
map gradient tensor.

Randomized Sparse Backpropagation for
Weight Filters
∀w′ ∈zLh/zWr, ∃η≥ 0, such that the derivative of the loss
function Lh with respect to (w.r.t.) the filter scalar w is
defined as:

w′ � zLh

zw
� ∑P

i�1
∑Q
j�1
I(

∣∣∣∣∣∣∣∣
zLh

zzij

∣∣∣∣∣∣∣∣≥ η)
zLh

zzij

zzij
zw

� ∑P
i�1

∑Q
j�1

I(∣∣∣∣z′ij∣∣∣∣≥ η)z′ijxu+i·rs,v+j·cs (6)

If |z′ij|≥ η, the indicator function I � 1, otherwise I � 0. Notice
that every w inWr is independently assigned a random threshold
η that creates sparsity in zLh/zZh,r, h ∈ [1, N]. Figure 6 illustrates
the randomized sparse backpropagation process.

The degree to which exploration search is conducted varies
according to the random threshold η. When η � 0, the algorithm

FIGURE 6 | An example of the randomized sparse backpropagation for a filter. P � 3, Q � 3, u � 2, v � 2, rs � 1, cs � 1, N � 1.

FIGURE 7 | Determination of the random threshold η for w.
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becomes the standard backpropagation and involves no
exploration search. As η increases, the amount of the
exploration search increases because z′ij that has a smaller
magnitude is not involved in the gradient calculations. When
η becomes excessively large, w′ � 0 and w is not changed.
Therefore, every filter scalar w may be fully, partially, or not
updated. Besides, gradient calculations are accelerated due to the
sparsity in the feature map gradient tensors. As η increases from

zero, the number of multiplications in calculating w′ decreases
because the condition |z′ij|≥ η is less likely to be satisfied.

Determination of random threshold
The random threshold η for the filter scalar w is determined by the
percentile approach without using any hyperparameters. Since w is
involved in the calculation of N feature map matrixes
Zh,r, h ∈ [1,N] in the forward pass, w′ is related to N feature

FIGURE 8 | Training error and accuracy for the hybrid wide-deep model using the randomized sparse backpropagation.

FIGURE 9 | Training error and accuracy for the standard wide-deep model.

FIGURE 10 | Training error and accuracy for the deep model.
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map gradient matrixes zLh/zZh,r, h ∈ [1,N]. These matrixes are
firstly stacked into a 3-D tensor and then flattened to a vector.
Subsequently, the abs function is applied to the vector, and scalars in
the vector are sorted in ascending order. η is defined as the αth scalar
of the sorted vector, where α is a uniform random integer between 1
and N × P × Q. Figure 7 shows how η is determined for w.

Comparison to Related Works
The proposed RSB is inspired by (Wei et al., 2017) in which the top
k scalars in the feature map gradient tensors are used for updating
the filter tensors. However, the value of k has to be manually
defined, and each w does not have an independent η for weight
update. In (Ye et al., 2020), the pruning threshold is determined by
two hyperparameters: the pruning rate and the std. of the feature
map gradient tensors. (Wang and Nelaturu, 2019). offers a scaling
approach to approximate the filter gradient tensors.

In RSB, no manual intervention is required because no
hyperparameter is used. The exploration search that boosts the
robustness of the standard wide-deep model is fulfilled in three
aspects: First, each weight scalar w is assigned an independent
random threshold η. Second, η is generated as a random variable
using the percentile approach. Third, the filter gradient tensors
are not precisely calculated on purpose.

EXPERIMENT

Training Data Collection
The UK-DALE dataset (Kelly and Knottenbelt, 2015) is used
for all the experiments. Aggregated and appliance-level data

are utilized in UK-DALE from houses 1, 2, and 5. The
aggregated data has a sampling frequency of 1Hz and the
appliance-level data has a sampling frequency of 6Hz. Both
types of data include time series for active power, apparent
power, and root mean square (RMS) voltages. Due to the low
sampling frequency rate, the RMS voltage data are discarded
and only the active and apparent power time series are used
for training.

Since the UK-DALE dataset comes with a limited number
of appliance on-off labels. The event dataset is derived from
aggregated data with the help of the appliance-level data. Let
(7) be the apparent power time series kernel vector
extracted from the appliance-level data, where n is an
even number.

s � (s1, s2, . . . , sn/2, sn/2+1, . . . , sn) (7)

For a switch-on event, si � 0, sj ≥ β; for a switch-off event,
si ≥ β, sj � 0, where β is a pre-defined threshold and
i≤ n/2, j> n/2. After several trials, β � 8W, n � 10s are
chosen for the data collection and cleaning procedures.
When a switch-on or switch-off event is observed, the
event timestamp is obtained from the appliance-level data.
Then the active and apparent power time series with time
window length T � 30s are acquired by querying the
aggregated-level data using this timestamp. Since the null
events data are abundant, the event dataset is established
which includes 7,822 switch-on, 6,375 switch-off, and 7,102
null events. 90% of the data are used for training and 10% of
the data are used for testing.

Model Training
All hybrid wide-deep, standard wide-deep, pure CNN, and
pure SMR models are trained for 50 epochs and then
compared. In the hybrid wide-deep model, RSB is only
applied to its last convolution layer since the number of
filter scalars in the last layer greatly exceeds the ones in the
previous two layers. The pure SMR only accepts power time
series percentile information as inputs, while the pure CNN
does not utilize the percentile information. The experiments
are conducted on a workstation with an Intel i7-9750H CPU,

FIGURE 11 | Training error and accuracy for the wide model.

TABLE 1 | Model comparison.

Model Epoch Training error Max accuracy (%)

Hybrid 22 0.02528 97.45
Wide-deep 26 0.02600 97.45
Pure CNN 35 0.02613 97.16
Pure SMR 47 0.10527 90.43
KNN − − 93.46

Note: KNN is based on K�10; Bold font indicates best results.
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16 GB of RAM, and an NVIDIA RTX 2060 GPU. All the
algorithms are implemented using Java 11, C++ 17, and
CUDA 10.2. The performance is evaluated by the
convergence speed, training error, and test set accuracy.
Figure 8–11 offer training error and test set accuracy
diagrams for the hybrid wide-deep, standard wide-deep,
pure CNN, and pure SMR models. Table 1 shows the
epochs required and training errors when the maximum
accuracies are firstly attained. The accuracy of KNN is also
provided for comparison.

The experiments show that the hybrid wide-deep model
attains the best overall performance with the highest
accuracy, fastest convergence speed, and minimal training
error. Compared to the standard wide-deep model, the
hybrid wide-deep model required 15% fewer epochs to obtain
the max accuracy. Moreover, the accuracy curve is more stable
than the one in the standard wide-deep model. This suggests
that the exploration search incited by RSB speeds up
convergence and improves the robustness of the standard
wide-deep model. Compared to the pure CNN, the hybrid
wide-deep model requires 37% fewer epochs to obtain the
max accuracy, which demonstrates that the wide-deep model
indeed speeds up neural network training and improves the
accuracy by utilizing the power time series percentile
information. Compared to the pure SMR, the hybrid wide-
deep model requires 53% fewer epochs to obtain the max
accuracy which is over 7% higher than the one for pure
SMR. The pure SMR suffers from an under-fitting problem
that the training error is always above 0.1 and the accuracy is
inferior to KNN.

CONCLUSION

This paper proposes a wide-deep model for demand-side load
event detection. The deep model is a CNN that extracts complex

power time series features and the wide model is an SMR that
analyzes percentile information of the power time series. The RSB
algorithm for weight filters is proposed and applied to the last
convolution layer of the deep model to improve the robustness of
the standard wide-deep model. The hybrid wide-deep model has
the highest test set accuracy, fastest convergence speed, and great
robustness. Compared to the other models, the standard wide-
deep model has the same accuracy as the hybrid one with a
slightly slower convergence speed and more fluctuations in the
accuracy curve. The pure CNN has a satisfactory accuracy but
takes longer to converge. The pure SMR suffers from the
under-fitting problem due to model simplicity. KNN has a
medium accuracy but its classification time is long. In future
research, more high-frequency data can be collected from
smart homes to enable multi-task training, such as
appliance classification, for the wide-deep model that helps
homeowners better understand their electricity usage
behaviors. RNN related algorithms can be combined with
the wide-deep model to analyze more complex features. To
render more accurate load event detection results, a
multimodal deep learning framework can be created that
combines the wide-deep model with smart home video
processing systems (Li et al., 2019).
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