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The optimal operation of multi-energy systems requires optimization models that are
accurate and computationally efficient. In practice, models are mostly generated manually.
However, manual model generation is time-consuming, and model quality depends on the
expertise of the modeler. Thus, reliable and automated model generation is highly
desirable. Automated data-driven model generation seems promising due to the
increasing availability of measurement data from cheap sensors and data storage.
Here, we propose the method AutoMoG3D (Automated Model Generation) to
decrease the effort for data-driven generation of computationally efficient models while
retaining high model quality. AutoMoG3D automatically yields Mixed-Integer Linear
Programming models of multi-energy systems enabling efficient operational
optimization to global optimality using established solvers. For each component,
AutoMoG3D performs a piecewise-affine regression using hinging-hyperplane trees.
Thereby, components can be modeled with an arbitrary number of independent
variables. AutoMoG3D iteratively increases the number of affine regions. Thereby,
AutoMoG3D balances the errors caused by each component in the overall model of
the multi-energy system. AutoMoG3D is applied to model a real-world pump system.
Here, AutoMoG3D drastically decreases the effort for data-driven model generation and
provides an accurate and computationally efficient optimization model.

Keywords: data-driven modeling, regression analysis, piecewise affine, mixed-integer linear programming, hinging
hyperplanes

1 INTRODUCTION

Multi-energy systems are regarded as key element of future sustainable energy systems since they can
efficiently integrate the conversion of several energy inputs and outputs (Mancarella et al., 2016; Guelpa
et al., 2019; Moretti et al., 2020). For this purpose, multi-energy systems usually consist of many
components. Due to the resulting complexity, the optimal design and operation of multi-energy
systems are best addressed by optimization models (Mancarella, 2014; Andiappan, 2017; Thie et al.,
2020). Optimization models represent the input-output relationship of each component to capture its
operation. For practical use, the optimizationmodel has to be sufficiently accurate (Welsch et al., 2014).

For operational optimization, the model will usually be solved repeatedly to reflect changes in
demands, resource availability, or prices (Wang et al., 2015). Thus, the model has to be not only
sufficiently accurate but also computationally efficient.
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Accuracy and computational efficiency of the multi-energy
system model result from model generation. Today, models of
multi-energy systems are commonly generated manually. To
model multi-energy systems, measured data can often be used.
Measured data is increasingly available for multi-energy systems,
e.g., due to the implementation of energy management systems
according to ISO 50001:2018 (2018). Still, model generation
requires high effort and, therefore, is time-consuming (Bonvin
et al., 2016).

To decrease the effort for model generation, methods for
automated data-driven modeling have been proposed. Cozad
et al. (2014) and Wilson and Sahinidis (2017) developed
ALAMO for Automated Learning of Algebraic MOdels.
ALAMO derives algebraic models from measured data or
simulations. For an overview of data-driven modeling, the
reader is referred to McBride and Sundmacher (2019).

However, the data-driven models are in general nonlinear.
Thus, the subsequent optimization problem is usually a Mixed-
Integer Nonlinear Program (MINLP). In practice, MINLPs are
still challenging to solve to global optimality (Mitsos et al., 2018).
Thus, for multi-energy systems, nonlinear input-output
relationships of components are often approximated by
piecewise-affine models leading to Mixed-Integer Linear
Programs (MILPs) (Voll et al., 2013; Zhang et al., 2016).
Optimization problems of multi-energy systems are often
formulated as MILPs because MILPs enable finding the global
optimum with established solvers (Kantor et al., 2020).

The efficient generation of accurate and computationally
efficient piecewise-affine models yields in general complex
MINLPs itself and is therefore an active field of research.
Recently, Kong and Maravelias (2020) and Rebennack and
Krasko (2020) formulate MILP approaches for continuous
piecewise-affine regression. These MILP approaches derive
univariate continuous piecewise-affine models from measured
data. While these approaches overcome the MINLP problem,
they do not reflect the complex structure of multi-energy systems.
For this purpose, some of the present authors proposed the
AutoMoG method to provide MILP optimization models of
multi-energy systems from measured data (Kämper et al.,
2021). AutoMoG also represents the components of the multi-
energy system by univariate continuous piecewise-affine models.
In contrast to common practice, AutoMoG does not model each
component independently, which may lead to an unnecessarily
complicated model of the overall multi-energy system. Instead,
AutoMoG balances the errors caused by the model of each
component in the overall multi-energy system model.

However, the described approaches are restricted to multi-
energy systems that contain components with one independent
variable, e.g., the heat output of a boiler solely depends on its fuel
input. In general, the input-output relationship of a component
depends on multiple independent variables, e.g., the power
consumption of a pump depends on its rotational speed and
volumetric flow rate. Another typical component in energy
systems is a combined-heat-and-power (CHP) plant. The heat
output of a CHP plant that consists of a gas turbine and post-
firing depends on the heat output of the gas turbine and the gas
input of the post-firing (Bischi et al., 2014). Deriving these input-

output relationships from measured data leads to
multidimensional piecewise-affine regression problems.

Various approaches generate multidimensional piecewise-
affine models that are suitable for MILP optimization.
Fischetti and Jo (2018) and Grimstad and Andersson (2019)
showed that deep neural networks with rectified linear units as
activation functions can be formulated asMILPmodels. Thus, the
deep neural networks can approximate a nonlinear model with
arbitrary accuracy and then be embedded in a subsequent MILP
optimization (Katz et al., 2020). However, efficiently embedding
deep neural networks in MILPs is challenging, and thus, an active
field of research (Anderson et al., 2020).

Recently, Obermeier et al. (2021) proposed two approaches to
generate multidimensional piecewise-affine models from
measured data. Both approaches create a mesh using all data
points with Delauney triangulation (Barber et al., 1996). The first
approach IMRed (Iterative Mesh Reduction) iteratively reduces
the complexity of the created mesh by contracting the edges of
this mesh. The second approach IMRef (Iterative Mesh
Refinement) chooses one affine region of the created mesh to
represent all data points. Then, IMRef iteratively increases the
affine regions to represent all data points until a predefined
accuracy is reached. Furthermore, Kazda and Li (2021)
proposed a method for multidimensional piecewise-affine
fitting using the difference-of-convex representation. The
method aims to generate a model with predefined accuracy
while keeping the number of affine regions low. The
approaches of Obermeier et al. (2021) and Kazda and Li
(2021) are designed to transform a well-defined functional
relationship or handle noiseless data and not to handle noisy
measured data obtained in real-world applications.

However, hinging hyperplanes (Breiman, 1993) have been
shown to handle well-defined functional relationships as well
as noisy measured data (Roll et al., 2004). Hinging-hyperplane-
tree regression (Ernst, 1998) is based on the hinge-finding
algorithm (Breiman, 1993) and can solve multidimensional
piecewise-affine regression problems. However, the original
hinge-finding algorithm (Breiman, 1993) suffers from
convergence problems. To overcome this drawback, an
improved hinge-finding algorithm has been developed (Pucar
and Sjöberg, 1998). Roll et al. (2004) used hinging hyperplanes in
an MILP approach to solve multidimensional piecewise-affine
regression problems at the price of increased computational
effort.

Here, we combine the hinging-hyperplane-tree regression
(Ernst, 1998) with the improved hinge-finding algorithm
(Pucar and Sjöberg, 1998). The hinging-hyperplane trees offer
easy control of the resulting complexity of the data-driven
models. However, in general, the resulting models show
discontinuities between the hyperplanes. Still, we find that the
hinging-hyperplane trees are able to generate efficient and
accurate models for MILP optimization. In result, hinging-
hyperplane trees seem promising for multi-energy system
modeling.

Thus, in this work, we propose the method AutoMoG3D to
generate automatically MILP optimization models of multi-
energy systems that contain components with multiple
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independent variables. The input-output relationship of the
components is derived from the measured data of the
components. AutoMoG3D uses the improved hinge-finding
algorithm of Pucar and Sjöberg (1998) in the hinging-
hyperplane tree approach of Ernst (1998) to solve the
multidimensional piecewise-affine regression problems. In
general, other methods to solve the multidimensional piecewise-
affine regression problems can easily be used in AutoMoG3D.
AutoMoG3D builds on the advantages of the AutoMoG method
(Kämper et al., 2021), i.e., AutoMoG3D considers the importance
of the components in context of the overall multi-energy system.
The models generated by AutoMoG3D are suitable for MILP
optimization. AutoMoG3D is particularly useful to generate
efficient MILP optimization models from measured data, and
thus, for operational optimization. However, AutoMoG3D is
not limited to generate models for operational optimization
from measured data but can also generate models for synthesis
problems, as shown in the case study.

The remainder of the paper is organized as follows: In
Section 2, we describe the general workflow of AutoMoG3D
and discuss in detail the use of hinging-hyperplane trees. In
Section 3, we apply AutoMoG3D to model an industrial real-
world pump system. In Section 4, we conclude with the key
findings.

2 AUTOMOG3D METHOD FOR MODEL
GENERATION

AutoMoG3D aims at modeling multi-energy systems that
contain components with multiple independent variables.
AutoMoG 3D uses measured data to obtain piecewise-affine
models of components. Due to the multiple independent
variables, AutoMoG 3D has to solve multidimensional
piecewise-affine regression problems. The multidimensional
piecewise-affine regression problems are solved using hinging-
hyperplane trees (Ernst, 1998). We describe the general workflow
of AutoMoG3D in Section 2.1 and the use of hinging-hyperplane
trees in AutoMoG3D in Section 2.2.

2.1 General Workflow of AutoMoG3D
The original AutoMoGmethod (Kämper et al., 2021) is limited to
multi-energy systems that contain components with one
independent variable. A component is a physical unit or a
subsection of the multi-energy system. Here, we extend
AutoMoG to AutoMoG3D, enabling the modeling of multi-
energy systems that contain components with multiple
independent variables.

The general workflow of AutoMoG3D is illustrated in
Figure 1. As a starting point, AutoMoG 3D needs the
measured input and output data of each component.
AutoMoG 3D derives the component models from these
measured input and output data. Thus, the component models
derived by AutoMoG3D can only be as accurate as the measured
data reflect the actual component behavior.

In step 1, AutoMoG3D determines the operating range of
each component. The operating range of a component describes

the feasible region of its model in a subsequent optimization. To
determine the operating range of a component, AutoMoG3D
calculates the convex hull (Barber et al., 1996) around the input
data of the component. For this reason, the components’ input
data should ideally reflect its entire operating range. The edges of
all convex hulls are then added to the subsequent optimization
problem as inequality constraints that limit the feasible region of
the components’ models.

In step 2, AutoMoG 3D initializes the multi-energy system
model by performing a linear regression with one region (one
segment) for each component minimizing the mean squared error.

In step 3, AutoMoG3D checks the accuracy of the overall
multi-energy system model. For this purpose, the AutoMoG
approach introduced by Kämper et al. (2021) is followed. The
errors between model and measured data of all components are
aggregated to the relative error of the overall multi-energy system
ΔCrel,System. For this purpose, the errors of all components are
weighted by weighting factors that reflect the components’model
errors in terms of cost. The user can specify a weighting factor for
each component’s dependent variable in the multi-energy system.
If the multi-energy system is modeled for economic optimization,
cost-based weighting factors for the dependent variables are
appropriate. Typically, the dependent variable of a component
is an energy form (e.g., power consumption, gas input, etc.), and
the cost-based weighting factor can be derived from the cost of
this energy form (Kämper et al., 2021). By using cost-based
weighting factors, AutoMoG 3D takes into account that
components with high energy costs are more important for
the operation of the actual multi-energy system. However,
other weighting factors can be used easily, e.g., primary energy
factors or CO2-eq. if the model is used for environmental
optimization.

AutoMoG3D terminates if the relative error of the overall
multi-energy system ΔCrel,System reaches the allowed relative error
of the overall multi-energy system δrel. The allowed relative error
of the overall multi-energy system δrel is specified by the user. If
the allowed relative error of the overall multi-energy system δrel is
not reached, AutoMoG3D proceeds with step 4.

Instead of this accuracy check, it is also possible to limit the
model complexity by specifying the number of piecewise-affine
regions in the multi-energy system model. In this case,
AutoMoG 3D terminates if the pre-specified number of
piecewise-affine regions is reached. Alternatively, the iterative
process of AutoMoG3D and the computational efficiency of the
hinging-hyperplane trees allow considering the actual operational
optimization during model generation. Thereby, the objective
function of the operational optimization could decide which
component to refine and when to terminate AutoMoG3D.
This approach will be explored in future work.

In step 4, AutoMoG3D uses hinging-hyperplane trees to
calculate the next possible refinement (Section 2.2) for the
component that was refined in the previous iteration. In the
first iteration, AutoMoG3D calculates the next refinement for all
components in the multi-energy system. In result, the next
possible refinement of each component is always known.
Based on the next possible refinement of each component,
AutoMoG 3D chooses one component to be refined in step 6.
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However, before choosing one component to be refined, in
step 5, AutoMoG3D checks if overfitting might appear in the
component models. For this purpose, AutoMoG 3D employs the
Corrected Akaike Information CriterionAICC (Hurvich and Tsai,
1993) to the next possible refinement of each component. The
Corrected Akaike Information CriterionAICC (Hurvich and Tsai,
1993) is an extension of the Akaike Information Criterion AIC
(Akaike, 1974) suitable for small sample sizes. However, any
information criterion can be used in AutoMoG3D, e.g., the
widely known Bayesian Information Criterion BIC (Stoica and
Selén, 2004). AutoMoG 3D does not refine any component for
which the chosen information criterion (here: AICc) indicates
overfitting. Thus, AutoMoG3D terminates if the chosen
information criterion indicates overfitting for every
component. Otherwise, AutoMoG 3D proceeds with step 6.

In step 6, AutoMoG 3D chooses a component to be refined
based on the expected improvement in the overall error of the
multi-energy system model. Based on the calculated next
refinements of all components, AutoMoG 3D checks the
improvement in the overall error of the multi-energy system
model. The component with the greatest improvement in the
overall error is chosen to be refined. By default, AutoMoG 3D
uses the sum of squared residuals as error measure. Thereby,
components with many data points tend to have a higher
component model error, and thus, are more likely chosen to
be refined. Thus, the sum of squared residuals is a meaningful
error measure if the number of data points reflects the
importance of a component. However, if the number of data
points does not reflect the importance of a component,
alternative error measures could be used, e.g., the mean
squared error where the sum of squared residuals is divided
by the number of data points for each component. After step 6,
AutoMoG 3D continues with step 3.

By the iteration of steps 3 to 6, AutoMoG3D increases the
accuracy of the overall multi-energy systemmodel until either the
given accuracy is reached or all components in the multi-energy
system would be overfitted when further refined.

Thereby, AutoMoG3D allows for efficient modeling as the
component models are evaluated in context to the overall multi-
energy system. More details on these steps can be found in
Kämper et al. (2021). In the following, we present the details

of the hinging-hyperplane trees, which is the main innovation of
AutoMoG3D compared to the original AutoMoG method.

2.2 Multidimensional Piecewise-Affine
Regression Using Hinging-Hyperplane
Trees
In step 4, AutoMoG3D uses the hinging-hyperplane trees to solve
the multidimensional piecewise-affine regressions for the
components of a multi-energy system. Hinging-hyperplane
trees are based on the hinging-hyperplane method (Breiman,
1993). The hinging-hyperplanes method generates a hinge
function that can be used for regression, classification, and
function approximation. The hinge function consists of two
hyperplanes and their intersection, the hinge (Figure 2). The
resulting hinge function h is continuous. The two hyperplanes h+

and h− are described by

h+ � xTθ+, h− � xTθ−, (1)

where x � [1, x1, x2 . . . ..xM]
T are the independent variables in M

dimensions, and θ+ and θ− are the parameters of the hyperplanes.
The hinge Δ � θ+ −θ− is the joint of the hyperplanes and fulfills

xTΔ � 0. (2)

The hinge function h is either the minimum or the maximum
of the two hyperplanes, depending on the fitting task (cf.
Figure 2):

h � min (or max) h+, h−{ }. (3)

Breiman (1993) proposed the hinge-finding algorithm that
efficiently determines a good position for the hinge to
approximate measured data or a function with two
hyperplanes. The hinge-finding algorithm assigns each data
point to one hyperplane and, thus, separates the measured
data into two data subsets. Ernst (1998) combined the hinge-
finding algorithm of Breiman (1993) with binary-tree regression,
leading to hinging-hyperplane trees. A hinging-hyperplane tree
starts with applying the hinge-finding algorithm to the measured
data to be approximated. After the hinge-finding algorithm
separated the measured data into two data subsets and fitted

FIGURE 1 | AutoMoG3D for multidimensional automated model generation using hinging-hyperplane trees. ΔCrel,System is the relative error of the overall multi-
energy system model. δrel is the allowed relative error of the overall multi-energy system model as specified by the user.
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each data subset with one hyperplane, the worse of the two fitted
data subsets is identified. Subsequently, the worst fitted data
subset is further refined by applying the hinge-finding
algorithm again. By iteratively applying the hinge-finding
algorithm, hinging-hyperplane trees can approximate
measured data with an arbitrary number of hyperplanes. Ernst
(1998) used hinging-hyperplane trees for efficient approximation
of nonlinear functions. However, in each iteration, the hinge-
finding algorithm only separates the data points of the worst fitted
data subset. Thus, in general, hinging-hyperplane trees generate a
non-continuous piecewise-affine function.

Hinging-hyperplane trees enable axis-oblique partitioning of
measured data. This axis-oblique partitioning allows a more
flexible fit to the measured data than axis-orthogonal
partitioning, which is used in common tree-based regression
(Ernst, 1998).

However, the hinge-finding algorithm of Breiman (1993) used
in Ernst (1998) suffers from convergence problems (Kenesei and
Abonyi, 2015). To solve the convergence problems of the hinge-
finding algorithm, Pucar and Sjöberg (1998) showed that the
hinge-finding algorithm is equivalent to a Newton algorithm that
minimizes the squared residuals between measured data and the
hinge function. Pucar and Sjöberg (1998) introduced a damping
parameter, following the idea of a damped Newton algorithm,
and thereby extended the convergence range of the hinge-finding
algorithm. In AutoMoG3D, we use the improved hinge-finding
algorithm (Pucar and Sjöberg, 1998) to calculate hinging-
hyperplane trees. The input of the improved hinge-finding
algorithm is a data set. The improved hinge-finding algorithm
performs a least-squares regression with the fitting criterion VN

that is defined by

VN � 1
2
∑N
n�1

(yn − h(xn, θ))2. (4)

N is the number of data points in the given data set, yn and xn are
the values in data point n from the given data set, and h (xn, θ) is
the value of the hinge function in data point n. The parameter
vector θ contains the parameters for both hyperplanes:

θ � θ+, θ−( )T . (5)

Thus, the algorithm simultaneously determines the two
hyperplanes and thereby the hinge [cf. Eq. (2)]. The improved
hinge-finding algorithm applies a damped Newton algorithm to
determine the parameter vector θ:

θ ̂ � arg min
θ

VN . (6)

More details to the improved hinge-finding algorithm can be
found in Pucar and Sjöberg (1998).

In step 4, AutoMoG3D uses the hinging-hyperplane trees to
add one piecewise-affine region to the model of a component
(Figure 3). One piecewise-affine region corresponds to one
hyperplane.

In the following, we exemplify step 4 with an arbitrary
component that has been chosen to be refined in step 6 of the
previous iteration. The component is already modeled by two
piecewise-affine regions (cf. Figure 4A). AutoMoG3D compares
the mean squared error in each region of the chosen component.
In the given example, the two regions with data subsetsD+

1 andD
−
1

exist because the component is modeled by two piecewise-affine
regions before applying step 4. The data subset with the highest
mean squared error is identified as the worst-fitted data subset D.
In this example, the worst-fitted data subset D is D−

1 . D
−
1 is refined

by the hinge-finding algorithm proposed by Pucar and Sjöberg
(1998). The hinge-finding algorithm determines the position of
the hinge ΔD2 that partitions the data subset D

−
1 into the two new

data subsets D+
2 and D−

2 (Figure 4B).

FIGURE 2 | Sketch of hinging hyperplanes, the hinge, and the hinge function are illustrated in two dimensions (A) and three dimensions (B), adapted from Pucar
and Sjöberg (1998).

FIGURE 3 | Flowchart of step 4 in AutoMoG3D. The worst fitted data subset D is partitioned into two new data subsets D+ and D− by the hinge-finding algorithm.
The data subsets D+ and D− are approximated by the hyperplanes h+D and h−D, respectively. The hyperplanes h+D and h−D are separated at the hinge ΔD.
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After the hinge-finding algorithm terminates, the parameters
are known for all hyperplanes and hinges of the chosen
component. The obtained parameters can directly be used as a
component model in an MILP optimization problem.

After step 4, AutoMoG 3D continues with step 5 and checks
if the chosen information criterion indicates overfitting for the
calculated refinement. When AutoMoG 3D terminates, we
obtain an optimization model of the multi-energy system
that contains components with multiple independent
variables.

3 CASE STUDY: INDUSTRIAL
REAL-WORLD PUMP SYSTEM

AutoMoG3D is applied to model an industrial real-world pump
system taken from our previous work (Bahl et al., 2018). We
implemented AutoMoG3D in Matlab and formulated all
subsequent optimization problems in GAMS 27.3.0 (GAMS
Development Corporation, 2016).

The scheme of the pump system is shown in Figure 5. The
purpose of the pump system is to provide cooling water to several
customers. The customers differ in their distance to the cooling
tower and may have volatile cooling-water demands. Since the
customer demand changes for different time steps, the pump
system has to provide a wide range of volumetric flow rates and
pressure differences. Bahl et al. (2018) and Baumgärtner et al.
(2019) solved the synthesis problem for the pump system to reach
minimal total annual cost. Thereby, they identified the type and
size of each installed pump. At most, six pumps can be installed in
the pump system due to limited power supply. Two pump types
with three possible sizes each can be installed: three fixed-speed
pumps with nominal volumetric flow rates _V

nom � 1,000 m3 h−1,
2000 m3 h−1 and 3,000 m3 h−1, and three variable-speed pumps
with the same nominal volumetric flow rates _V

nom � 1,000 m3

h−1, 2000 m3 h−1 and 3,000 m3 h−1, and nominal rotational speed
nnom � 50 Hz. For a fixed-speed pump, the pressure difference
and the consumed power are two independent nonlinear
functions that depend on its volumetric flow rate _V only. In
contrast, the pressure difference and the consumed power of a

variable-speed pump are two independent nonlinear functions
that depend on its rotational speed n and volumetric flow rate _V
(Bahl et al., 2018). The nonlinear functions describe the actual
behavior of the pumps. In the following, we refer to these
nonlinear functions as the actual nonlinear functions of the
pumps. The implementation of the actual nonlinear functions
leads to an MINLP optimization model. We use this MINLP
optimization problem as a benchmark for the AutoMoG 3D
model.

In this case study, we use AutoMoG3D to generate two MILP
models of the pump system. The first AutoMoG3Dmodel should
reach the same model accuracy as the model used by Bahl et al.
(2018). For this purpose, we set the desired accuracy δrel in step 3
to the accuracy of the MILP model used by Bahl et al. (2018) (cf.
Figure 1). The second AutoMoG3D model can employ the same
model complexity as the model used by Bahl et al. (2018). For this
purpose, we set the criterion in step 3 to the number of piecewise-
affine regions to reach a comparable model resolution as the
MILPmodel used by Bahl et al. (2018). Subsequently, we solve the
synthesis problem of the pump-system with the generated
AutoMoG3D models and compare our results to the results
from Bahl et al. (2018).

In Section 3.1, we employ AutoMoG3D. In Section 3.2, we
solve the pump-system synthesis problem and analyze the
computational efficiency of the AutoMoG3D model. In
Section 3.3, we analyze the solution quality of the
AutoMoG3D model in terms of the total annual cost and the
design of the pump system.

3.1 Modeling the Pump System Using
AutoMoG3D
As introduced above, we employ AutoMoG3D to generate two
MILP models of the pump system by linearizing the actual
nonlinear functions of the pumps. However, since
AutoMoG3D expects data points as input, we sample the
nonlinear functions first. We use 2,500 data points to sample
each actual nonlinear function of a variable-speed pump and 50
data points for each actual nonlinear function of a fixed-
speed pump.

FIGURE 4 | Example of step 6 in AutoMoG3D for an arbitrary component with two independent variables. On the left (A) the measured data are approximated by
two hyperplanes. The hyperplane h+D1

approximates the data subset D+
1 and the hyperplane h−D1

approximates the data subset D−
1. D

−
1 is the worst-fitted data subset.

Thus, on the right (B), the hyperplane h−D1
is partitioned by a new hinge ΔD2 into two new hyperplanes h+D2

and h−D2
for a better approximation of the measured data.
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In the following, we exemplarily illustrate the model
generation for the power function of a variable-speed pump in
detail. The consumed power of a variable-speed pump depends
on its rotational speed n and volumetric flow rate _V , i.e., on two
independent variables. The actual nonlinear power function of
the variable-speed pump is given by a third-degree polynomial
function (Figure 6A).

To obtain an MILP optimization model of the pump system,
we apply AutoMoG3D. For the variable-speed pump,
AutoMoG3D needs four piecewise-affine regions to reach the
accuracy of the model used by Bahl et al. (2018) (Figure 6B). We
refer to the corresponding model as AutoMoG3D model
(accuracy) in the following. To reach a comparable resolution
as the model used by Bahl et al. (2018), AutoMoG 3D needs
18 piecewise-affine regions (Figure 6C). We refer to the
corresponding model as AutoMoG3D model (resolution) in
the following. Here, we define comparable resolution by the
average area of one piecewise-affine region in the input space.

Bahl et al. (2018) manually linearized the actual nonlinear
power function with the generalized-convex-combination
method (GCCM) (Geißler, 2011; Geißler et al., 2012) to obtain
an MILP optimization model. The generalized-convex-
combination method cannot consider the actual operating limits
of the power function but needs an axis-orthogonal, rectangular
grid. As a result, Bahl et al. (2018) used 40 piecewise-affine regions
to model the actual nonlinear power function (Figure 6D). In
contrast, AutoMoG3D automatically considers the actual
operating limits for the power function of the variable-speed
pump by the convex hull (cf. step 1 in Figure 1).

To compare the model accuracy, we show the relative root
squared error of the power function ϵpower(n, _V) over the entire
input space (Figure 7). The relative root squared error of the
power function ϵpower is defined as

ϵpower(n, _V) �
�����������������������
Preal(n, _V) − Pmodel(n, _V)( )2√

Preal(n, _V) , (7)

with the actual power Preal and the modeled power Pmodel.
The AutoMoG3D model (accuracy) and the generalized-

convex-combination model show a small relative error

ϵpower(n, _V) over a wide operating range (Figures 7A,C). Both
models have an average relative error ϵpower of 0.01. However, the
AutoMoG3D model (accuracy) uses significantly fewer
piecewise-affine regions to approximate the actual nonlinear
power function of the variable-speed pump: 4 vs 40. For both
models, the relative error ϵpower(n, _V) increases for low rotational
speed n and low volumetric flow rate _V and, in particular, on the
edges of the piecewise-affine regions. The error increases for low
rotational speed n and low volumetric flow rate _V because the
actual nonlinear function is more curved in this area.
Furthermore, the error increases on the edges of the
piecewise-affine regions because the hinge-finding algorithm
minimizes the mean squared error, and thus tends to a worse
fit on the edges.

The AutoMoG3D model (resolution) has an average relative
error ϵpower of 0.001 and the generalized-convex-combination
model has an average relative error ϵpower of 0.01 (Figures 7B,C).
However, both models have the same resolution. The
AutoMoG3D model (resolution) reaches a smaller relative
error ϵpower, because AutoMoG3D refines the regions of the
current worst fit. In contrast, the generalized-convex-
combination method is based on an inflexible grid.

In summary, compared to the generalized-convex-
combination method, AutoMoG3D can.

1. generate a model with comparable resolution but 10 times
higher accuracy.

2. generate a model with 10 times lower resolution but the same
accuracy.

For completeness, we briefly show the results of the model
generation for the pressure difference of the same variable-speed
pump (Figure 8). The pressure head is shown instead of the
pressure difference because the pump manufacturer used the
head to describe the pressure difference of the variable-speed
pump. The head is the height of a liquid column that corresponds
to the pressure exerted by this liquid column on its bottom.

The AutoMoG3D model (accuracy) and the generalized-
convex-combination model have an average relative error ϵhead
of 0.007 (Figures 8B,D). However, the AutoMoG3D model
(accuracy) again uses only four piecewise-affine regions to
approximate the actual nonlinear head function of the
variable-speed pump. The generalized-convex-combination
model reaches a smaller average relative error ϵ̄ for the
pressure head than for the power because the inflexible GCC
grid turns out to fit the nonlinear head function better than the
nonlinear power function. However, this behavior cannot be
guaranteed in general. The AutoMoG3D model (accuracy)
reaches the same average relative error ϵhead as the
generalized-convex-combination model but with fewer regions
(4 vs 40) due to the flexibility of the hinging-hyperplane trees.
Furthermore, the AutoMoG3D model (resolution) again has the
lowest average relative error ϵhead of 0.001 (Figure 8C). The
generalized-convex-combination and AutoMoG3D models use
the same number of piecewise-affine regions to model the head
function and the power function. However, the hinging-
hyperplane trees choose the positions of the hinges based on

FIGURE 5 | Scheme of the industrial real-world pump system (dotted
rectangle). The pump system is connected to several customers and cooling
towers via a pipe network, adapted from Bahl et al. (2018).
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the respective data points such that the two different functions of
head and power are fitted with high accuracy.

Concerning computational cost, AutoMoG 3D generates the
models of all six pumps within 1 min.

3.2 Computational Efficiency of the
AutoMoG3D Model
The computational efficiency of the AutoMoG3D models is
compared to two other models of the pump system. For this
purpose, we solve the pump-system synthesis problem with four
models: 1) the AutoMoG3Dmodel with the same accuracy as the
generalized-convex-combination model, 2) the AutoMoG3D
model with comparable resolution as the generalized-convex-
combination model, 3) the generalized-convex-combination
model and, 4) the MINLP model with the actual nonlinear
functions of all pumps. All optimization problems are solved
using four Intel-Xeon CPUs at 3.2 GHz and 25 GB RAM. We
solve all MILPs using CPLEX 12.9.0.0 (IBM Corporation, 2017)
and all MINLPs using BARON 19.3.24 (Zhou et al., 2018) with a
time limit of 48 h and an optimality gap of 2%.

The pump-system synthesis problem uses an original time
series of the cooling-water demand and the pressure difference
consisting of 2 years with a time-step length of 1 day.We generate
five instances of the original time series with variations of ±5%
using latin-hypercube sampling (McKay et al., 2000). We
aggregate the time series to seven representative time steps
with the method of Bahl et al. (2018).

The solution times of the synthesis problems are shown in
Figure 9. On average, the AutoMoG3D model with the same
accuracy as the generalized-convex-combination model solves
the pump-system synthesis problem 10 times faster than the
generalized-convex-combination model (290 vs 2,897 s). The
solution time is significantly shorter since the AutoMoG3D
model has significantly fewer piecewise-affine regions (e.g.,
four for the power function of a variable-speed pump) than
the generalized-convex-combination model (e.g., 40 for the
power function of a variable-speed pump). The fewer
piecewise-affine regions result in fewer binary variables and,
thus, a computationally more efficient optimization model.
After preprocessing, the AutoMoG3D model has 2,800 binary
variables for the pump-system synthesis problem, whereas the

FIGURE 6 | Actual nonlinear power function of a variable-speed pump (A), AutoMoG3D model with the same accuracy as the model of the generalized-convex-
combination method (GCCMmodel) (B), AutoMoG3Dmodel with a comparable resolution as the GCCMmodel (C), and the GCCMmodel used by Bahl et al. (2018) (D).
The power depends on the rotational speed n and the volumetric flow rate _V . The generalized-convex-combination method needs a rectangular grid, whereas
AutoMoG3D automatically considers the actual operating limits of the pump. The red lines in (D) show the actual operating limits. The color code only supports the
visual differentiation of the piecewise-affine regions.
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generalized-convex-combination model has 8,200 binary
variables.

The AutoMoG3D model with comparable resolution as the
generalized-convex-combination model is faster for four out of
five instances and solves the pump-system synthesis problem 23%
faster than the generalized-convex-combination model on
average (2,224 vs 2,897 s, Figure 9). The AutoMoG3D model
has 5,500 binary variables for the pump-system synthesis
problem after preprocessing and thus still 33% fewer binary
variables. Still, the AutoMoG3D model has higher accuracy
with a relative model error ϵpower ̄ of 0.1% compared to 1.0%
in the generalized-convex-combination model (cf. Section. 3.1).

TheMINLPmodel shows optimality gaps between 85 and 90%
at the time limit of 48 h, showing that the MINLP model is
computationally much more demanding than the MILP models
in the case study.

3.3 Solution Quality of the AutoMoG3D
Model
After comparing the computational efficiency, we compare
the solution quality of the same four models by analyzing the
objective of the pump-system synthesis problem and the resulting
design of the pump system.

3.3.1 Objective of the Pump-System Synthesis
Problem
The pump-system synthesis problem minimizes the total annual
cost. To compare the solution quality of the four models, we
calculate their actual total annual cost. We define the actual total
annual cost as the cost that occurs if we fix the solution of a model
and recalculate the total annual cost of this solution in the
MINLP model.

The synthesis problems provide the chosen pumps, their sizes,
and their operating points. We fix the pumps, their sizes, and
their operating status for each time step in the MINLP model.
Then, we recalculate the MINLP model with the actual nonlinear
power functions to obtain the actual total annual cost of each
model and instance (Figure 10).

For each instance, the three MILP solutions have lower actual
total annual costs than the best feasible MINLP solution at the
time limit of 48 h. In the following, we compare the MILP
solutions with each other. The actual total annual costs of the
three MILP models do not differ more than 1% for any instance.
None of the MILP models provides solutions with a lower actual
total annual cost for all instances. Thus, none of the MILP models
can be claimed to systematically identify solutions with lower
actual total annual cost than the other MILP models. All MILP
models show a comparable solution quality (Figure 10).

FIGURE 7 | Relative error of the AutoMoG3D model with same accuracy (A) and comparable resolution (B) compared to the relative error of the generalized-
convex-combination method (GCCM) model (C) for the power function of a variable-speed pump.
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However, the solutions of the AutoMoG3D models are found
faster (Figure 9). To demonstrate the need for accurate models,
we also modeled all pumps with only one affine region and solved
the synthesis problem with these models. In that case, the actual
total annual cost increases by 10% to 2.62 × 106 € on average. This

result shows that more accurate models like the former used
MILP models are necessary for a high solution quality.

In summary, AutoMoG3D generates the models of the pump
system automatically in 1min and provides computationally more
efficient models compared to the generalized-convex-combination

FIGURE 8 | Actual nonlinear head function of a variable-speed pump (A), and the relative errors of the AutoMoG3Dmodel with same accuracy (B) and comparable
resolution (C) compared to the relative error of the generalized-convex-combination method (GCCM) model (D) for the head function of a variable-speed pump.

FIGURE 9 | Solution time to satisfy the optimality gap of 2% for all instances and all models except the MINLP model. The MINLP model did not fulfill the optimality
gap in any instance at the time limit of 48 h. Therefore, there are no solution times for the MINLP model.
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model. Still, the solution quality of the AutoMoG3D models is as
high as the solution quality of the generalized-convex-
combination model.

3.3.2 Design of the Pump-System
Table 1 shows the resulting pump system design for all instances
and models. The designs resulting from the three MILP models
consist of more fixed-speed pumps than variable-speed pumps in
almost every instance. At least one variable-speed pump is chosen
for each instance. This result seems meaningful: Fixed-speed
pumps operate more efficiently at nominal volumetric flow
rate than variable-speed pumps since variable-speed pumps
need frequency converters that cause efficiency losses. At the
same time, fixed-speed pumps operate inefficiently at variable
volumetric flow rates since the volumetric flow rate is reduced by
throttling the pressure difference. Thus, the pump system
operates such that the variable-speed pumps balance the
fluctuations of the volumetric-flow demand. Thereby, the
variable-speed pumps allow the fixed-speed pumps to operate
efficiently at nominal volumetric flow rate.

The designs from the MINLP model consist of more variable-
speed pumps than fixed-speed pumps in every instance. These
solutions of theMINLP are feasible but lead to higher total annual
costs (Figure 10).

4 CONCLUSION

The AutoMoG3D method is proposed for the multidimensional
automated data-driven model generation of multi-energy systems.
AutoMoG3D generates MILP optimization models frommeasured
data ofmulti-energy systems. AutoMoG3D canmodel components
with an arbitrary number of independent variables using hinging-
hyperplane trees. Thus, AutoMoG3D overcomes the main
limitation of the original AutoMoG method that was limited to
systems that contain components with only one independent
variable. However, in general, AutoMoG3D does not generate
continuous functions of the component models.

In the case study, a real-world pump system is modeled.
AutoMoG3D needs significantly fewer piecewise-affine regions to
approximate the actual functions of the pumps with comparable
accuracy as the generalized-convex-combination model. AutoMoG
3D provides the model of the pump system within 1min.

The computational efficiency and accuracy of the AutoMoG3D
model were shown by solving the pump-system synthesis problem.
The AutoMoG3D model solves 10 times faster than the
generalized-convex-combination model. Still, the solution
quality of the AutoMoG3D model is the same as for the
generalized-convex-combination model. The performance of the
MINLP model is much worse, with an average optimality gap of

FIGURE 10 | Actual total annual cost for all instances and models. The actual total annual cost is determined by fixing the solution of every model and recalculating
the total annual cost of this solution in the MINLP model. All MILP models find a better solution in all instances than the MINLP model finds within 48 h.

TABLE 1 | Design of the pump system for all instances and models. The table lists the nominal volumetric flow rate of each installed pump. The nominal volumetric flow rate
_V
nom

of each installed pump is presented in 1,000 m3 h−1.

Instance Pump type AutoMoG3D
(accuracy)

AutoMoG3D
(resolution)

GCCM MINLP

1 Fixed-speed 3, 3, 2 3, 2, 2 3, 3, 2 2, 2
Variable-speed 3 2, 2 3 3, 2, 1

2 Fixed-speed 3, 2, 2, 2 3, 3, 2 3, 2, 2, 2, 1 -
Variable-speed 2 3 2 3, 3, 2, 2

3 Fixed-speed 3, 3, 2, 1 3, 3 3, 2, 2, 2 2, 1
Variable-speed 2 3, 2 2 2, 2, 2, 1

4 Fixed-speed 3, 2, 2, 2 3, 2, 2, 1 3, 3, 2 2, 2
Variable-speed 2 2, 1 3 2, 2, 2

5 Fixed-speed 3, 2, 2 3, 3 3, 2, 2, 2, 1 3
Variable-speed 2, 2 3, 2 2 3, 3, 1
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88.5% at the time limit of 48 h whereas AutoMoG3D found a
better solution in 5 min. Thus, AutoMoG3D generates an accurate
and computationally efficient model of the industrial real-world
pump system.

The AutoMoG3D method can be applied either if measured
input and output data of the components are available or if the
actual functions of the components are available. To enable a
straightforward application of AutoMoG3D, we are working on a
Python version of the code to be released open-source. AutoMoG
3D drastically reduces the effort for both data-driven modeling
and optimization. Thereby, AutoMoG3D empowers broader
applicability ofMILP optimizationmodels in real-world applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AK was involved in the Conceptualization, Methodology,
Software, Validation, Investigation, Data Curation, Writing -
Original Draft and Review and Editing, Visualization, Project
administration, and Funding acquisition for this contribution.
AH was involved in the Methodology, Software, Investigation,
and Visualization. LL was involved in Conceptualization,
Methodology, Writing - Review and Editing, and
Visualization. AB was involved in Conceptualization,
Methodology, Writing - Review and Editing, Supervision,
Resources, and Funding acquisition.

FUNDING

This study is funded by the German Federal Ministry of
Economic Affairs and Energy (Ref. no.: 03ET4068A). The
support is gratefully acknowledged.

REFERENCES

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Trans.
Automat. Contr. 19, 716–723. doi:10.1109/tac.1974.1100705

Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., and Vielma, J. P. (2020).
Strong Mixed-Integer Programming Formulations for Trained Neural
Networks. Math. Program 183, 3–39. doi:10.1007/s10107-020-01474-5

Andiappan, V. (2017). State-Of-The-Art Review of Mathematical Optimisation
Approaches for Synthesis of Energy Systems. Process. Integr. Optim. Sustain. 1,
165–188. doi:10.1007/s41660-017-0013-2

Bahl, B., Lützow, J., Shu, D., Hollermann, D. E., Lampe, M., Hennen, M., et al.
(2018). Rigorous Synthesis of Energy Systems by Decomposition via Time-
Series Aggregation. Comput. Chem. Eng. 112, 70–81. doi:10.1016/
j.compchemeng.2018.01.023

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The Quickhull Algorithm
for Convex Hulls. ACM Trans. Math. Softw. 22, 469–483. doi:10.1145/
235815.235821

Baumgärtner, N., Bahl, B., Hennen, M., and Bardow, A. (2019). RiSES3: Rigorous
Synthesis of Energy Supply and Storage Systems via Time-Series Relaxation
and Aggregation. Comput. Chem. Eng. 127, 127–139. doi:10.1016/
j.compchemeng.2019.02.006

Bischi, A., Taccari, L., Martelli, E., Amaldi, E., Manzolini, G., Silva, P., et al. (2014).
A Detailed MILP Optimization Model for Combined Cooling, Heat and Power
System Operation Planning. Energy 74, 12–26. doi:10.1016/
j.energy.2014.02.042

Bonvin, D., Georgakis, C., Pantelides, C. C., Barolo, M., Grover, M. A., Rodrigues,
D., et al. (2016). Linking Models and Experiments. Ind. Eng. Chem. Res. 55,
6891–6903. doi:10.1021/acs.iecr.5b04801

Breiman, L. (1993). Hinging Hyperplanes for Regression, Classification, and
Function Approximation. IEEE Trans. Inform. Theor. 39, 999–1013.
doi:10.1109/18.256506

Cozad, A., Sahinidis, N. V., andMiller, D. C. (2014). Learning Surrogate Models for
Simulation-Based Optimization. Aiche J. 60, 2211–2227. doi:10.1002/aic.14418

Ernst, S. (1998). “Hinging Hyperplane Trees for Approximation and
Identification,” in Proceedings of the 37th IEEE Conference on Decision
and Control (Cat. No.98CH36171) (IEEE), 1266–1271. doi:10.1109/
CDC.1998.758452

Fischetti, M., and Jo, J. (2018). Deep Neural Networks and Mixed Integer Linear
Optimization. Constraints 23, 296–309. doi:10.1007/s10601-018-9285-6

GAMS Development Corporation (2016). General Algebraic Modeling System
(GAMS) Release 27.3.0[Dataset].

Geißler, B. (2011). Towards Globally Optimal Solutions for MINLPs by
Discretization Techniques with Applications in Gas Network Optimization,
Ph.D. thesis (Nürnberg: Naturwissenschaftliche Fakultät der Friedrich-
Alexander-Universität Erlangen).

Geißler, B., Martin, A., Morsi, A., and Schewe, L. (2012). “Using Piecewise Linear
Functions for Solving MINLPs,” in Using Piecewise Linear Functions for Solving
MINLPs (New York: Springer), 287–314. doi:10.1007/978-1-4614-1927-
31010.1007/978-1-4614-1927-3_10

Grimstad, B., and Andersson, H. (2019). ReLU Networks as Surrogate Models
in Mixed-Integer Linear Programs [Dataset]. doi:10.1016/
j.compchemeng.2019.106580

Guelpa, E., Bischi, A., Verda, V., Chertkov, M., and Lund, H. (2019). Towards
Future Infrastructures for Sustainable Multi-Energy Systems: A Review. Energy
184, 2–21. doi:10.1016/j.energy.2019.05.057

Hurvich, C. M., and Tsai, C.-L. (1993). A Corrected Akaike Information Criterion
for Vector Autoregressive Model Selection. J. Time Ser. Anal. 14, 271–279.
doi:10.1111/j.1467-9892.1993.tb00144.x

IBM Corporation (2017). IBM ILOG CPLEX Optimization Studio. User Guide
[Dataset].

ISO 50001:2018 (2018). Energy Management Systems – Requirements with
Guidance for Use [Dataset].

Kämper, A., Leenders, L., Bahl, B., and Bardow, A. (2021). Automog: Automated
Data-Driven Model Generation of Multi-Energy Systems Using Piecewise-
Linear Regression. Comput. Chem. Eng. 145, 107162. doi:10.1016/
j.compchemeng.2020.107162

Kantor, I., Robineau, J.-L., Bütün, H., and Maréchal, F. (2020). A Mixed-Integer
Linear Programming Formulation for Optimizing Multi-Scale Material and
Energy Integration. Front. Energ. Res. 8, 49. doi:10.3389/fenrg.2020.00049

Katz, J., Pappas, I., Avraamidou, S., and Pistikopoulos, E. N. (2020). Integrating
Deep Learning Models and Multiparametric Programming. Comput. Chem.
Eng. 136, 106801. doi:10.1016/j.compchemeng.2020.106801

Kazda, K., and Li, X. (2021). Nonconvex Multivariate Piecewise-Linear Fitting
Using the Difference-Of-Convex Representation. Comput. Chem. Eng. 150,
107310. doi:10.1016/j.compchemeng.2021.107310

Kenesei, T., and Abonyi, J.. (2015). Interpretability of Computational Intelligence-
Based Regression Models. Springer Briefs in Computer Science (Cham:
Springer International Publishing).

Kong, L., and Maravelias, C. T. (2020). On the Derivation of Continuous Piecewise
Linear Approximating Functions. INFORMS J. Comput. 32, 531–546.
doi:10.1287/ijoc.2019.0949

Mancarella, P., Andersson, G., Pecas-Lopes, J. A., and Bell, K. R. W. (2016).
“Modelling of Integrated Multi-Energy Systems: Drivers, Requirements, and

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 71965812

Kämper et al. AutoMoG 3D

https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/s41660-017-0013-2
https://doi.org/10.1016/j.compchemeng.2018.01.023
https://doi.org/10.1016/j.compchemeng.2018.01.023
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1016/j.compchemeng.2019.02.006
https://doi.org/10.1016/j.compchemeng.2019.02.006
https://doi.org/10.1016/j.energy.2014.02.042
https://doi.org/10.1016/j.energy.2014.02.042
https://doi.org/10.1021/acs.iecr.5b04801
https://doi.org/10.1109/18.256506
https://doi.org/10.1002/aic.14418
https://doi.org/10.1109/CDC.1998.758452
https://doi.org/10.1109/CDC.1998.758452
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.1007/978-1-4614-1927-31010.1007/978-1-4614-1927-3_10
https://doi.org/10.1007/978-1-4614-1927-31010.1007/978-1-4614-1927-3_10
https://doi.org/10.1016/j.compchemeng.2019.106580
https://doi.org/10.1016/j.compchemeng.2019.106580
https://doi.org/10.1016/j.energy.2019.05.057
https://doi.org/10.1111/j.1467-9892.1993.tb00144.x
https://doi.org/10.1016/j.compchemeng.2020.107162
https://doi.org/10.1016/j.compchemeng.2020.107162
https://doi.org/10.3389/fenrg.2020.00049
https://doi.org/10.1016/j.compchemeng.2020.106801
https://doi.org/10.1016/j.compchemeng.2021.107310
https://doi.org/10.1287/ijoc.2019.0949
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Opportunities,” in Power Systems Computation Conference (PSCC) (IEEE),
1–22. doi:10.1109/PSCC.2016.7541031

Mancarella, P. (2014). MES (Multi-energy Systems): An Overview of Concepts and
Evaluation Models. Energy 65, 1–17. doi:10.1016/j.energy.2013.10.041

McBride, K., and Sundmacher, K. (2019). Overview of Surrogate Modeling in
Chemical Process Engineering. Chem. Ingenieur. Technik. 91, 228–239.
doi:10.1002/cite.201800091

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code. Technometrics 21, 239–245. doi:10.1080/
00401706.1979.10489755

Mitsos, A., Asprion, N., Floudas, C. A., Bortz, M., Baldea, M., Bonvin, D., et al.
(2018). Challenges in Process Optimization for New Feedstocks and Energy
Sources. Comput. Chem. Eng. 113, 209–221. doi:10.1016/
j.compchemeng.2018.03.013

Moretti, L., Martelli, E., and Manzolini, G. (2020). An Efficient Robust
Optimization Model for the Unit Commitment and Dispatch of Multi-
Energy Systems and Microgrids. Appl. Energ. 261, 113859. doi:10.1016/
j.apenergy.2019.113859

Obermeier, A., Vollmer, N., Windmeier, C., Esche, E., and Repke, J.-U. (2021).
Generation of Linear-Based Surrogate Models from Non-linear Functional
Relationships for Use in Scheduling Formulation. Comput. Chem. Eng. 146,
107203. doi:10.1016/j.compchemeng.2020.107203

Pucar, P., and Sjöberg, J. (1998). On the Hinge-Finding Algorithm for Hingeing
Hyperplanes. IEEE Trans. Inform. Theor. 44, 1310–1319. doi:10.1109/
18.669422

Rebennack, S., and Krasko, V. (2020). Piecewise Linear Function Fitting via Mixed-
Integer Linear Programming. INFORMS J. Comput. 32, 507–530. doi:10.1287/
ijoc.2019.0890

Roll, J., Bemporad, A., and Ljung, L. (2004). Identification of Piecewise Affine
Systems via Mixed-Integer Programming. Automatica 40, 37–50. doi:10.1016/
j.automatica.2003.08.006

Stoica, P., and Selén, Y. (2004). Model-order Selection. IEEE Signal. Process. Mag.
21, 36–47. doi:10.1109/msp.2004.1311138

Thie, N., Franken, M., Schwaeppe, H., Bottcher, L., Muller, C., Moser, A.,
Schumann, K., Vigo, D., Monaci, M., Paronuzzi, P., Punzo, A., Pozzi, M.,
Gordini, A., Cakirer, K. B., Acan, B., Desideri, U., and Bischi, A. (2020).
“Requirements for Integrated Planning of Multi-Energy Systems,” in 6th IEEE

International Energy Conference (ENERGYCon), 696–701. doi:10.1109/
ENERGYCon48941.2020.9236466

Voll, P., Klaffke, C., Hennen, M., and Bardow, A. (2013). Automated
Superstructure-Based Synthesis and Optimization of Distributed Energy
Supply Systems. Energy 50, 374–388. doi:10.1016/j.energy.2012.10.045

Wang, X., Palazoglu, A., and El-Farra, N. H. (2015). Operational Optimization and
Demand Response of Hybrid Renewable Energy Systems. Appl. Energ. 143,
324–335. doi:10.1016/j.apenergy.2015.01.004

Welsch, M., Mentis, D., and Howells, M. (2014). “Long-Term Energy Systems
Planning,” in Renewable Energy Integration. Editor L. E. Jones (London:
Academic Press), 215–225. doi:10.1016/B978-0-12-407910-6.00017-X

Wilson, Z. T., and Sahinidis, N. V. (2017). The ALAMO Approach to Machine
Learning. Comput. Chem. Eng. 106, 785–795. doi:10.1016/
j.compchemeng.2017.02.010

Zhang, Q., Grossmann, I. E., Sundaramoorthy, A., and Pinto, J. M. (2016). Data-
driven Construction of Convex Region Surrogate Models. Optim. Eng. 17,
289–332. doi:10.1007/s11081-015-9288-8

Zhou, K., Kılınç, M. R., Chen, X., and Sahinidis, N. V. (2018). An Efficient Strategy
for the Activation of MIP Relaxations in a Multicore Global MINLP Solver.
J. Glob. Optim. 70, 497–516. doi:10.1007/s10898-017-0559-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kämper, Holtwerth, Leenders and Bardow. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 71965813

Kämper et al. AutoMoG 3D

https://doi.org/10.1109/PSCC.2016.7541031
https://doi.org/10.1016/j.energy.2013.10.041
https://doi.org/10.1002/cite.201800091
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1016/j.compchemeng.2018.03.013
https://doi.org/10.1016/j.compchemeng.2018.03.013
https://doi.org/10.1016/j.apenergy.2019.113859
https://doi.org/10.1016/j.apenergy.2019.113859
https://doi.org/10.1016/j.compchemeng.2020.107203
https://doi.org/10.1109/18.669422
https://doi.org/10.1109/18.669422
https://doi.org/10.1287/ijoc.2019.0890
https://doi.org/10.1287/ijoc.2019.0890
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1016/j.automatica.2003.08.006
https://doi.org/10.1109/msp.2004.1311138
https://doi.org/10.1109/ENERGYCon48941.2020.9236466
https://doi.org/10.1109/ENERGYCon48941.2020.9236466
https://doi.org/10.1016/j.energy.2012.10.045
https://doi.org/10.1016/j.apenergy.2015.01.004
https://doi.org/10.1016/B978-0-12-407910-6.00017-X
https://doi.org/10.1016/j.compchemeng.2017.02.010
https://doi.org/10.1016/j.compchemeng.2017.02.010
https://doi.org/10.1007/s11081-015-9288-8
https://doi.org/10.1007/s10898-017-0559-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	AutoMoG 3D: Automated Data-Driven Model Generation of Multi-Energy Systems Using Hinging Hyperplanes
	1 Introduction
	2 AutoMoG 3D Method for Model Generation
	2.1 General Workflow of AutoMoG 3D
	2.2 Multidimensional Piecewise-Affine Regression Using Hinging-Hyperplane Trees

	3 Case Study: Industrial Real-World Pump System
	3.1 Modeling the Pump System Using AutoMoG 3D
	3.2 Computational Efficiency of the AutoMoG 3D Model
	3.3 Solution Quality of the AutoMoG 3D Model
	3.3.1 Objective of the Pump-System Synthesis Problem
	3.3.2 Design of the Pump-System


	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


