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Improving the accuracy and speed of integrated energy system load forecasting is a great
significance for improving the real-time scheduling and optimized operation of the
integrated energy system. In order to achieve rapid and accurate forecasting of the
integrated energy system, this paper proposes an adaptive integrate energy system (IES)
load forecasting method based on the octopus model. This method uses long short-term
memory (LSTM), support vector machines (SVMs), restricted Boltzmann machines
(RBMs), and Elman neural network as the octopus model quadrupeds. Through taking
over differences in different data and training principles and utilizing the advantages of the
octopus quadrupedmodel, a special octopus-head and XGBoost algorithmwere adopted
to set the weight of the octopus’ quadruped and prevent local minimum points in the
model. We train the octopus model through RMSProp adaptive learning algorithm,
constrain the learning rate, get the best parameters, and improve the model’s
adaptability to different types of data. In addition, for the incomplete comprehensive
energy load data, the generative confrontation network is used to fill it. The simulation
results show that comparedwith other prediction methods, the effectiveness and feasibility
of the method proposed in this paper are verified.

Keywords: comprehensive energy, generative confrontation network, XGBoost algorithm, RMSProp adaptive
learning, octopus model

INTRODUCTION

An integrate energy system (IES) (AlDahoul et al., 2021) refers to the reasonable distribution and
utilization of electricity, gas, heat, wind, and other energies within a certain range or area, using
professional technology and operating modes, to achieve energy efficiency, interaction, and
complementarity. While ensuring that the energy consumption of individual users meets their
needs, it also improves the energy consumption of the entire range and improves the overall energy
utilization efficiency.

At present, the scale of our country’s integrated energy system continues to expand, and the load
forecast of the integrated energy system affects the operation and planning of the integrated energy
system. Improving the speed and accuracy of load forecasting of the integrated energy system is of
vital importance for realizing the real-time scheduling and optimized operation of the integrated
energy system. In recent years, scholars at home and abroad have conducted some research on load
forecasting; Bian et al. (2020) built gray correlation analysis under the LSTM (Dai and Zhao, 2020)
neural network model, improved the traditional LSTM neural network’s processing method of time
series and nonlinear data, and improved the accuracy of short-term load forecasting, but did not
consider the comprehensive energy relationship. Daniel et al. (2020) used the packet decomposition
and cyclic neural network to decompose the electric, cold, and heat loads in frequency bands and
determined the prediction method by judging the correlation between each frequency band. This

Edited by:
Yonghao Gui,

Aalborg University, Denmark

Reviewed by:
Chenghao Sun,

Northeastern University, China
Xuguang Hu,

Northeastern University, China

*Correspondence:
Na Zhang

q2629249062@126.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 14 May 2021
Accepted: 28 June 2021

Published: 07 December 2021

Citation:
Zhang N, Pan X, Wang Y, Zhang M,

Cheng M and Shang W (2021)
Adaptive IES Load Forecasting

Method Based on the Octopus Model.
Front. Energy Res. 9:709708.

doi: 10.3389/fenrg.2021.709708

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7097081

ORIGINAL RESEARCH
published: 07 December 2021

doi: 10.3389/fenrg.2021.709708

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.709708&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fenrg.2021.709708/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.709708/full
http://creativecommons.org/licenses/by/4.0/
mailto:q2629249062@126.com
https://doi.org/10.3389/fenrg.2021.709708
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.709708


method can accurately predict the loads with strong and weak
autocorrelation, but does not consider the impact on incomplete
data onto the prediction accuracy. Dong et al. (2021) used Copula
theory to analyze the correlation between the comprehensive
energy load, established a time series, and used the K-means
clustering algorithm to design a radial basis function neural
network. The calculation method of the model is simple and
easy to design, but the prediction accuracy of some outlier data
points and isolated data points is low. Guo et al. (2021)
considered that the training process of the traditional wavelet
neural network (WNN) (Guo et al., 2020) is prone to the
shortcoming of too fast convergence speed and proposed a
WNN prediction method based on improved particle swarm
optimization (IPSO). On the basis of traditional particle swarm
optimization (PSO), chaos algorithm is added, and chaos
algorithm is more random and more general and has deeper
search ability to improve the overall prediction accuracy and
prediction speed of the wavelet neural network. However, this
method needs to continuously optimize the weights and
parameters, and the model establishment is too complicated,
so the speed slows down during the data training process. Jamal
et al. (2020) and Khan et al. (2020) designed a multivariable phase
space reconstruction Kalman filter method, which fully
considered the coupling relationship between various energy
sources, and used the five-step parameter trend method to
dilute the influence of the old parameters on the current load
forecasting. A larger training set was used to train the prediction
models to improve the prediction accuracy. Because the loss
function is set to a convex function, this does not guarantee that
the global optimal solution can be achieved when the optimized
nonconvex function is achieved. The final result will be greatly
affected by the initial value of the parameter. It takes a very long
time to calculate the loss function of all training data at the same
time, so that the prediction accuracy may get a suboptimal
solution. Matrenin et al. (2020) adopted the multitask learning
method of deep structure (Pitchforth et al., 2021) to predict the
complex energy load of the park type, using a combination of
offline and online, but due to the fixed learning rate adopted by
this network, it may cause network oscillations and make the
speed of convergence slower and the prediction accuracy lower,
and the optimal value is also not reached. Verma et al. (2021)
solved the problem of overfitting and limited generalization
ability of a single model, but they could not solve the
application limitation of a single algorithm. The work of
Wang et al. (2019) is composed of a variety of heterogeneous
models, which overcome the shortcomings of the application
limitation of a single algorithm, but the training set of each model
is the same, and there are still problems of single model overfitting
and limited generalization ability. Although, artificial intelligence,
neural networks, support vector machines, and deep learning
methods have made great progress of power system prediction.
However, the abovementioned models have their specific
application scopes, and they are less involved in the field of
integrated energy.

On the basis of the abovementioned research, this paper
proposes an adaptive IES load forecasting method based on
the octopus model. First, this paper uses a generative

adversarial network (GAN) to supplement the incomplete data
in the integrated energy system, thereby reducing the data-
induced inadequate forecasting accuracy. The problem is that
the head mechanism of the octopus model is used to change the
weight of the octopus’ foot, according to the prediction accuracy
to prevent local minimum points and improve the prediction
accuracy. Then, the RMSProp algorithm is used to train the
octopus model, and the adaptive learning rate is used to obtain
the optimal parameters, which not only improves the model’s
adaptability to different types of data but also improves the
prediction speed. Finally, it is based on the operation data
onto the integrated energy system of a residential district in
Shenyang. A simulation analysis of the algorithm proposed to this
paper is carried out. The prediction results show that, in the
comprehensive energy system load forecasting, the octopus
model using RMSProp algorithm, XGBoost algorithm, and

FIGURE 1 | Block diagram of the octopus model adaptive IES load
forecasting method.
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GAN has good prediction accuracy and prediction speed and can
better solve the problem that traditional neural network
prediction models tend to fall into local optimal solutions and
shortcomings such as limited application of predictive models.

OCTOPUS MODEL ADAPTIVE INTEGRATE
ENERGY SYSTEM PREDICTION METHOD

This paper proposes an adaptive long and short-term IES load
forecasting method based on the octopus model. First, we collect
the original sample data and normalize the sample data. Then, the
processed sample dataset is expanded by GAN. When the
generator and the discriminator reach the Nash equilibrium,
the expanded sample dataset can be generated from the
incomplete sample dataset. We divide the extended sample
dataset into six subdatasets according to the time dimension
and ensure that each subdataset does not overlap with each other.
Finally, we build an octopus model. Three of the six subdatasets
are used as the training set, one is used as the test set, and the
remaining 2 validation sets are input into the octopus model
quadrupeds, and the octopus quadruped prediction results are
integrated by weighted average through the octopus-head
mechanism, so as to predict the electrical load, air load, and
thermal load. The load forecasting model used in this paper can
reduce the time for selecting the network model in the early stage
and, at the same time, improve the accuracy of load forecasting.
The overall idea of the forecasting method is shown in Figure 1.

GENERATIVE ADVERSARIAL NETWORK

Generative adversarial networks (GANs) consist of two parts, the
generator and the discriminator. The generator uses the
processing of random noise to generate pseudosamples, and
the pseudosample value is similar to the real sample value.
The discriminator compares the real sample value of the fake
sample value generated by the generator, distinguishes the
difference between the fake sample and the real value, and

improves the recognition ability of its own network. The two
realize the learning optimization processes through the game and
finally reach a Nash equilibrium. The GAN schematic diagram is
shown in Figure 2.

The generated data are generated by the original dataset
training, so the generated data are similar to the original data.
The data expanded by GAN will reduce the isolated points and
discrete points of the original data. Using the data enhanced by
GAN for load prediction will make the prediction accuracy
higher. Since GAN already has good data generation
capabilities, the use of extended data has little effect on the
prediction results.

OCTOPUS FOUR-LEGGED MODEL

Long Short-Term Memory Principle
LSTM is a model that uses back propagation time to train a neural
network. It is not a neuron, but a unit connected by layers. LSTM
is a nonlinear predictionmodel, so it can build a larger and deeper
recurrent neural network, effectively solving the problem of the
disappearance of gradients in the prediction process, and is
suitable for processing time series models. LSTM updates
short-term memory through memory, forgets past memory
information, and updates new information. But, when the
sequence of continuous data becomes longer, the unfolding
time step will be too long. The LSTM neural network has a
long- and short-termmemory structure, and LSTM is suitable for
time series forecasting.

The memory unit memorizes the historical information about
the sequence data together with the hidden state. The information
about the memory unit is controlled by three gate units. The
forget gate deletes the information about the memory unit
according to ht-1 and xt. The forget door is

ft � σ(Wf[ ht−1 xt ]) + bf , (1)

where σ(·) is the sigmoid activation function; bf is the bias of the
forgetting gate; and Wf is the weight of the forgetting gate.

FIGURE 2 | Principle of the generative adversarial network.
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The input gate adds information to the memory unit
according to ht-1 and xt, as shown in Eqs 2 and 3.

it � σ(Wi[ ht−1 xt ]) + bi, (2)

Ĉt � tanh(Wc[ht−1 xt]) + bc . (3)

In the formula, it is the information that needs to be
memorized; Ĉt is the candidate memory unit, used to update
the memory unit; Wi and Wc are the input gate weights; and bi
and bc are the input gate biases.

After the calculation of the forget gate and the output gate is
completed, the memory unit is updated using the following
equation:

Ct � ft+Ct−1 + it+Ĉt , (4)

where + is the product of Hadamard.
The output gate determines ht according to ht-1, xt, and Ct.

ot � σ(W0[ ht−1 xt ]) + bo, (5)

ht � ot+tanhCt , (6)

where Wo is the output gate weight; bo is the output gate bias.
LSTM inherits the advantages of the recurrent neural network

(RNN) well and has a long-term memory function. Compared
with the prediction model constructed by the ordinary RNN,
LSTM can solve the problems of gradient explosion and gradient
disappearance. Therefore, LSTM has better performance in
dealing with models that are highly correlated with time series.

Support Vector Machine Principle
SVM, as a relatively important learning method in machine
learning, is based on statistical theory and supervised learning
and can solve multivariate nonlinear problems well. The principle
is to map the sample data one by one in a high-dimensional space,
and this kind of mapping does not require a clear mapping
function, so as to achieve a conversion from nonlinear to linear.
Simply putting, it is to upgrade the data and linearize the data.

Compared with other linear models, SVM can better solve the
dimension problem with the premise of the same computational
complexity. Therefore, the SVM model requires small storage
space and strong algorithm robustness. SVM is proposed by a
binary classification problem. When making predictions, a
prediction curve is made through linear regression. SVM
predicts data through regression fitting, and it does not have
memory function. Therefore, SVM can reduce the impact of
discrete points and isolated points on the prediction results.

Suppose the training set samples are {(xi,yi), i � 1,2,3, . . . ,l},
where xi is the input column vector of the ith training sample, xi �
[xi

1,xi
2, . . . ,xi

d]T, and yi∊R is the corresponding output value.
Suppose the linear regression function established in the high-

dimensional feature space is

f (x) � wΦ(x) + b. (7)

Among them, Φ(x) is a nonlinear mapping function.
The ε linear insensitive loss function is defined as

L(f (x), y, ε) � { 0
∣∣∣∣y − f (x)∣∣∣∣#ε∣∣∣∣y − f (x) − ε

∣∣∣∣ ∣∣∣∣y − f (x)∣∣∣∣> ε . (8)

Among them, f(x) is the predicted value returned by the
regression function, and y is the corresponding true value.

Restricted Boltzmann Machine Principle
Boltzmann machine (RBM) is a model with a two-layer neural
network, which is a probability distribution model based on
energy.

The Boltzmann machine is divided into a hidden layer h and a
visible layer v (that is, the input layer and the output layer). The
Boltzmann machine can be regarded as a fully connected graph;
that is, each neuron is fully connected with all neurons in this
layer and neurons in other layers. The principle of the RBM is
shown in Figure 3. The RBM layer is not connected and is
connected to all neurons in other layers, where vi is the visible
layer neuron, hj is the hidden layer neuron, ai is the visible layer, bj

FIGURE 3 | RBM schematic.
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is the hidden layer, and the W is the weight matrix. Its visible
nodes are independent of other visible nodes, and there is no
connection between hidden layer nodes. When the observation
data are given in the visible layer, each node of the hidden layer is
independent of each other. The RGM network is relatively simple
and does not have a memory function. Important information
entered early will be forgotten over time.

The hidden layer and visible layer of the RBM used in this
paper are both binary, namely, vi∊{0,1}n, hj∊{0,1}m. The energy
formula is shown as follows:

E(v, h) � −∑n

i�1 ∑m

j�1 wijvihj −∑n

i�1 aivi ∑m

j�1 bjhj. (9)

FIGURE 4 | Adaptive load forecasting method based on the octopus model.
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Among them, w � [wij]
n×m, a � (ai)

n, and b � (bj)
m constituted

the parameter θ of the RBM. m and n represent the number
of visible units and winning units, vi and hj are the ith visible
unit and the jth hidden unit, respectively, and wij is the weight
between the visible unit and the hidden unit. ai and bj,
respectively, represent the bias of the visible unit and the
hidden unit.

The joint probability distribution p (v,h) of the visible unit and
the hidden unit is defined as follows:

P(v, h) � 1∑v,he−E(v,h)
e−E(v,h). (10)

The corresponding two marginal probability distributions are

P(v) � 1
z
∑

h
e−E(r,h), (11)

P(h) � 1
z
∑

v
e−E(v,h). (12)

Elman Neural Network
The Elman neural network is a dynamic neural network. It adds a
layer on the basis of the BP neural network, which is used as a
delay factor. The Elman neural network can use, store, and
feedback historical past time information. To a certain extent,
the Elman neural network can perform load forecasting well. This
paper uses a 4-layer Elman neural network. The connection to the
output layer is similar to the feed forward network. The input
layer unit only plays a role in signal transmission. The transfer
function of the hidden layer unit adopts a nonlinear function. The
receiving layer can be considered as a one-step delay operator.

Elman is a dynamic network, adapts to time-varying
characteristics, has a short-term memory function, can
internally feedback, store, and use the output information of
the past moment, and is better than the BP network in terms of
computing power and network stability.

In this paper, the Elman neural network of particle
swarm optimization (PSO) is used. PSO is an efficient
and rapid optimization method, suitable for solving
continuous weights in Elman. The position and speed
update formulas are

Vk+1
i � ω · Vk

i + c1 · rand1 · (Pbest − Xi) + c2 · rand 2 · (Gbest − Xi),
(13)

Xk+1
i � Xk

i + Vk+1
i , (14)

where Vk
i and Xk

i are the velocity and position of particle i at the
kth iteration, respectively. rand1 and rand2 are randomly
generated in (-1,1), c1 and c2 are the learning factors, and ω is
the particle weight coefficient. Gbest is the global optimum, and
Pbest is the individual optimum.

ADAPTIVE LEARNING

The traditional training method can reach the global optimal
solution only when the loss function is convex. For the concave
function, it cannot ensure that the training of the neural network
will definitely reach the global optimum. On the contrary, the loss
function can easily reach the local optimum. At the same time, the
traditional training process takes a long time, and the
training result is greatly affected by the initial value.

FIGURE 5 | Principle of the octopus-head model.
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Aiming at the shortcomings of traditional training
methods, the octopus model structure uses an adaptive
learning rate algorithm to train four prediction models to

obtain the best parameters of the octopus model. Taking
into account that different parameters require different
learning rates to be adjusted, if the learning rate is too
large, it will cause the training of some parameters to miss
the global optimum and reach the local optimum. If the
learning rate is too small, the convergence speed of the
parameters will be slow, and the training process will take a
long time. Therefore, it is particularly important to set
different learning rates for different parameters in training
of the model.

The RMSProp optimization algorithm can improve the
prediction accuracy of the octopus model and make the
octopus model more adaptive. Compared with the
AdaGrad optimization algorithm, the RMSProp algorithm
uses a new exponential decay algorithm, which reduces the
impact on historical data. At the same time, RMSProp
introduces a new parameter ρ, which can be expressed as
the second derivative of the gradient value, which is used to
control the decay rate of the historical gradient value.
Therefore, RMSProp algorithm has better adaptability than
AdaGrad. The main body of the algorithm executes the
following loop steps and will not stop until the stop
condition is reached.

We take out the small batch of data {x1, x2, . . . , xm}. The target
corresponding to the data is denoted by yi.

We calculate the gradient based on the small batch data
according to the following formula:

g � 1
m
∨ω∑i

L(f (xi;ω), yi). (15)

We accumulate the square gradient and refresh r, and the
process is as follows:

r � ρr + (1 − ρ) g ⊙ g. (16)

We calculate the parameter update amount as follows:

Δω � − σ
δ + r

√ ⊙ g. (17)

We update parameters according to Δω:
ω � ω + Δω. (18)

The traditional stochastic gradient descent maintains a
single learning rate to update all weights, and the learning
rate does not change from the training process. The RMSProp
algorithm uses different learning rates when optimizing deep
neural networks, which is efficient and practical.

OCTOPUS MODEL

The octopus-head model in Figure 4 uses XGBoost, which is an
optimized integrated tree model, improved and extended for the
gradient boosting tree model. The integrated model of the tree is
as follows:

yi � ∑K

k�1 fk(xi), fk ∈ F, (19)

FIGURE 6 | Comprehensive energy long-term forecast results.
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where yi is the predicted value of the ith sample; xi is the feature vector
of the ith data point, fk is the structure q of the kth tree and the leaf
weight w, K is the number of trees, and F is the collection space of trees.

The loss function of the model can be expressed as

L � ∑n

i�1 l(yi, yi) +∑K

k�1 ε(fk). (20)

In the formula, the first half is the error between the predicted value
and the true value, and the second half is the complexity of the tree.

In the process of minimizing the sequence, the loss function is
reduced by adding the increment function fi (xi). The objective
function of the mth round is

L(m) � ∑n

i�1 l(yi, yi) +∑K

k�1 ε(fk)
� ∑n

i�1 l(yi, y(m−1)
i + fm(xi)) + ε(fm). (21)

For Eq. 21, the second-order Taylor expansion is used to
approximate the objective function. This results in

L(m) � ∑T

j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij
gi⎞⎠⎤⎥⎥⎥⎦wj + 1

2
⎛⎝∑

i∈Ij
hi + λ⎞⎠w2

j ] + μT , (22)

gi � l′(yi, ŷ(t−1)i ),
hi � l″(yi, ŷi(t−1)).

We find the partial derivative of w to get

wj � − Gj

Hj+λ
. (23)

Substituting the weights into the objective function, we
can get

L(m) � − 1
2
∑T

j�1
Gj

Hj+λ
μT . (24)

The octopus-head model mainly uses the weighted average
method to train the octopus’ quadrupeds with initial
weights. The head adopts an integrated learning method to
train the weight parameters according to the prediction
accuracy of the four prediction models. The weights are
changed according to the prediction accuracy of the
octopus’ quadrupeds, so that the weight of high prediction
accuracy increases, and the weight of the other octopus’ feet
with relatively low prediction accuracy decreases, and then,
the octopus’ quadruped after weight adjustment continues to
train and repeats this until the specified number of times is
reached. Finally, these prediction accuracies will be
integrated according to the weight, and the final prediction
result will be obtained.

CASE ANALYSIS

Screening of Related Factors
We use the influencing factors and load data onto m days before
the forecast date to predict the comprehensive energy load data
onto the forecast day, and the model output is the comprehensive
energy data onto the forecast day, as shown in Eq. 20.

FIGURE 7 | Comprehensive energy short-term daily load forecast
results.
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L̂d � {̂l0,d )̂l1,d)/)̂lt,d(/)̂lT ,d}. (25)

In the formula, T is the number of points to be predicted.
The comprehensive energy historical load data are shown in

Eq. 21.

Lt,d−w � {lt,d−1)lt,d−2)/)lt,d−m}. (26)

In the formula, lt,d-m is the load at time t on m days before the
forecast.

The comprehensive energy load influencing factors are

Ft,d � {wt)d(et)d)/)ht,d}. (27)

Data Normalization
Formula (23) is used to normalize the comprehensive energy data
and obtain real sample data of temperature, humidity, date, and
economy.

xstd � x − xmin

xminmax + 1
. (28)

In the formula, x represents each sample data of the integrated
energy system, xmax represents the sample data with the largest
absolute value in each sample data set, xmin represents the sample
data with the smallest absolute value, and xstd represents the
normalized value.

Result Analysis
This paper selects the comprehensive energy system operation
data of a residential district in Shenyang from January 1, 2009, to
January 1, 2020, and the comprehensive energy operation data of
the district in the first week of August 2019 for analysis. The
comprehensive energy data from 2009 to 2018 are used as the
training set quarterly to predict the comprehensive energy
operation data in 2019 and 2020; the data from the first
8 days of August 2019 are used as the training set to predict
the electrical load, air load, and heat load data.

In order to verify the effect of adaptive load forecasting
based on the octopus model, the long-term and short-term
forecasting were carried out separately, and two cases were
set up.

Case 1: considering the long-term forecast of the coupling
of electricity, gas, and heat loads, the octopus model is used
to analyze the comprehensive energy data from 2009 to
2018 to predict the electricity, gas, and heat loads in 2019
and 2020.

Case 2: considering the short-term forecast of the coupling of
electricity, gas, and heat loads, the octopus model is used to
predict one day’s load data.

The long-term and short-term results of comprehensive
energy in the two cases are shown in Figure 5 and Figure 6,
respectively.

It can be seen that whether it is a long-term forecast or a short-
term forecast of electricity, gas, and heat load, the forecast curve
has good tracking ability. Only when the real value fluctuates
greatly, the predicted value will have a large error. From Figure 7,
it can be seen that the electrical load fluctuates greatly throughout
the year and the heat load changes significantly with the seasons.

It can be seen from Figure 5 that the electricity load fluctuates
greatly throughout the day, with little electricity consumption
during the day and large electricity consumption at night.

This article uses MAPE as the error evaluation standard, and
the calculation formula of MAPE is

δMAPE � 1
N

∑N

t�1

∣∣∣∣∣∣∣∣yi − yi
yi

∣∣∣∣∣∣∣∣ × 100%. (29)

In the formula, yt is the actual value; y’t is the predicted value;
and N is the number of predicted points.

Figure 8 shows the comparison between the MAPE value
predicted by the octopus model and the MAPE value predicted by
the ordinary RNN in two cases. The MAPE value of the adaptive
IES load forecasting method is between 4 and 6%. Both of the
MAPE values are not large.

It can be seen from Figure 8 that the accuracy of short-term
forecasts is higher than that of long-term forecasts. In the long-
term and short-term forecasting, the adaptive octopus model has
higher prediction accuracy and smaller error than the traditional
load forecasting and ordinary octopus model and has a small
MAPE value.

Compared with the results of gas and heat load forecasting,
heat load forecasting has higher forecast accuracy, which is
mainly due to the fact that heat load is greatly affected by
temperature, humidity, economy, and date changes, especially

FIGURE 8 | Two prediction types of MAPE.
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with a strong relationship between temperature and relevance.
However, there are many uncontrollable factors of electricity and
gas load, so the prediction accuracy is lower than that of heat load.
From the perspective of long-term and short-term prediction
results, the octopus model has better short-term prediction
results. This is mainly due to the large training sample dataset
for short-term load prediction and the small training error of
the model.

CONCLUSION

Aiming at the background of integrated energy system, this paper
proposes an adaptive integrated energy load forecasting method
based on octopus model. This method not only uses the octopus
model to effectively reduce the risk of model overfitting and
prevents local minima but also improves the convergence speed
of the model through the RMSProp algorithm and improves the
prediction accuracy. It has high application value in the
multielement load forecasting of the integrated energy system.

With the development of the energy Internet, the integrated
energy system will receive more andmore attention. The adaptive

IES load forecasting method based on the octopus model will
have a higher development and application in the energy Internet
system. The model’s adaptive IES load forecast method has
extremely high forecasting accuracy in ultra-short-term
forecasting. In the future, it is hoped that, through further
applications, it can predict abnormal conditions more
accurately and improve the forecasting results.
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