
Distributed Economic Optimal
Scheduling Scheme for
Ship-Integrated Energy System Based
on Load Prediction Algorithm
Yuxin Zhang1,2, Qihe Shan1,2*, Fei Teng3 and Tieshan Li4

1Navigation College, Dalian Maritime University, Dalian, China, 2Maritime Big Data and Artificial Intelligent Application Centre,
Dalian Maritime University, Dalian, China, 3Marine Electrical Engineering College, Dalian Maritime University, Dalian, China,
4School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

In order to enhance navigation safety and promote environmental protection, this paper
takes the problem of energy management in a ship-integrated energy system into
consideration. According to the characteristics of navigation, an intelligent ship energy
management model, simultaneously considering the social and economic benefits, has
been proposed. Meanwhile, this paper analyzes a distributed optimal scheduling problem
which considers renewable generation devices and an energy storage system. Combined
with an electricity-power system and thermal-power system, we propose an optimal
scheduling scheme to accurately meet the actual load demand based on the pre-results
analyzed by the ensemble learning short-term load forecasting algorithm. In addition, the
related stability analysis is given. Further, a series of simulation results have been
presented, which denote that the proposed load forecasting algorithm can accurately
analyze the short-term load demand trend, and the proposed optimization algorithm can
effectively coordinate economic and environmental protection.

Keywords: ship integrated energy system, energy management, renewable generation devices, load forecasting
algorithm, distributed optimal scheduling, ensemble learning algorithm

1 INTRODUCTION

As we know, a traditional generator which relies on fossil resources will be accompanied by a large amount
of greenhouse gases (Sun et al., 2019a; Li et al., 2020a). As one of the areas with the highest consumption of
fossil fuels, the shipping industry emits 3–5% of carbon dioxide into the earth every year (Rafiei et al., 2020).
In order to reduce the air pollution caused by the shipping industry, the International Maritime
Organization (IMO) has issued a series of strict regulations (Czermański et al., 2020), such as limiting
the energy efficiency operation index (EEOI) (Fang et al., 2019) and improving energy efficiency, etc. As a
new type of ship energy architecture, the ship-integrated energy system (S-IES) improves the utilization
efficiency of renewable energy and adjusts the utilization rate of energy, which embodies the deep
integration of information technology and energy characteristics. Therefore, with the continuous maturity
of intelligent technology (Peng and Wang, 2018; Liang et al., 2020; Li, J. et al., 2020), how to quickly and
accurately optimize the scheduling of the ship-integrated energy system, which is based on the concept of
sustainable development, has become a hot research topic.

With the continuous development of intelligent technology, its advanced concept has beenwidely used
in various fields (Ye et al., 2018; Liu et al., 2020; Wang et al., 2020; Zhang G. et al., 2020; Lei et al., 2021).
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Compared with the traditional ship energy system, to reduce fossil
energy consumption and pollution emissions, S-IES combines
photovoltaic units (PVs), wind turbine units (WTs) with diesel
generators (DGs), and combined heat and power generations
(CHPs) to form an energy supply system. In addition, unlike
traditional ships which rely on mechanical transmission to
provide power, ships based on S-IES are all electric ships (AES)
which rely on electric propulsion, further improving the
controllability and flexibility of ships. Nowadays, in order to
improve the rationality and reliability of the ship-integrated
energy system, it is essential to establish an optimal scheduling
mechanism model, which can accurately describe the whole voyage
state. A hybrid energy optimization management model with wind
turbines and energy storage equipment is proposed in Li et al.
(2020b), considering charging/discharging efficiency and EEOI
throughout the whole voyage, which takes the economic benefit
as the primary optimization objective to reduce the operation cost. In
order to improve the efficiency of energy utilization and ensure the
safe operation of power supply equipment, Kanellos et al. (2016)
proposes an energy optimization management model to guarantee
that the EEOI of ships in different sailing conditions can meet the
requirements of pollution emission limits proposed by IMO. Based
on the dual consideration of environmental benefits and economic
benefits, according to the actual situation of ship navigation, Wen
et al. (2021) proposes a joint optimal scheduling model which
considers the shore-side electricity system. At present, the
research of ship energy optimal management is mostly based on
the constraint of supply and demand balance, and is then used to
establish a dynamic relationship between the output power of
generators and the actual load demand. Thus, an efficient and
accurate load forecasting method is the key to improve the
reliability of ship energy optimization management.

According to fuel consumption information, meteorological
data, and hydrological information, etc., (Teng et al., 2020), based
on a broad learning system, proposes a load forecasting method,
which can reduce the negative impact of uncertainty in a complex
marine environment during navigation operation. Owing to the
new energy generators such as WTs and PVs, increasing the
uncertainty of the power system, a prediction intervals (PIs)
method based on a neural network is proposed to improve the
accuracy of load forecasting (Quan et al., 2014). However, the
short-term load of a ship has strong nonlinear variation
characteristics, i.e., the ship operation in different periods such
as departure, arrival, and cruise has quite different load demands.
Thus, the traditional method cannot accurately predict the short-
term load variation trend. In addition, in view of the actual
navigation operation, it is unable to obtain the above information
accurately and in a timely manner. Therefore, based on the actual
situation, there are still many challenges in ship short-term load
forecasting.

Owing to the above situations, we can transform the optimal
scheduling problem of the ship-integrated energy system into an
energy planning problem which contains a series of complex
navigation safety constraints. Considering the total lifecycle cost
of a hybrid electric propulsion ship and the storage performance
of the battery, an energy management model which can
effectively extend the service life of the ship is proposed in

Chen et al. (2020) which is based on the depth of the
discharge (DOD) constraint of the battery. Taking the
minimum fuel consumption as the optimization objective, a
power-flow-based energy management model considering a
battery energy storage system (BESS) is established in Balsamo
et al. (2020), which can improve energy efficiency and reduce
pollution emissions, completing ship energy optimal scheduling
simultaneously. Fang et al. (2020) presents an optimal
management model for all electric ships (AES), which can
consider both environmental and economic benefits. It can
ensure the navigation operation of the ship and reduce the
investment of additional equipment, e.g., ESS by increasing the
ship’s power system constraints. However, with the continuous
maturity of renewable-related technologies (Farrok et al., 2018),
more and more renewable energy supply equipment such as PV
units andWT units are connected to the S-IES, which increase the
penetration rate of green energy access gradually. And there are a
lot of “plug and play” load equipment, such as life load,
mechanical, etc. Owing to the above situations, the existing
optimization scheduling methods such as the dynamic
programming algorithm cannot meet the actual needs of S-IES
with strong distributed characteristics. Therefore, it is essential
for us to improve the computing speed of the distributed
algorithm while dealing with the performance of a ship energy
system.

Above all, based on the ship’s navigation characteristics, such as
carrying capacity, voyage, and velocity, combined with the constraints
of the electricity/thermal energy system, such as supply and demand
balance, ramping rate constraints, and energy energy-off constraints,
this paper proposes a distributed optimal scheduling method for the
ship-integrated energy system with load forecasting. The major
contributions of this paper are as follows.

1) This paper proposes a distributed ship-integrated energy system
with renewable generation devices and an energy storage system,
which can obtain environmental and economic benefits at the
same time. Combined with the characteristics of ship navigation,
such as safety-sailing, greenhouse emission, and the requirements
of electricity/thermal load during the whole voyage, we take the
lowest voyage operation cost as the primary optimization objective
to form a distributed energy optimization management model for
multi-energy ships, so as to realize the economic optimization
scheduling of the whole voyage.

2) In order to reduce the waste of fossil energy caused by
redundant capacity and improve the accuracy of load
response in a ship-integrated energy system, this paper
proposes an intelligent algorithm which can quickly and
accurately predict the load of navigation. In addition, for
improving the efficient and reasonable utilization of energy, a
distributed optimal scheduling algorithm for the ship-
integrated energy system is proposed as well, which can
guarantee safe and reliable navigation and quickly respond
to the actual demand of the load equipment simultaneously.

The remainder of this paper is organized as follows. In Section
2, we identify the main features and structures in the ship-
integrated energy system. Section 3 proposes an energy
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management scheme based on load forecasting. Section 4
presents a distributed economic optimal scheduling algorithm
for S-IES. According to the analysis of the example and
simulation results, the correctness of the proposed viewpoint is
fully proved in Section 5. Section 6 summarizes and concludes
the points from the paper.

2 STRUCTURE AND FEATURES IN S-IES

The intelligent ship-integrated energy system considered in this paper
can accurately predict short-term load demand according to historical
navigation information, and owing to the prediction data, combined
with the working characteristics of the ship, we can optimize the
energy output of the energy supply equipment. Figure 1 shows the
basic architecture of the S-IES. According toFigure 1, the S-IES can be
roughly divided into an energy supply system, load demand system,
energy conversion center, load forecasting center, and energy optimal
management center. An energy supply system provides electricity and
thermal power for the ship load to maintain normal operation during
different conditions; as an energy router, the energy conversion center
processes information flow and energy flow simultaneously, and
undertakes the task of mutual conversion of electricity and thermal

energy; based on navigation constraints and energy constraints, the
energy management center adopts a distributed intelligent algorithm
to analyze and calculate the energy optimal scheduling scheme in a
short period.

2.1 Velocity and Voyage Modeling
Ship navigation can be divided into three different operation
conditions, i.e., cruising, anchoring, and docking. Figure 2 is a
typical cross section of the ship, in which the voyage and velocity
range limits of the ship are indicated. As we know, in the course of
sailing, we can adjust the velocity within a certain range based on the
actual demand, but the ship must arrive at the ports or intermediate-
ports at the specified time. In addition, generally, the ship speed
depends on the propulsion power which has a certain relationship
with the resistance of sailing. If the propulsion power has a period of t,
the velocity Vt can be described as

Vt �
���
Lt
pr

pr1

pr2

√
(1)

where, pr1 is a nonnegative constant, which is related to the hull
form type, generally taken as 3 (Kanellos et al., 2014); pr2 is the
matching parameter of propulsion power and ship speed. Owing

FIGURE 1 | Basic structure of the integrated energy system on intelligent ships.
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to above situations, the mathematical expression of voyage and
velocity range limits are as follows, which is given in Feng et al.
(2018).

(1 − σ) · Vt
n ≤V

t ≤ (1 + σ) · Vt
n (2)

Distt � Distt−1 + Vt · Δt, t> 1
Vt · Δt, t � 1

{ (3)

where, Vnt denotes the ship speed at t; σ represents the interval
coefficient of ship speed;Distt−1,Distt represent the voyage at a period
of t − 1 and t, respectively; Δt represents the specified time interval.

2.2 Energy Supply System Modeling
As mentioned before, in order to improve the environmental
friendliness of the ship, we integrate PVs and CHPs into the
S-IES. In addition, owing to the high-power ramps and the
intermittency caused by renewable energy equipment, a
battery energy storage system (BESS) has been considered in
the ship to ensure the stability of power output.

1) CHP System Modeling: With the improvement of energy
saving and efficiency awareness, CHP, as the preferred
equipment which can reduce consumption and increase
efficiency, has been widely applied. CHP can utilize the
after-heat generated by power generation to other heating
loads, such as fuel preheating, etc. It has been considered as
the most energy-saving method for power generation, thus
CHP has a tendency to be installed on intelligent ships. The
operation cost function of CHP, containing fuel
consumption, has been modeled as the following convex
function in Sun et al. (2019b).

C PCHP
t ,HCHP

t( ) � ∑n
i�1

ai,1 · PCHP
i,t( )2 + ai,2 · PCHP

i,t +
bi,1 · HCHP

i,t( )2 + bi,2 ·HCHP
i,t + ci · PCHP

i,t ·HCHP
i,t( ) + κ

(4)

where, n is the number of CHPs; PCHP
i,t denotes the electrical

output of the ith CHP at the period of t; HCHP
i,t represents the

heating output of theithCHP at the period of t; ai,1, ai,2, bi,1, bi,2, ci,
and κ are the operating cost parameters of the ith CHP.

2) PV Modeling: In order to improve the efficiency of energy
utilization and reduce the pollution emissions during the
sailing voyage, PV units have been integrated in the S-IES.
In addition, the production capacity of a PV panel is not only
related to the strength of illumination, degree of angle and
panel area, but also related to the ship route and deck
inclination angle because of the ship characteristics. Owing
to these situations, Long et al. (2020) and Wen et al. (2020)
present a mathematical model which can describe the capacity
of PV units on ships appropriately.

PPV
t � ∑m

i�1
ηPVi · AreaPVi · IPVt · εPVi,t

ηPVi � ηPVref · ηMPPT 1 − β Ti,PV − TPV−ref( )[ ]
εPVi,t � cosθi,t + μi,1cos ϕt/2( )2 + μi,2sin ϕt/2( )2 (5)

where, PPV denotes the power output of PV; ηPV, ηPVref represent
the efficiency and reference efficiency of photovoltaic panels,
respectively; AreaPV denotes the PV panel area; the radiation
intensity can be described as IPV; ηMPPT represents the tracking
efficiency; TPV, TPV−ref denote the temperature and reference
temperature of PV panels, respectively; the angle between PV
panels and radiation can be used as θ; ϕ is the tilt angle; μ1 and μ2
denote the angle parameters.

3) BESS Modeling: Considering that there are many factors
affecting solar energy, taking PV units into the energy
system directly will lead to S-IES volatility. In addition, the
ship energy system will be unstable influenced by the
operation of high-load equipment and sudden speed-
adjusting. Owing to the above situations, we integrate BESS
into the S-IES as additional energy supply generation which
can share the pressure with the other device (Gangatharan
et al., 2020). The model of charging and discharging can be
expressed as follows (Zhang, Y. et al., 2020).

FIGURE 2 | Typical cross section of a sailing voyage with velocity limitation.
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ESS
t � ESS

t−1 + PESS
t · Δt, t> 1

Einitial + PESS
t · Δt, t � 1

{
SoCESS

t � ESS
t /Cap

SoCESS
t−1 + PESS

t · ηcht ≤ SoCESS
max

SoCESS
t−1 − PESS

t /ηdist ≥ SoCESS
min

(6)

where, PESS
t is the power outputs of BESS; ESS

t , ESS
t−1 denote the

capacity of BESS during the period of t and t − 1, respectively;
SoCESS

t , SoCESS
t−1 represent the state of charge during the period of t

and t − 1; Cap is the fixed capacity; ηdist , ηcht are the efficiency of
discharging and charging, respectively.

3 OPTIMAL ENERGY DISPATCH SCHEME
AND LOAD FORECASTING ON THE S-IES

Energy supply side of the S-IES proposed in this paper consists of
PVs, CHPs, and BESS. According to the value of load prediction,
the energy management center can obtain an optimal scheduling
scheme within sailing constraints. Assume that the S-IES contains
n-CHPs, m-PVs, a BESS, and other load equipment, such as
service load, propulsion load, mechanical load, etc.

3.1 Load Forecasting Algorithm
In order to realize the optimal scheduling of the S-IES, we need to
know the short-term load-demand information in a timely
manner. Therefore, we need to use the relevance of specific
routes to make a predictive analysis of the load-demand
information, and make a reliable prediction of the trend of
ship load demand. A deep learning algorithm can collect
feature information from ship historical load data through
multiple hidden layers, but it is easy to fall into a
local optimal solution and other problems to some extent

(Zhang, J. et al., 2020; Wang et al., 2021). In order to solve the
above contradictory problems, the ensemble learning theory,
containing the Bagging method and Bossting method which are
two popular algorithms based on resampling for load prediction
problems Feng et al. (2018) has received widespread consideration
because of its excellent performance in numerical prediction
situations. Therefore, this paper proposes a ship short-term load
forecasting algorithmbased on ensemble learning; the basic structure
and framework can be seen in Figure 3.

Considering the proposed load prediction algorithm, the historical
load data set can be arranged as XT, firstly. And then, we can obtain
the load data subsets Xl by resampling which needs to ensure the
samples are not related (i.e., the factors within it without any repeated
data), where l � 1, 2, . . ., L. It is worth noting that in the process of
sampling and resampling for historical ship load, the time dependence
of load data sets should be guaranteed at all times. In addition, for
increasing the accuracy and reliability of the proposed algorithm, this
paper utilizes Moving Block Bootstrap (MBB) during the process of
resampling. Suppose load data subset Xl has H load data factors and
samples H − lX + 1 times continuously and repeatedly, where lX
denotes the length of resampling load data subsets. Then, the sampling
process of ship historical load data at this time can be seen in Figure 4
and Table 1, the resampling load data subsets can be represented as
follows.

Xl � xl
1, x

l
2, . . . , x

l
H−lX+1( ), l � 1, 2, . . . , L (7)

According to the ship-load forecasting problem, we need to repeat the
above processes L times to obtain the independent load data training
subset X � [X1, X2, . . ., XL]. f1

l (·), f2
l (·), fH−lX+1

l (·) are the
corresponding predicted models which can be regarded as weak
predictors as well. Owing to the above models, we can calculate a
set of ship-load forecasting values. In addition, there are L (H − lX + 1)

FIGURE 3 | Structure of load forecasting algorithm.
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predicted models, and we can obtain the corresponding forecasting
ship-load values by them. Thus, according to the proposed ship short-
term load forecasting algorithm, the final predicted ship-load value
can be analyzed by a constructed stronger predictionmodel which can
add them up and take an average. Mathematical expression about the
final forecasting short-term ship load LoadPrel can be represented as
follows.

LoadPre
l � ∑L

l�1f
1
l x1

l( ) + f2
l x2

l( ) +/ + fH−lX+1
l xH−lX+1

l( )
L H − lX + 1( ) (8)

3.2 Optimal Energy Dispatch Scheduling
Scheme
3.2.1 Optimal Goal Function
The S-IES proposed in this paper considers the environmental
and economic benefits comprehensively. And proposes an
optimal management mechanism which takes the lowest
operation cost as the primary optimization objective, to meet
the various load-demand constraints during different working
conditions such as berthing and cruising. Owing to the
generation equipment installed in the ship, in this paper, the
objective function can be separated into three parts which
contain the CHPs-cost, PVs-cost, and excitation parameters
of BESS. The mathematical model can be represented as the
following form.

min CCHP + CPV + YBESS{ }
CCHP � ∑NT

t�1
C PCHP

t ,HCHP
t( )

CPV � ∑NT

t�1
∑m
j�1

dj,1 · PPV
j,t( )2 + dj,0

YBESS � c0 · PBESS
t

(9)

where, CCHP, CPV are the operation cost of CHPs and PVs; NT

denotes the sum of time slots; dj,1, dj,0 are the operating
parameters of PVs;c0 denotes the influence factor; YBESS can
be expressed as a penalty coefficient which can enhance the
participation of BESS and improve the energy efficiency.

Remark. Since the above mentioned equipment has a longer
service life, we assume that they have little loss during the energy
optimizationmanagement scheduling in the single sailing voyage.
Therefore, the cost of equipment maintenance does not need to
be considered in the optimization objective function.

3.2.2 Constraints
Considering the particularity of ship sailing voyages, this paper
does not only consider the conventional constraints in energy
management such as the power balance constraint and power
output constraint, but also the navigation constraints Eqs 1-3,
interruption of electricity/heating constraint, ramping-rate
constraint, and energy efficiency operation index (EEOI)
constraints. The specific descriptions are as follows.

1) Electricity/Heating Power Balance Constraints: In order to ensure
the normal operation of all load equipment such as the propulsion
system and service load, we need to guarantee that the sum of the
electrical power output of CHPs, PVs, and ESS matches the
electrical load, and the thermal power output of CHPs can
meet the thermal-load demand. In addition, the energy
conversion center undertakes the mutual conversion of
electricity and heating power, i.e., when the thermal output
cannot meet the load demand, the electric energy could be
converted into thermal power as an additional heating supplier
to ensure the normal operation of heating-load equipment. We
can express the balance constraints as the following.

∑n
i�1

PCHP
i,t +∑m

j�1
PPV
j,t + PESS

t � LP,t + ΔLP,t

∑n
i�1

HCHP
i,t + ΔLH,t � LH,t,ΔLH,t � ηEXΔLP,t

(10)

where, LP,t, LH,t represent the electricity and thermal load value at
the period of t, respectively; ηEX is the conversion efficiency
parameter; ΔLP,t denotes the conversion of electricity into

FIGURE 4 | Structure of resampling ship-load subsets with MBB.

TABLE 1 | Ship load forecasting algorithm.

Process of ship electricity/thermal-load prediction

Step 1: Summarize the historical data information of ship electricity/thermal load
as XT

Step 2: Intercept the historical load data set XT with Lth, randomly. XT � {X1, Xi,2,
. . ., XL}
Step 3: Resample Xl, l � 1, 2, . . ., L with MBB.
Step 4: Establish weak predictors
Step 5: Obtain corresponding pre-load by weak predictors with Xl for L (H − lX + 1)
times
Step 6: Calculate the final forecasting ship load
Step 7: End
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thermal load value; ΔLH,t is the thermal power supplied by
electricity generators.

Remark. When BESS is discharging as a power supply
equipment, PESS

t has a positive value; on the contrary, when
BESS is charging as a load equipment, PESS

t has a negative value.
In addition, the value of short-term load-demand prediction can
be obtained by the load forecasting algorithm proposed in this
paper through the analysis and calculation of historical sailing
data information.

2) Power Outputs Constraints: It is noted that we should ensure
the reliable and safe working conditions of the power-supply
equipment during the whole sailing voyage. Therefore, it is
essential to restrict its output power to improve the safety of
the energy management model in the S-IES. In this paper,
combined with the actual ship situations, the minimum and
maximum limits on the power outputs of each equipment are
as follows.

PCHP
i,min ≤P

CHP
i,t ≤PCHP

i,max,H
CHP
i,min ≤H

CHP
i,t ≤HCHP

i,max

PPV
j,min ≤PPV

j,t ≤P
PV
j,max, P

BESS
min ≤PBESS

t ≤PBESS
max

(11)

where, PCHP
i,max, P

PV
j,max, P

BESS
max are the maximal electricity power

outputs of CHPs, PVs, and BESS, respectively; PCHP
i,min , P

PV
j,min, P

BESS
min

denote the minimum electricity power outputs working state of
CHPs, PVs, and BESS, respectively;HCHP

i,max H
CHP
i,min are the maximal

and minimal thermal power outputs value of CHPs. In addition,
PCHP
i,max, P

PV
j,max, P

BESS
max , P

CHP
i,min , P

PV
j,min, H

CHP
i,max, H

CHP
i,min are positive

constants and PBESS
min is a negative constant determined by the

operating performance of each equipment.

3) Electricity and Thermal Power-off Constraints: Considering
the difference between the traditional power system, the S-IES
should ensure that the critical equipment operates normally
during the whole voyage owing to the navigation
characteristics. Based on the consideration of ship safety,
we take the restriction of electricity and thermal power
output as an additional constraint, i.e., the anti-power-off
constraint. The mathematical model is as follows.

LP,M ≤ ∑n
i�1

PCHP
i,max +∑m

j�1
PPV
j,max + PBESS

max −max PCHP
i,max, P

PV
j,max, P

BESS
max{ }

LH,M ≤ ∑n
i�1

HCHP
i,max + ΔLH,max −max HCHP

i,max,ΔLH,max{ }
(12)

According to Eq. 10, we can confirm that the electricity/thermal
power canmeet themust-run load demandwhile the highest capacity
equipment breaks down suddenly. LP,M is the must-run electricity
load such as a propulsion system, communication and navigation
equipment; LH,M is the must-run thermal load such as fuel preheating
equipment;ΔLH,max denotes themaximal thermal power generated by
the electricity power conversion. Owing to Eq. 12, we can ensure that
must-run load devices such as communication equipment, propulsion
system, can maintain normal operation when the highest capacity
generator breaks down.

4) EEOI Constraints: EEOI, as a crucial detection parameter, is
essential to evaluate the greenhouse gas emissions during ship
navigation. Therefore, in order to improve the environmental
protection of sailing operation, the EEOI constraint is added in
this paper to ensure that the pollution emission of each navigation
period is lower than the preset value. Themathematical equation on
the EEOI constraint (Kanellos, 2014) can be expressed as follows.

EEOI1 � CO2

MLoad ·Dist

�
∑n

i�1 c2,i · PCHP
i,t( )2 + c1,i · PCHP

i,t + c0,i( )
MLoad ·Dist

where, EEOI1 is the ship index during sailing;CO2 denotes the value of
carbon dioxide emissions;MLoadmeans the ship carrying capacity; c2,i,
c1,i, and c0,i are the coefficients between power outputs and greenhouse
gas emission. It is noted that the carbon emission function is a
quadratic convex, therefore, this paper enlarges the molecular part to
obtain a better form of calculation, i.e.,

EEOI1 ≤
∑n

i�1 d2,i · PCHP
i,t + d0,i( )

MLoad ·Dist
≤EEOISet (13)

4 DISTRIBUTED ECONOMIC OPTIMAL
SCHEDULING SCHEME ON THE S-IES

Owing to the energy system considered, this paper installed a
large number of new energy equipment, so the system has strong
distributed characteristics. In addition, the energy system and
communication network have been integrated in the system with
the power outputs and load-demand information transmitted
among the devices. Based on the above situations, this paper
proposes a distributed economic optimal scheduling scheme for

TABLE 2 | Operation cost parameters of 3-CHPs and 4-PVs.

ai,1, $/MW2 ai,2, $/MW bi,1, $/MW2 bi,2, $/MW ci, $/MW2 κ, $

CHP-1 250 2000 200 1500 150 20
CHP-2 200 1900 210 1800 200 20
CHP-3 200 1900 210 1800 200 20

di,1, $/MW2 di,0, $ di,1, $/MW2 di,0,$

PV-1 300 29 PV-3 210 10
PV-2 291 19 PV-4 210 10
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the S-IES, which ensures the system can meet the load demand
and obtain the minimal system operation cost, as well.

4.1 Graph Theory Infrastructure
In this paper, V � {1, 2, . . ., N} is regarded as a set of nodes in the
system, and the edge set can be expressed as E4 V × V. Therefore,
based on the edge set and node set, the communication topology in
the system can be expressed as Ξ � (V, E). If node i and node j are
neighbors to each other, thenwe can describe the neighbor node set of
i as Nij � {j4 V|(Vi, Vj)4 E} (Ma et al., 2021). And the connection
weight between two nodes can be expressed as ωij, which should
ensure that ωij > 0 when two nodes are neighbors; ωij � 0 when there
is no communication between two nodes. If the communication
structure Ξ considered in this paper is undirected and connected,
i.e., there is a path between any two nodes then ωij � ωji.

RemarkAccording to the above theory, we can obtain that∑N
j�1ωij � 1 and ∑N

i�1ωji � 1. It is noted that the graph theory
influences the device connection weight during the period of
information exchange. When devices are connected to each other,
their connection weight is greater than zero. On the contrary, the
connection weight is zero when the devices are not connected, which
means they cannot exchange their state information (power-outputs,
operation error, Lagrangemultipliers, etc.) to each other. In this paper,
we assume that ωij � 1

|Ni|+|Nij |+ρ when i ≠ j and ωij � 1 − 1
|Ni |+|Nij |+ρ

when i � j, which is influenced by the number of itself and its
neighboring two parts, where |Ni| denotes the number of energy-
suppliers; |Nij| is the neighbors’ number of node i; ρ is a minimal
positive constant which ensures the denominator cannot be zero.

4.2 Problem Statement and Distributed
Optimization Algorithm
The optimal schedulingmodel on the S-IESmentioned above is based
on the balance of supply and demand which establishes the
relationship between economic benefits and ship operation
constraints. Generally, the optimal scheduling in this paper can be
described as a problem onmin{CCHP + CPV + YBESS}. The alternating
directionmethod ofmultipliers algorithm (ADMM) could be used for
energy management problems with large-scale constraints, and it is
decomposable, as well (Zhang et al., 2017). Therefore, this paper
proposes a distributed economic optimal scheduling scheme based on
ADMM, which will be introduced from three aspects, i.e., problem
transformation, optimizing the iterative process, and convergence
judgment.

4.2.1 Problem Transformation
Owing to the fact that the ADMM algorithm cannot deal with the
optimal scheduling problem with inequality constraints (Falsone
et al., 2021), this paper introduces relaxation variables S � {S1, . . .,
Sm} in the energy management. Thus, inequality constraints can
be changed into equality constraints as HQ � L, where Q � {P1,
. . ., Pn, S1, . . ., Sm}.

4.2.2 Optimizing the Iterative Process
Based on the distributed communication structure, the proposed
algorithm will optimize the power outputs of power-supply
equipment, equipment operation errors, and the Lagrange
multipliers. The K + 1th iteration expression about the above

FIGURE 5 | Physical topology and information communication topology in the S-IES.

TABLE 3 | Error comparison between NN and proposed forecasting algorithm based on 200 sets.

A-MAE (kW) A-MSE A-RMSE Total
absolute error (MW)

NN algorithm 11.0 0.0013 0.0276 77.9738
Proposed algorithm 10.8 0.0012 0.0271 77.2005
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variables are as follows, where c denotes the step size; Ad is the
parameter of the coupling constraint; ΔQK represents the
operation error.

Qk+1 ∈ arg min
Q∈Ω

C(Q) + Wμk( )TAdQ + c

2
‖AdQ − AdQk +WΔQk‖2{ }

ΔQk+1 � WΔQk + AdQk+1 − AdQk

μk+1 � Wμk + cΔQk+1
(14)

4.2.3 Convergence Judgment
It is noted that the objective function C considered in this paper is
convex and the set Q is convex and compact. In addition, we
assume that we can find at least one existing saddle point in the
above optimal scheduling problem. According to the above
assumptions, we find that the sequences of {ΔQk − Δ �Qk},
{μk − �μk}, {Qk}, and {AdQk − Δ �Qk} are all bounded. In addition,

lim
k→∞

ΔQk − Δ �Qk{ } � 0

lim
k→∞

μk − �μk{ } � 0

lim
k→∞

Δ �Qk{ } � 0

Thus, we find that the sequence
{‖�μk − μ*‖2 + c2‖AdQk − AdQ* − Δ �Qk‖2}k≥ 0 is convergent,
where Q* and μ* are the optimal solutions of Q and μ.

5 CASE STUDY

According to the simulation experimental information of the
short-term load forecasting algorithm introduced in Section 3.1,
this chapter will optimize the scheduling of the S-IES based on the
proposed distributed optimal economic scheme, and verify the
effectiveness according to the simulation experimental results.

5.1 Introduction to the Simulation System
This chapter considers a simulation system which contains 3-
CHPs, 4-PVs, and a BESS. According to the short-term load
forecasting algorithm and the distributed optimization
scheme, generation units (i.e., CHPs, PVs, BESS) will
provide energy to the electricity-power network and the
thermal-power network to meet the load demand. In
addition, each device can exchange power information with
their neighbors. The physical and information topology on

TABLE 4 | Parameters of electricity/thermal power outputs and initial value.

E-min, MW E-max, MW T-min, MW T-max, MW Initialvalue, MW

CHP-1 6 20 3 15 6/3
CHP-2 6 20 3 15 6/3
CHP-3 6 20 3 10 6/3
PV-1 5 10 — — 5/-
PV-2 5 10 — — 5/-
PV-3 5 10 — — 5/-
PV-4 5 10 — — 5/-
BESS −10 10 — — 0/-

FIGURE 6 | Load forecasting trajectory of electricity power.
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electricity/thermal power can be seen in Figure 5. The
operation cost parameters are shown in Table 2.

5.2 Analysis on Simulation Results
5.2.1 Ship-Load Forecasting Algorithm Analysis
Based on the data samples of historical ship load, the algorithm
intercepts the data repeatedly first, which obtains the ship-load

resampling subsets. According to the above load data sets, training
networks (i.e., weak predictormodels) based on BPNN are established
in the case study. Meanwhile, the corresponding predicted ship load
can be calculated, and then we can obtain the final forecasting ship-
load value by the stronger predictor which adds them up and takes an
average of them. According to the above process, we can increase the
weight of the weak predictor with a smaller load forecasting error and

FIGURE 7 | Electricity-power outputs error on generators.

FIGURE 8 | Thermal-power outputs error on generators.
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reduce the weight of the weak predictor with a large load
forecasting error.

This paper selects the historical electricity/thermal load data from
the intelligent ship during thewhole sailing voyage (Teng et al., 2020)
to analyze the short-term load forecasting model. According to the
proposed algorithm, the output trajectory of ship-load forecasting
results can be obtained by simulation which is shown in Figure 6. It

can be seen from the figure that the two curves of load forecasting
trajectory and real load trajectory have obvious similarity. In
addition, this paper takes the NN method for load forecasting as
a comparative algorithm. Owing to the simulation, Figure 6 and the
error comparison inTable 3 can verity that the proposed short-term
ship-load forecasting algorithm can accurately predict the trend of
ship-load demand for the S-IES.

FIGURE 9 | Electricity-power outputs on generators.

FIGURE 10 | Thermal-power outputs on generators.
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5.2.2 Distributed Energy Management Scheduling
Analysis
Based on the above simulation system, we carry out two optimal
scheduling simulations according to the load forecasting value. The
virtual electricity-power load demand are 40 and 35MW; the virtual
thermal-power load demand are 10 and 15MW, which have been
predicted by the load forecasting algorithm mentioned above. The
parameters of electricity/thermal power outputs and initial value can
be seen in Table 4.

According to the above virtual load, based on the proposed
distributed economic optimal scheduling algorithm, the
optimal scheduling scheme of each piece of equipment
under the power balance constraints, ship navigation
constraints, and equipment safety constraints
[i.e., (8)–(11)] is solved which satisfies the electricity/
thermal load demand and the constraints of BESS. In this
example, in order to meet the electricity/thermal load
demand, the relevant generation units need to adjust their
output power to cope with the change of load demand.
Figure 7 is the trajectory of the electricity-power outputs
error, and the thermal-power outputs error is shown in
Figure 8. According to the above two figures, it is noted
that after 60 optimization iterations, the total power outputs
of the system satisfy the first virtual load scheduling goal and
after 100 optimization iterations, the system meets the second
virtual load scheduling goal.

The electricity-power and thermal-power outputs trajectories
can be seen in Figures 9, 10. According to the curves of total
power outputs, it is noted that the optimization scheme analyzed
by the proposed algorithm can deal with the energy management
problem based on the S-IES, effectively. The power outputs have
little fluctuation, which can meet the demand of electricity load
and thermal load in a timely manner. The optimal scheduling
scheme based on twice virtual electricity/thermal load energy
management can be seen in Table 5.

According to the above results, BESS is in the charging
state during the twice optimal scheduling, and the total power
outputs of renewable energy equipment, i.e., 4-PVs, are
significantly higher than that of traditional fuel energy
supply equipment, i.e., 3CHPs. Therefore, it can be proved
that the optimal scheduling scheme based on the
optimization method proposed in this paper can effectively

improve the environmental benefits of the ship-integrated
energy system, which can reduce the greenhouse gas emission
during the sailing voyage as well.

It can be seen from the above results that under the reasonable
scheduling strategy, the S-IES could achieve the coordination and
optimization of multiple energy sources, and significantly
improve the flexibility and economic efficiency of the energy
system on an intelligent ship.

6 CONCLUSION

In this paper, an integrated energy system in an intelligent ship,
considering the characteristics of the electricity-power system
and thermal-power system, has been constructed, which
improves the utilization efficiency of energy and reduces
greenhouse gas emissions. Simultaneously, this paper presents
a short-term load forecasting method based on an ensemble
learning algorithm, which can quickly and accurately predict
the load demand during the whole voyage. In addition, for
ensuring reliable and stable navigation, this paper proposes a
distributed optimal scheduling scheme, which can deal with the
problem of energy management in the S-IES suitably. It is noted
that the distributed scheduling scheme proposed in this paper can
obtain the social benefits and ensure safe sailing synchronously,
which can be proved by the simulation results. In future, for
promoting the intellectualization of the maritime industry,
volatility and disturbance factors will be further analyzed.
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