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Non-intrusive load monitoring has broad application prospects because of its low
implementation cost and little interference to energy users, which has been highly
expected in the industrial field recently due to the development of learning algorithms.
Targeting at the investigation of practical and reliable load monitoring in field
implementations, a non-intrusive load disaggregation approach based on an enhanced
neural network learning algorithm is proposed in this article. The presented appliance
monitoring approach establishes the neural network model following the supervised
learning strategy at first and then utilizes the unsupervised learning based optimization
to enhance the flexibility and adaptability for diverse scenarios, leading to the improvement
of disaggregation performance. By verifications on the REDD public dataset, the proposed
approach is demonstrated to be with good performance in non-intrusive load monitoring.
In addition to the accuracy enhancement, the proposed approach is also with good
scalability, which is efficient in recognizing the newly added appliance.

Keywords: unsupervised learning, NILM, neural network, BP – back propagation algorithm, electricity consumption
behavior analysis, k-means clustering

INTRODUCTION

In the context of the carbon neutrality plan proposed by China in the late 2020 (President of the
People’s, 2020), the energy related industry is with high expectation to contribute to the realization
while the power system is highlighted. For better and efficient operation, the power grid is designed
to be smart, among which the transparency, that is, knowing small-grained operating data including
the status of various electrical appliances, is of high value. By knowing the operation information of
single appliances, energy users can understand the insights of appliance operations and help them
conduct energy conservation. In addition, the power companies may extract valuable information
through electric appliance data mining and introduce corresponding measures, leading to saving
electricity up to 14% (Ehrhardt et al., 2010). Therefore, providing users with appliance status
information and furthermore the energy saving and cost reduction solutions has become one of the
important business models in the future. This is the challenge and also opportunity for power
companies and many integrated energy service providers in the context of energy digitization and
information transformation. The detailed appliance monitoring is one of the effective means to
support such revolution (Guo et al., 2021).

There are two implementationmethods for appliance monitoring, namely, the intrusive appliance
monitoring (ILM) and the non-intrusive appliance monitoring (NILM). The former focuses on the
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hardware by installing sensors and chips on each appliance to
monitor each device separately. Meanwhile, NILM focuses on
software algorithms using power data from the service panel to
analyze the resident’s internal appliance operating status (HART,
1992). Considering that the sensor-based monitoring scheme is
expensive, NILM is highly welcomed by energy users and
becomes the research front in both academic and industrial fields.

NILM was put forward in the 1990’s by professor Hart G. W.
from MIT (HART, 1992). Since the initial NILM has a high
computational complexity and low accuracy, it did not attract
much attention at that time. In recent years, due to the rapid
development of computer science, especially the widespread use
of deep learning for pattern recognition, NILM has now regained
the attention of scholars and has become a research hotspot.
Currently, non-intrusive appliance monitoring is mainly divided
into two categories based on diverse sampling rates, that is, low-
frequency and high-frequency. The information utilized in low-
frequency data mainly includes current, voltage, power, etc.
Because of the simplicity, the low-frequency data may lead to
some problems such as inaccurate performance. Meanwhile, the
high-frequency data usually contain more information, such as
current harmonics, voltage–current trajectories, and high-
frequency transient waveforms (Cox et al., 2006). Although
the results of high-frequency data analysis are usually more
accurate, the high requirements for monitoring equipment
show a cost disadvantage in comparison with low-frequency
data analysis. From the view of practical applications, the low-
frequency data–based solutions becomemore andmore attractive
considering the industrial aspect and therefore are focused in
our work.

For valid applications of NILM technology, the credible load
disaggregation is the premise. To address the reliable appliance
monitoring, various NILM solutions have been proposed. First,
some mathematical models have been explored, such as fuzzy
model (Lin and Tsai, 2014), graph signal processing (He et al.,
2018), linear programmingmodel and (Liu et al., 2020). The fuzzy
model obtains the membership degree of each sample signal to all
appliance centers by optimizing the objective function, thereby
determining the appliance category of sample signals to achieve
the purpose of automatically identifying sample data (Lin and
Tsai, 2014). Meanwhile, graph signal processing first establishes
an undirected graph based on the signal simple, then groups the
on/off events for appliances, and finally defines an optimization
problem to find the signal with a minimum variation (He et al.,
2018). Linear programming model treats NILM problem as an
optimization and forms a multi-feature objective function to
realize appliance decomposition and recognition for different
electrical appliances (Liu et al., 2020). Although some
achievements have been realized by mathematical model-based
research studies, there still exist some limitations. The most
prominent is that most of these explorations are optimization
based, resulting in the low scalability of the formulation and the
high dependency of the algorithms. Therefore, the disaggregation
performance is highly scenario dependent, and the model is
required to be tuned for the practical applications. However,
the rise of deep learning algorithms has provided some effective
ways to overcome these obstacles, and hence, a number of

research studies have been investigated. The hidden Markov
model (HMM) (Kolter and Jaakkola, 2012) is a typical
category of these studies, where a double random process
combing the appliance states and explicit random functions is
utilized to establish the operation series. Furthermore, neural
networks (NNs) have been combined with HMMs in a study by
Yan et al. (2019), where the emission probabilities of the HMM
are modeled by a Gaussian distribution for the state representing
the single appliance and by a DNN for the state representing the
aggregated signal. By the above investigations, the high potential
of deep learning approaches in the NILM problem is
demonstrated.

At present, deep learning in non-intrusive appliance
monitoring learning algorithms can be roughly divided into
three categories, that is, supervised algorithms (Liu et al.,
2019a), unsupervised algorithms (Li and Dick, 2019), and
semi-supervised algorithms (Zoha et al., 2012). Supervised
algorithms can learn from training data or can establish a
model and then speculate a new instance based on this model.
It has the advantages of simple implementation, fast calculation
speed, small storage space, and high accuracy of analysis results
(Liu et al., 2019a). However, there are some problems. For
example, when the spatial characteristics are large, the logistic
regression performance is poor. There are also some
disadvantages such as under-fitting or over-fitting and poor
self-learning ability. The unsupervised algorithm refers to a
data processing method that classifies samples through data
analysis of many samples of the research object without
category information. It has strong self-learning ability and
new data can be directly added to the data set without
retraining, but it also has the disadvantages of low accuracy of
analysis results (Kelly and Knottenbelt, 2015). Semi-supervised
learning uses a large amount of unlabeled data and
simultaneously uses labeled data for pattern recognition, and
hence, it is considered as the most promising learning algorithm
branch. However, the research on semi-supervised regression
problems is relatively limited.

Among all the reviewed deep learning approaches, the neural
networks are highlighted due to their outstanding performance.
In addition to Bonfigli et al. (2018) where NNs are employed for
the improvement of NILM performance, there are many research
publications discussing the advantages of neural networks in
enhancing NILM. The literature Andrean et al. (2018) is an
early literature to solve the NILM by using NNs, where the
studies named neural NILM are proposed at the first stage
and the related research studies are inspired. Bonfigli et al.
(2018) proposed a neural network-based approach for non-
intrusive harmonic source identification. In this approach,
NNs are trained to extract important features from the input
current waveform to uniquely identify various types of devices
using their distinct harmonic signatures. In order to be suitable
for a specific problem, some NN approaches are modified for
diverse NILM applications. An additional optimization is
proposed by Faustine and Pereira (2020) to be embedded into
the NILM formulation, forming the noise reduction self-encoding
method. As research studies go further, more and more
investigations have been reported in neural NILM problems.
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(Tan et al., 2011) proposed the convolutional neural network
(CNN)-basedmulti-label learning approach, which links multiple
appliances to an observed aggregate current signal. The approach
applies the Fryze power theory to decompose the current features
into active and non-active components and use the Euclidean
distance similarity function to transform the decomposed current
into an image-like representation, which achieves remarkable
progress. (Liu et al., 2019b) proposed a general appliance
recognition model based on the convolutional neural network.
The parameters do not depend on the appliances category, and a
time series of 0 and 1 can be obtained to represent the switching
state of a single appliance. In a study byMonteiro et al. (2021), the
problem of identifying the electrical loads connected to a house is
investigated, and a system capable of extracting the energy
demand of each individual device is proposed. The whole
study is NILM based, and the disaggregation is CNN
formulated, achieving the simultaneous detection and
classification. Although proved by so many studies, CNN-
based solutions have certain disadvantages that the model is
usually complicated, leading to the decreased practicability.
Meanwhile, the recurrent neural network (RNN) is also widely
concerned in NILM, such as (Xue and Guo, 2016), where an RNN
model is utilized to extract the appliance characteristics of the
steady-state section as the model input for identification after the
event is detected. However, in the process of large sample data
training, the RNN model shows a limitation defined as a
phenomenon of “gradient disappearance”. To overcome the
difficulties of RNN in learning long-term dependencies, a 1D
CNN-based approach is proposed in a study by Figueiredo et al.
(2014), and the NILM problem is solved by considering the
electrical current signals and using Long Short-Term Memory
(LSTM) neural networks. Although a better performance is
achieved, the high complexity infers to the impossibility of
applying in field measurements by these approaches. As seen,
the neural NILM is highlighted by building a multi-layer
perceptron with multiple hidden layers. Through layer-by-
layer training, the signal features of each layer are extracted,
and finally, the underlying features are combined to form more
abstract high-level features to realize the prediction and
classification of data objects (Zhou et al., 2018). The only
disadvantage is the algorithmic complexity. Understanding
this, some investigations focusing on complexity reduction
have been conducted, such as Ciancetta et al., (2021), where
the simplest neural network, that is, back propagation neural
network (BPNN), is used to realize load identification using the
sudden change value of active power and corresponding odd
harmonics only. By verifying the effectiveness of BPNN in NILM
problems, it is possible to deploy such a deep learning approach
for practical applications.

However, toward the practical applications of NILM, multiple
new concerns emerge in addition to the high accuracy
requirements. First, the deployed approach is expected to be
with self-learning ability, that is, it is capable of adapting to
diverse scenarios. Second, the algorithm complexity of the
applied approach should be acceptable, which is possible to be
allocated on smart meters. Last but not least, it would be really

practical if the newly added appliance can be addressed with
guaranteed performance.

In order to address the above problems, this article utilizes
the unsupervised learning-based optimization to enhance the
supervised learning-based NN-NILM model, while the
corresponding solution is proposed to address the newly
added appliance. First, the basic appliance disaggregation
model is established based on the clustering oriented BPNN
learning framework, where both adaptability and simplicity are
achieved. Considering the deficient samples of newly added
appliance, an unsupervised learning-based optimization
scheme is proposed, which combines the large samples of
original appliances and small samples of unknown appliance
to reconstruct the learning network to achieve the reliable
disaggregation. By implementing the proposed approach, the
inherent problems of neutral networks, such as insufficient
fitting, over-fitting, and insufficient promotion capabilities, are
all alleviated, leading to the improvement of NILM with high
accuracy and flexible scalability. The comprehensive
verifications are investigated on the REDD public dataset,
and the results demonstrate the effectiveness of our work.
In addition to addressing the newly added appliance, the
proposed approach also provides a reliable NILM solution
with high precision and robustness, leading to the practical
NILM applications.

The main contribution of this study is the presentation of a
practical NILM solution with reliable accuracy, adaptive
flexibility, and high scalability. In other words, the presented
NILM approach can be adaptive to diverse practical application
scenarios, even addressing the newly added appliance without
sufficient information. Such contribution fills a research gap in
related field. Detailed technical contributions can be summarized
as follows:

• A practical and adaptive NILM formulation model is
established based on the BP neural network, of which
the parameter settings are following the supervised
learning scheme.

• An unsupervised learning based optimization is utilized on
the presented NILM model to improve the scalability and
robustness of the approach.

• Combining the unsupervised learning based optimization
with the supervised BPNN model, the proposed NILM
solution is able to identify the newly added appliances,
while an important research gap is filled.

• The presented model and method are verified via a public
dataset. In addition to the high precision of load
disaggregation, all the proposed potentials are
demonstrated to be valid.

The rest of this article is organized as follows. The
methodologies are discussed in the Methodology section,
including the supervised NILM model based on BPNN and
unsupervised optimization based enhancement. The Results
and Discussions section illustrates our results and discussions
in detail. Conclusions are drawn in the Conclusion section.
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METHODOLOGY

Basic Principles of Neural Networks
Artificial Neuron Model
Artificial neuron is the basic element of a neural network, and its
principle can be represented by Figure 1. The neuron model in
the Figure 1 is called the MP model (McCulloch–Pitts Model),
also known as a processing element (PE) of the neural network.

In Figure 1, x1 − xn are the input signals coming from the
other neurons. Wij denotes the connected weights expressed
from neuron j to neuron i. θ is the threshold value, usually
known as a bias. Then, the relationship between the output and
input of neuron i can be expressed as follows:

neti � ∑n
j�1

Wijxj − θ, (1)

where neti is the net activation of the neuron i.
If the threshold is regarded as the weightWi0 of an input x0 of

neuron i, the above formula can be simplified to

neti � ∑n
j�0

Wijxj. (2)

If X is used to represent the input vector and W is used to
represent the weight vector, that is,

X � [x0, x1, x2,/, xn],
W � [Wi0,Wi1,Wi2,/,Win]Τ,

then the output of the neuron can be expressed in the form of
vector multiplication as

neti � XW. (3)

By applying a so-called activation function or transfer function
f(.) on neti, the final output yi can be expressed as

yi � f(neti) � f(XW). (4)

If the net activation net of a neuron is positive, the neuron is
said to be in an activated state or in a state of fire. If the net

activation net is negative, it is said that the neuron is in an
inhibited state.

Neural Network Models
A neural network is a network composed of many interconnected
neurons, of which the feed-forward network is widely used. This
kind of network only has a feed signal during the training process,
and during the classification process, the data can only be sent
forward until it reaches the output layer. There is no backward
feedback signal between the layers, so it is called a feed-forward
network. The perceptron and BP neural network belong to this type.

For a three-layer feed-forward neural network, if X is used to
represent the input vector of the network,W1,W2, andW3 represent
the connection weight vectors of each layer of the network, and F1,
F2, and F3 represent the activation functions set of the three layers of
the neural network, then the output vector Y1 of the first layer of
neurons in the neural network is

Y 1 � F1(XW1). (5)

The output of the second layer Y2 is

Y 2 � F2(F1(XW1)W2). (6)

The output of the final layer Y3 is

Y 3 � F3(F2F1(XW1)W2)W3. (7)

If the activation functions are all linear functions, then the output
Y3 of the neural network will be a linear function of the input X.
However, the NILM problem leads to the approximation of
higher order functions; therefore, an appropriate nonlinear
function should be selected as the activation function.

The BP network has a strong nonlinear mapping ability, and
theoretically, a three-layer BP neural network can approximate
any nonlinear function. So BPNN is extremely appropriate for
our NILM problem. The typical three-layer BP neural network
model is shown in Figure 2A.

FIGURE 1 | The principle of the artificial neuron model.

FIGURE 2 | Three-layer BP neural network model and enhancement: (A)
Typical model, (B) NILM featured model, (C) Enhanced NILM model
addressing newly added appliance.
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NILM Algorithm by Enhanced Neural
Network
The Basic Model of NILM
The main idea of the NILM system is to identify the power
consumption of individual appliances in a house based on the
analysis of the aggregated data measured from a single meter. The
whole formulation can be expressed as

P � ∑n
i�1

Pi + e0, (8)

where P is the aggregated data measured from a meter, Pi is the
load signature of ith appliance, and e0 is the error generated. Note
that the data from smart meter can be real power, reactive power,
harmonics, or the combination of these electric features. Since we
are targeting the practical applications, only real power and
reactive power are utilized in the following discussions, that is,
P denotes power. Nevertheless, the proposed approach is
compatible with other feature utilizations.

BPNN Based NILM
For preparation of integrating the BPNN model into NILM
formulation, the first step is to convert the measured data
from a smart meter to be adequate for the BPNN input.
Therefore, a normalization is required for the power matrix
obtained from the entrance meter,

Pnorm � (P − Pmin)/(Pmax − Pmin), (9)

where P is the power matrix containing all the measured power
from the meter. Pnorm is the normalized power matrix of P and
also the input of BPNN. Pmin and Pmax are, respectively, the
minimum power and the maximum power after traversing the
measured power matrix.

Originally, we have a typical BP neural networkwith three layers
as seen in Figure 2A. Once the processed data matrix enters the
neural network as a training matrix, a non-intrusive load
monitoring network following supervised learning is established,
as illustrated in Figure 2B. To be specific, the network error square
is used as the objective function, and the gradient descentmethod is
used to optimize the problem. The parameters of the learning
algorithm are adjusted by the validation set or cross-validation. The
detailed implementations of constructing the adaptive BPNN for
NILM are shown in Figure 3. After implementing the
procedures, the internal parameters of the BP neural
network, especially the hidden layer, have been changed and
also customized with the diverse input data. Therefore, the
proposed model is highly adaptive to the input data, and such a
supervised learning scheme is welcomed by a practical NILM
problem, where the deployed monitoring can be self-adapting
to diverse household scenarios.

Enhanced BPNN Based NILM
Even using a successfully trained neural network for appliance
monitoring, the problem of network failure occurs due to the
newly added appliances. Because there are new appliance features
in the appliance clusters that have not been learned by the

FIGURE 3 | Method flow of BPNN based NILM.

FIGURE 4 | The method flow of enhanced NILM with newly added
appliance.
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supervised neural network, the unsupervised learning-based
scheme is required to explore the signatures of new features
based on the insufficient samples. Here, the adaptive K-means
clustering algorithm is used to iteratively address the newly added
appliance for each target clustering center. First, the algorithm
selectsK points from the given dataset, where each point represents
the initial cluster center. Then, calculate the Euclidean distance of
each remaining sample to these cluster centers, and classify it into
the cluster closest to it. Finally, recalculate the average value of each
cluster. The whole process is repeated until the square error
criterion function reaches the smallest (Wang et al., 2019). The
square error criterion is defined as

minE � min∑K
i�1

∑ti
j�1

����xj −mi

����2, (10)

where K is the number of clusters, ti is the number of samples in
the ith category, and mi is the mean of the samples in the ith
category. The K-means clustering algorithm is a typical distance-
based clustering algorithm. The distance between points is used as
the similarity evaluation index, that is, the closer the distance
between two objects, the greater the similarity. So the Euclidean
distance between diverse points in one cluster is expected to be as
small as possible,

min∑K
i�1

∑
x∈mi

dist(mi, x)2, (11)

where dist(m,x) is the Euclidean distance function, calculating the
Euclidean distance between point m and x. x∈mi refers to the
points x clustered into ith category.

As seen from Eq. 11, this algorithm considers that clusters are
composed of objects that are close to each other, so it makes the
final goal to obtain compact and independent clusters. For
practical implementation, it is important to determine the
number of centers K. In our NILM problem, the method for
determining the initial K value is as follows. Assume that the
original N appliances are operating independently, and there are
M appliances that may operate at the same time. Once we have a
newly added appliance, the number of cluster centers is

1 +N +∑M
i�1

Ci
M. (12)

In the newly added clusters, the cluster center with the lowest
power value is the rated feature center of the newly added
appliance. Consistently, the K-means clustering algorithm can
also obtain the new appliance action time stamp and then
reconstitute the training data, including the electric features,
switching action, and timestamp. In order to guarantee the
effectiveness of the rated feature center, the following
verification is conducted:

find{mo,i ∈ Mo

∣∣∣∣mo,i � mn,j −mna},∀mn,j ∈ Mn, (13)

where Mo and Mn are, respectively, the original cluster sets and
newly added cluster sets. mna is the rated feature center of the
newly added appliance. mo,i ∈Mo refers to the specific center mo,i

belonging to the original cluster sets, and mn,j ∈Mn refers to the
specific centermn,j belonging to the newly added clusters. By such
a closed loop check, we can obtain the reliable load signature of
the newly added appliance. However, if Eq. 13 is violated during
the checking period, it is suggested to fine-tune the value of K
based on Eq. 12. Such operations can be conducted multiple
times until final results meet all constraints.

Following the above strategies, the detailed procedures
addressing the newly added appliance are illustrated in
Figure 4. By introducing a larger closed loop feedback as
shown on the right, the approach handling the newly added
appliance is embedded into the BPNN framework. The key

TABLE 1 | Results of BPNN without unsupervised optimization for dataset A.

App1 App2 App3 App4 App5 App6 App7 App8

PRE 0.1825 0.2998 0.1286 0.1367 0.2316 0.2781 0.2571 NA*
REC 0.9989 0.9999 0.9978 0.9988 0.9997 0.9749 0.9999 NA
F1 0.3086 0.4613 0.2279 0.2405 0.3760 0.4351 0.4090 NA
MAE 0.9468 1.1474 1.1123 1.1179 0.9769 1.1423 1.1224 NA

*NA: Not applicable for the appliance.

TABLE 2 | Results of BPNN with unsupervised optimization for dataset A.

App1 App2 App3 App4 App5 App6 App7 App8

PRE 0.9895 0.9976 0.9781 0.9999 0.9882 0.9999 0.9999 0.9562
REC 0.9932 0.9999 0.9898 0.9998 0.9782 0.9999 0.9999 0.9678
F1 0.99997 0.9998 0.9999 0.9992 0.9899 0.9999 0.9999 0.9799
MAE 0.0364 0.0406 0.1411 0.0652 0.0083 0.1735 0.0064 0.1334

TABLE 3 | Results of BPNN with unsupervised optimization for dataset B.

App1 App2 App3 App4 App5 App6

PRE 0.5222 0.5988 0.3875 0.4961 0.4670 0.4544
REC 0.9992 0.9898 0.9673 0.9719 0.9999 0.9999
F1 0.6861 0.7490 0.5586 0.6632 0.6367 0.6249
MAE 0.5132 0.4782 0.7488 0.4824 0.5541 0.5929
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change of the neural network is shown in Figure 2C. By
modifying the training matrix to change the constraints of the
neural network and reconstruct it, the neural network can learn
the rated features of the newly added appliance by itself.
Specifically, the internal structure of the BP neural network is
enhanced from two aspects. First, the input layer is supplemented
with new neurons to handle the newly added appliance. Second,
the parameters of the hidden layer are totally tuned based on the
additional information by the newly added appliance.
Correspondingly, the data flow after the hidden layer changes
to take the new appliance feature into consideration. Based on the
above analysis, the BPNN performs well even with insufficient
data of newly added appliance. Such a strategy follows an
unsupervised strategy and uses the K-means algorithm as the
basic approach, so defined as K-means based unsupervised
optimization. By enhancing the BPNN through K-means based
unsupervised optimization, the scalability of the neural network
NILM method has been improved. Besides, via the evolution
process as shown from (a), (b), and (c) in Figure 2, it is clearly

seen that the key ideas and solutions of incorporating the
concerned problems in the BPNN-based NILM formulations.

RESULTS AND DISCUSSIONS

Data Preparation
In order to verify the effectiveness of the proposed strategy and
approach, this article uses the data set generated based on the
REDD data to conduct case studies. The data composition of the
REDD low-frequency dataset is the power under 1 Hz for
integral signals and 0.2–0.3 Hz for individual appliances. To
be consistent, the data for individual appliances are
complemented to be 1 Hz. Considering the different
operating states and the possible power fluctuations, two
scenarios with different complexities are prepared to analyze
the proposed study. Dataset A is with a relatively simple
appliance operating condition. It runs for 21 days and has
seven independent appliances under a regular operation
mode, as well as one newly added appliance. Dataset B is
considering a more complicated operation situation, also
running for a total of 21 days and with six independent
appliances, as well as one newly added appliance. However,
the appliances are operating randomly with more than 60
different operation combinations.

General NILM Results
In order to fully evaluate the performance of the study, this article
selects four metrics, that is, precision, recall rate, F1 score, and
average absolute error as evaluation indicators. The specific
calculation of metrics (Barsim et al., 2014) is as follows:

PRE � TP

TP + FP
, (14)

REC � TP

TP + FN
, (15)

F1 � 2 × PRE × REC

PRE + REC
, (16)

FIGURE 5 | Comparison of analysis results.

FIGURE 6 | Energy disaggregation results by diverse approaches (A) App1, (B) App8 (the newly added appliance).
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MAE � 1
T1 − T0

∑T1

t�T0

abs(ỹt − yt

yt
), (17)

where PRE represents the precision. REC represents the recall
rate. F1 represents the F1 score, also known as the balanced F
score. TP represents the total number of the sequence points that
the electrical appliance is actually working and the disaggregation
result is also working. FP represents the number of sequence

points that the electrical appliance is actually working but the
result is in a non-working state. FN represents the total number
of sequence points, which indicate that the electrical appliance
is actually not working but the model decomposition result is
in the working state. yt represents the true power of the
electrical appliance at a time t. ỹt represents the
disaggregated power at time t, and MAE represents the
average absolute error of the power disaggregation in the
time period from T0 to T1. The PRE, REC, and F1 scores can
reflect the accuracy of the model in judging whether the
electrical appliance is in a working state and are the basic
indicators of the non-intrusive load disaggregation. MAE can
reflect the accuracy of the disaggregated power value at each
time period. The lower the value, the higher the accuracy of the
power decomposed value.

First, results and discussions are provided focusing on the
dataset A. Through multiple experiments for the dataset A, the
disaggregation results without the consideration of the newly
added appliance are shown in Table 1, while Table 2 shows the
results by the complete strategy and approach proposed in this
study. As seen, after the new appliance is added, the new network
obtained by the proposed algorithm has good performance in
accuracy, recall rate, and balanced F1 score. Comparing with the
approach that BPNN without unsupervised optimization, we can
see the remarkable enhancement by the proposed study. The load
disaggregation results are reliable and desired with a new
appliance considered in the household.

FIGURE 8 | The training results of the neural network.

FIGURE 7 | Energy disaggregation results of App1 from dataset B.
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Because the appliance operation mode of dataset A is relatively
simple, the parameters calculated in the BPNN have a good
degree of fit. To test the robustness of the algorithm, data set B
with complex appliance operation mode is used for analysis
again. Table 3 illustrates the disaggregation performance for
dataset B by implementing our approach. Although the
precision, F1 score, and MAE parameters have been reduced

to a certain extent, the proposed approach is still effective in
recognizing the newly added appliance. In detail, the recall rates
keep in a high level, while the balanced F1 scores are almost all
over 0.6. Such results are desirable since we only take real and
reactive power as our load signatures and try to disaggregate the
appliances under complicated operation modes. As to the power
error, Table 1 shows that the traditional BPNN method has a

FIGURE 9 | Load disaggregation performance of the trained neural network for dataset A: (A) App1, (B) App2, (C) App3, (D) App4, (E) App5, and (F) App6.
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largeMAE. By introducing the enhancement inTable 2, the MAE
becomes very small, indicating the effectiveness of energy
consumption monitoring. Such efficiency, although reduced,
can still be found for complicated operation scenarios, as the
results seen in Table 3.

Combining Table 1, 2, and 3, the average metrics for different
scenarios are visualized in Figure 5. It can be seen that the

FIGURE 10 | Load disaggregation performance of the trained neural
network for dataset B: (A) App2, (B) App3, and (C) App4.

FIGURE 11 | The appliance clustering feature center of the original
system.

FIGURE 12 | Disaggregation errors with original cluster centers: (A)
App1 (B) App3.

FIGURE 13 | The new system cluster centers.
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traditional BPNN without unsupervised optimization performs
worst. The proposed BPNN solution with unsupervised
optimization is compatible of handling both datasets A and B.
Although a slight decrease is seen via some metrics, the
disaggregation results are reliable from the view of whole
household energy consumption.

To give a comprehensive illustration of our study, some
appliances are selected for extended discussions. Energy
disaggregation results for App1 and App8 from dataset A are
illustrated in Figure 6. As shown by the green line, when the

BPNN without unsupervised optimization encounters the
appliance clusters with the new appliance, the analysis
performance will be greatly reduced. As shown by the red line,
the BPNN with unsupervised optimization in this article has the
better capability to analyze all the appliances, including the newly
added appliance.

Energy disaggregation results of App1 from dataset B is also
selected for illustration, as shown in Figure 7. We can see that the
algorithm still has a certain analytical ability and can clearly
distinguish the operating time of each appliance and the
approximate operating information.

NN Model Performance
In order to investigate the insights of NN performance in our
study, details are explored. In above cases, the initial neuron
number of the hidden layer is 3, the initial learning rate is 0.001,
and the maximum number of failures is fixed at 10. In addition,
for the part of network training, the elastic gradient descent
method is used. After the training stage, the established network
is compared with the required error to determine the whether it is
valid. If not satisfied, the coordinate axis descent method is
activated to optimize the network parameters, rebuild the
network for retraining, and analyze the training results again
until the accuracy requirements are met. In our NILM problem,
the training results are shown in Figure 8.

Using this network to decompose each appliance data, we can
get the operation status of each appliance. We draw the
disaggregation diagram of each appliance obtained through
neural network analysis with the real data of each appliance in
a chart for comparison, as shown in Figure 9 for dataset A, and

TABLE 4 | The results of the K-means clustering algorithm.

Cluster center of the original system Cluster center of the new system after adding
a new appliance

New tags from the comparison of clustering
features

No P (W) Q (var) No P (W) Q (var) No P (W) Q (var)
1 249.4101 50.6449 1 249.41 50.6449 1 0 0
2 1.7495e+03 1.7848e+03 2 2.679e+03 1.9168e+03 2 2.6790e+03 1.9168e+03
3 1.2087e+03 477.7206 3 0 0 3 0 0
4 0 0 4 1.799e+03 871.5186 4 0 0
5 888.9645 530.3280 5 1.2087e+03 477.7206 5 0 0
6 2.0488e+03 922.1552 6 1.9990e+03 1.8356e+03 6 0 0
7 1.4246e+03 468.2964 7 2.4884e+03 1.7299e+03 7 2.4884e+03 1.7299e+03
8 439.4848 237.2088 8 1.4246e+03 468.2694 8 0 0
9 1.7994e+03 871.5186 9 2.2400e+03 1.6800e+03 9 2.2400e+03 1.6800e+03
10 1.999e+03 1.8356e+03 10 688.8953 287.8055 10 0 0
11 639.5707 479.6780 11 888.9653 530.3429 11 0 0
12 1.6739e+03 518.8563 12 1.8489e+03 1.2502e+03 12 1.8489e+03 1.2502e+03
13 1.3283e+03 767.5381 13 2.9287e+03 1.9677e+03 13 2.9287e+03 1.9677e+03
14 1.0796e+03 717.2861 14 1.3277e+03 767.0841 14 0 0
15 688.9235 287.8703 15 1.7495e+03 1.7848e+03 15 0 0
16 1.4577e+03 528.2045 16 2.0488e+03 922.1552 16 0 0

17 439.5427 237.2400 17 0 0
18 1.4577e+03 528.2040 18 0 0
19 1.6739e+03 518.8563 19 0 0
20 2.0384e+03 1.4364e+03 20 2.0384e+03 1.4364e+03
21 639.3944 479.5458 21 0 0
22 1.0797e+03 717.4234 22 0 0
23 1.5997e+03 1.1998e+03 23 1.5997e+03 1.1998e+03
24 2.2886e+03 1.4876e+03 24 2.2886e+03 1.4876e+03

FIGURE 14 | The disaggregation results of the new appliance by the
newly constructed network.
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we can see that the disaggregated results are now very close to the
true values. The illustrated results suggest the effectiveness of the
established network.

Since applying amore complex appliance running dataset is an
effective way to test the generalization and robustness of the
algorithm, the load disaggregation performance of the trained
neural network for dataset B is analyzed and shown in Figure 10.
Although there is a certain error for the appliance power tracking,
it is acceptable within a small range. Therefore, the neural
network has strong generalization ability and good robustness,
even for complex appliance operation data, which is desired in the
NILM problems.

Handling the Newly Added Appliance
Extensive discussions on dataset A are presented here to show
how the proposed approach handles the newly added appliance.
Originally, there are seven appliances in the household system,
while the App7 is a long-run appliance. By training, the clustered
operation feature centers are illustrated in Figure 11, where there
are total 16 clusters for these household operations.

When a new appliance is added, the function of the original
network will fail. As a result, the disaggregation results will differ
remarkably from the true operating power. For example,
Figure 12 shows the large disaggregation errors of App1 and
App3 under a certain time period.

Considering the newly added App8, through the calculations
by Eqs 10–13, Figure 13 below shows the clustering results of the
new system, where there are total 24 cluster centers and eight of
them are the new centers.

The corresponding clustering centers are digitized in Table 4,
where the new centers are listed on the right. As seen, Eq. 13 not
only provides an indicator to check the validity of the rated
feature of the newly added appliance but also helps to determine
the optimal clustering centers. It plays a vital role in the proposed
unsupervised learning enhancement.

By extracting the newly added appliance information from
Table 4, the rated operating power of the new appliance in the
new system can be calculated, and the new BPNN-based NILM
system can be constructed. Figure 14 below shows the
disaggregation results of the new appliance by the newly
constructed network.

As seen from Figure 14, by implementing the proposed
approach, the newly added appliance can be accurately tracked
under the NILM framework. However, if there are two or more
new appliances, following discussions can be noticed. If the new
appliances are added one by one, our system is still effective in
recognizing them, since after a period of time the newly added
appliance will change to be the conventional appliance. If they
are added together, our approach can only tell that multiple
electrical appliances have been added but cannot build the

learning model for each in the neural networks. This is
indeed the true challenge we will focus on in the future.
Nevertheless, such a scenario does not affect our contribution
because current NILM studies are mostly targeting at the
residential power monitoring, where the total number of
monitored appliances is limited. It is very unusual for a
house to add two new household appliances at the same
time, so such a capability does not influence our contribution
to the practical NILM applications.

CONCLUSION

Toward the practical non-intrusive load disaggregation in field
measurements, especially to tackle the newly added appliance
with deficient samples in the NILM field, the BPNN-based
solution is thoroughly investigated and improved in this
article. Specifically, a deep learning-based NILM approach is
proposed, where the model is established based on the
supervised BP neural network and enhanced by the
unsupervised optimization, and the solution is provided with
adaptive scalabilities. By the joint optimization design based on
large samples of original appliances and small samples of newly
added appliances, the brand new features of unknown appliances
are effectively handled by the enhanced BPNN model, leading to
the capability of recognizing the out-of-range appliance. In
addition to the desired accuracy, the proposed approach is
demonstrated to be with high reliability and scalability,
proving to be a feasible solution in the future practical NILM
applications.
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