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The accurate classification of power quality disturbance (PQD) signals is of great significance
for the establishment of a real-time monitoring system of modern power grids, ensuring the
safe and stable operation of the power system and ensuring the electricity safety of users.
Traditional power quality disturbance signal classification methods are susceptible to noise
interference, feature selection, etc. In order to further improve the accuracy of power quality
disturbance signal classification methods, this paper proposes a power quality disturbance
classification method based on S-transform and Convolutional Neural Network (CNN).
Firstly, S-transform is used to extract disturbance signals to obtain the time-frequencymatrix
with characteristics of the disturbance signals. As an extension of wavelet transform and
Fourier transform, S-transform can avoid the disadvantages of difficult window function
selection and fixed window width. At the same time, the feature extracted by S-transform
has better noise immunity. Secondly, CNN is used to perform secondary feature extraction
on the obtained high-dimensional time-frequency modulus matrix to reduce data
dimensions and obtain the main features of the disturbance signal, then the main
features extracted are classified by using the SoftMax classifier. Finally, after a series of
simulation experiments, the results show that the proposed algorithm can accurately classify
single disturbance signals with different signal-to-noise ratios and composite disturbance
signals composed of single disturbance signals, and it also has good noise immunity.
Comparedwith other classificationmethods, the algorithm proposed in this paper has better
timeliness and higher accuracy, and it is an efficient and feasible power quality disturbance
signal classification method.
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INTRODUCTION

In modern power systems, the rapid development of renewable energy power generation (Huang et al.,
2021; Wang et al., 2021) and related distributed generations and microgrid control strategies (Huang
et al., 2019; Wang et al., 2019) have injected a large number of nonlinear signals into the power system.
At the same time, there are also a large number of nonlinear loads in the power grid (such as automotive
charging piles, power transfer switches). The power grid is showing a power electronic trend, and the
power quality problem of the distribution network is becoming more and more serious (Qiu et al.,
2020). Frequent occurrences of power quality events cause a lot of economic losses and bring great
inconvenience to people’s lives. In order to deal with sudden power quality events, it is necessary to
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accurately identify and classify the power quality disturbance
signals. A convenient, fast and accurate classification algorithm
can provide a higher-level application for modern smart meters
and real-time monitoring system of power grid (Luo et al., 2018).

Current disturbance signal classification methods mainly
include two steps:

1) Extracting characteristics of power quality disturbance signals;
2) Classifying with extracted features.

Feature extractionmethodsmainly include: Fast Fourier Transform
(FFT) (Deng et al., 2020), Wavelet transform (Thirumala et al., 2018),
S-transform (Kumar et al., 2015), Hilbert Huang transform (HHT)
(Sun et al., 2018), short time Fourier transform (STFT) (Dhoriyani and
Kundu, 2020), singular value decomposition (SVD) (Wang et al.,
2017), Kalmanfilter (KF) (Niu et al., 2019). For step 1): due to relatively
fixed length and shape of time window, short-time Fourier transform
cannot reflect the characteristics of high frequency and low frequency.
Although wavelet transform can realize multi-scale focusing, the
relationship between transform scale and frequency is fixed.
Singular value decomposition and Kalman filter lack the frequency
domain characteristics of the signal. S-transform is a reversible time-
spectrum positioning technology combining wavelet transform and
FFT. It uses an analysis window, thewidth of thewindow changes with
frequency to provide frequency-related resolution (Kumar et al., 2015).
The time-frequency characteristics extracted by S-transform have
more significant time-frequency characteristics (Tang et al., 2020).

In comparison, S-transform has higher time resolution and
frequency resolution, and is more suitable for analyzing
nonlinear, non-stationary, and transient power quality
disturbances (Wang et al., 2021a).

The existing classifiers mainly include: artificial neural network
(Haddad et al., 2018), Support Vector Machine (SVM) (Yong et al.,
2015), decision tree (Huang et al., 2015; Long et al., 2018), expert
system (Sai et al., 2015) and Bayesian classifier (Zhou et al., 2011),
etc. For step 2): SVM has a high classification accuracy, but the
amount of calculation in the process of parameter optimization is
relatively large, and the real-time performance is not good. The
expert system is a more flexible classification method, but with the
increasing of different types of disturbance signals, the complexity of
the knowledge base is getting higher and higher, which largely affects
the fault tolerance of the system, and the classification performance
is also restricted. In view of the problems of existing classifiers,
finding a fast and accurate classification method has become the
research focus of many researchers.

As the Frontier content in the field of artificial intelligence,
neural networks have also made some preliminary applications in
the field of power systems, and have achieved some remarkable
results. In the field of electricity price forecasting, the literature
(Jahangir et al., 2020) has greatly reduced the forecast error.
Literature (Jiang et al., 2019) provides an intelligent fault
diagnosis method that can automatically identify different
health conditions of wind turbine gearboxes. Convolutional
neural network (Convolution Neural Network, CNN), as a deep
learning method of supervised learning, has advantages of low
model complexity and fast calculation speed. Its unique
convolution structure can reduce the amount of memory

occupied by the deep network and the number of network
parameters. CNN has been widely used in face recognition, text
recognition and target tracking, as well as semantic segmentation
and other fields (Chang et al., 2016; Chowdhury et al., 2016; Chen
et al., 2018). In addition, CNN has excellent overfitting treatment
methods compared to other classification methods. Methods such
as reducing the number of network layers, using Dropout, and
adding regular items can be used to improve overfitting.

However, in the field of power quality disturbance classification,
the application of CNN is still immature. Only a small amount of
literatures use CNN to solve the problem of power quality disturbance
signal classification (Chen et al., 2018; Hezuo et al., 2018; Zhu et al.,
2019). For example, literature (Chen et al., 2018) uses phase space
reconstruction to reconstruct one-bit time series into a multi-
dimensional space, then further project the obtained disturbance
signal to a two-dimensional phase plane to form a two-
dimensional trajectory image, finally input the trajectory image to
a CNN for classification. Literature (Hezuo et al., 2018) maps the
feature signal into a two-dimensional grayscale image, and then inputs
it into a CNN for classification. Literature (Zhu et al., 2019) uses
encoding and decoding to extract features of power quality
disturbance signals, and then inputs the extracted features into a
CNN for classification. However, it is difficult to distinguish the
disturbance signal features with high similarity (such as
interruption and sag) in the existing methods, and the signal
feature extraction process also extracts many features which are
irrelevant to disturbance signals. Although the existing methods
have high classification accuracy, they still have certain
misclassification phenomena.

In view of the above problems, this paper uses the combination of
S-transform and CNN to classify power quality disturbance signals.
The S-transform is used to extract the characteristic matrix which is
used to represent the power quality disturbance signal. According to
the three-dimensional (3D) network diagram of each disturbance
signal, the sampling range of the feature vector corresponding to
the disturbance signal that best represents the disturbance signal is
determined. The matrix is trimmed to eliminate the eigenvectors that
are useless for specific disturbance signal identification, that is,
irrelevant vectors. And then get a square matrix that can represent
the characteristics of the disturbance signal and the dimension is
125 × 125. Input the obtained square matrix into the CNN, and use
the CNN to classify the power quality disturbance signal. The
combination of S-transform and CNN to classify power quality
disturbance signals ensures the efficiency, accuracy and robustness
of the classification, and at the same time reduces the misclassification
of disturbance signals, which is useful for establishing a real-time
monitoring system formodern power grids. It is of great significance to
ensure the safe and stable operation of the power system and ensure
the safety of users’ electricity.

S-TRANSFORM AND FEATURE
EXTRACTION

The S-transform proposed by Stockwell (Stockwell et al., 1996) can be
regarded as an extension of short-time Fourier transform and wavelet
transform, and it is a reversible time-frequency analysis method.
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S-transform is one of the best techniques for signal processing of non-
stationary signals. It uses the phase information of continuous wavelet
transform to correct the phase of the original wavelet. It can perform
multi-resolution analysis on the signal, just like a set of filters with
constant bandwidths. It uniquely has the frequency-related resolution,
while positioning the real and imaginary spectra of the phase
spectrogram. The time-frequency localization characteristics
provided by S-transform are used for subsequent calculations.

Use the FFT and convolution theorem to calculate the
S-matrix for each power quality disturbance time. The output
of the S-matrix is a complex matrix whose dimension is k × n, and
the matrix expression is as follows

S(τ, f ) � A(τ, f )e−iφ(τ,f ) (1)

where A(τ, f ) represents amplitude, φ(τ, f ) represents the phase.
The rows of the S matrix represent frequency, and the columns

represent time. Each column represents the frequency
component that appears in the signal at a specific time, and
each row represents a specific frequency signal that occurs at the
time from 0 to N−1 on each sampling point. The specific
calculation method of S-transform is as follows.

Continuous S-Transform
The continuous S-transformation of the signal h(t) is

S(t, f ) � ∫+∞

−∞
h(t)w(t − τ, f )e−j2πf τdτ (2)

where w is the Gaussian window function, expressed as

w(t − τ) �
∣∣∣∣f ∣∣∣∣���
2π

√ e
−(t−τ)2 f 2

2 (3)

Discrete S-Transform
The power quality disturbance signal h(t) can be discretized as
h(kT), T is the sampling interval; the Fourier transform form of
the discrete sampling signal is

H[ n
NT

] � 1
N

∑N−1

k�0
h(kT)e−i2πnkN (4)

where n � 0, 1,/N − 1.
Let τ→ jt,f → n

(NT), the improved discrete S-transform
expression is as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S[jT , n
NT

] � ∑N−1

m�0
H[m + n

NT
]G(m, n)ei2πmk

N , n≠ 0

S[jT , 0] � 1
N

∑N−1

m�0
h( m

NT
), n � 0

(5)

where j,m, n � 0, 1, . . .N − 1,G(m, n) � e−(2π2m2

n2
).

Time-Frequency Matrix Extraction and
Cropping
It can be seen from the above that for a given power quality
disturbance signal sequence, using S-transform to perform

feature extraction on the sequence, a 2D matrix can be
extracted, the row information of which represents the
frequency feature and the column information for the time
feature. Then, a 3D mesh graph of disturbance signal is made
according to the extracted 2D matrix.

The dimension setting of the characteristic matrix is based on
certain rules: after feature extraction of the source signal, a large
number of feature vectors will be obtained, most of which are
redundant features. Feature redundancy causes too many
dimensions, will increase the amount of calculation, cause
overlap of the features and misclassification. If the
dimensionality is too few through dimensionality reduction,
characteristics of the disturbance signal will be insignificant
and the classification accuracy will decrease. Therefore,
choosing an appropriate time-frequency matrix dimension is
very important for the subsequent classification accuracy.
Based on the CNN model of the TensorFlow platform, when
reading the feature matrix, each feature matrix needs to be
integrated into a line of a csv file. The maximum number of
columns that the csv file can display is 16,384, and extra data
cannot be displayed. When the maximum number of columns
exceeds 16,384, the data will lead to not insert labels. In summary,
this matrix 126 × 251 is selected for the dimension of a single
input, this dimension can display the characteristics of the time-
frequency matrix well without increasing the computational
complexity.

In order to facilitate the subsequent input of the feature matrix
into the CNN, the extracted initial feature matrix needs to be
trimmed. Figures 1–8 is a 3D mesh graph of each power quality
signal sequence made by S-transform. In the figure, the x-axis
coordinate is the number of sampling points, the y-axis is the
frequency in Hz, and the z-axis is the normalized amplitude of the
signal. Different colors indicate the degree of normalized
amplitude, the lighter the color, the bigger the amplitude.
Take the harmonic signal of Figure 3 as an example, it is
expressed as adding other harmonic components of different
amplitudes on the basis of the normal signal. There are certain
thresholds for the frequency and amplitude of the disturbance
signal. By determining all types of disturbance signals within a
certain range, the 3D mesh graph of each disturbance signal is
compared with the 3D mesh graph of the normal signal, and
finding the sampling range that best represents the characteristics
of the disturbance signal. The feature matrix is trimmed
according to the obtained sampling range. According to the
obtained sampling range, the feature matrix is trimmed to
obtain a square matrix of 125 × 125 as the input to the CNN.
By trimming the feature matrix, the dimensionality of the input
matrix and the interference can be reduced, and the classification
accuracy and calculation speed can be improved.

CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN), as a deep learning
method, has been widely used in the field of pattern
recognition and image classification. The weight sharing
mechanism of CNN is very similar to the model of biological
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neural network. This mechanism makes the network model
simpler and greatly reduces the number of weights (Chen
et al., 2018). CNN is mainly composed of input layer,
convolutional layer, pooling layer (down-sampling layer), and
fully connected layer.

CNN Network Structure and Principle
The common CNN network is the LeNet-5 network, and its
structure is shown in Figure 9. The first few stages need to extract
features through multi-layer convolution.

The main components of CNN:
Convolutional layer: The purpose of the convolution

operation is to extract different features of the input. The first
convolutional layer may only extract some low-level features such
as edges, lines, and corners. More layers of the network can iterate
from the low-level features Extract more complex features.

Pooling layer: It is a form of downsampling. There are many
different forms of non-linear pooling functions, of which Max-

FIGURE 1 | S-transformation 3D mesh graph of normal signal.

FIGURE 2 | S-transformation 3D mesh graph of transient pulse signal.

FIGURE 3 | S-transformed 3D mesh graph of harmonic signal.

FIGURE 4 | S-transformation 3D mesh graph of the sag signal.

FIGURE 5 | S-transformed 3D mesh graph of the swell signal.
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pooling and average sampling are the most common; the Pooling
layer is equivalent to converting a higher resolution picture into a
lower resolution picture; the pooling layer can Further reduce the
number of nodes in the final fully connected layer, so as to achieve
the purpose of reducing the parameters in the entire neural network.

Fully connected layer: The connection method is the same as
that of a normal neural network, usually in the last few layers.

Generally speaking, CNN is a hierarchical model whose input
is raw data, such as RGB images, raw audio data, etc. CNN
extracts high-level semantic information from the original data
through convolution, pooling, and nonlinear activation function
mapping, and abstracts the original data layer by layer.

Convert the input raw data into the data form of a two-
dimensional matrix, input it to the convolutional layer through
the input layer, and use the convolutional layer to convolve the
two-dimensional matrix. The calculation formula is as follows

ymi � g⎛⎝∑k
j�1

conv2D(ym−1
i ,ωm−1

ij ) + bmi ⎞⎠ (6)

where g() is the activation function, bi is the bias value, ωij is the
weight between neurons, and yi is the ith input of the neuron.

Due to the slow convergence speed of the saturated nonlinear
function, and even the problem of the disappearance of the
gradient in the back propagation stage, the excitation function
in this paper adopts the ReLu nonlinear function, and its
expression is as follows

g(x) � max(0, x) (7)

After the original two-dimensional matrix is convolved by the
convolution layer, the two-dimensional matrix obtained by the
convolution operation is calculated by the ReLu activation
function, and the calculated result is input to the pooling
layer, and the downsampling operation is performed. As
shown in the formula

ymi � down(ym−1
i ) + bmi (8)

where down() represents the downsampling function.
By merging and pooling, the dimensionality of the input

feature matrix is reduced, and the calculation amount of the
network model is reduced. The fully connected layer is used to
transfer the weights and biases between neurons in each layer,
and finally is classified by the SoftMax classification layer.

Network Training Process
The CNN training process consists of two stages: the forward
propagation stage (Forward) and the backward propagation stage
(Backward).

Forward propagation stage: The input signal is continuously
processed by convolution, pooling and activation function in the
forward propagation stage, and the output O of the network is
calculated layer by layer. Network calculation can be expressed as

O � Gn(/(G2(G1(XW1))W2)/Wn) (9)

where Gi represents the nonlinear transformation; and
Wi(i � 1, 2,/, n) represents the weight of each weight layer.

FIGURE 6 | S-transformation 3D mesh graph of transient oscillation
signal.

FIGURE 7 | S-transformed 3D mesh graph of the interrupt signal.

FIGURE 8 | S-transformation 3D mesh graph of sag and harmonic
signal.
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After getting the network output O, use the ideal output Y to
evaluate the CNN network, and the ideal network satisfies Y�O.

Back propagation stage: According to the network output
obtained in the forward propagation stage, the error is
calculated, and the expression is as follows

E � 1
2
‖O − Y‖22 (10)

The gradient descent method is used to update and optimize
the weights and bias coefficients between neurons in each layer of
the network to minimize errors. The update method of weight
and bias in the network model is shown in the following formula

W l−1
ij (t + 1) � W l−1

ij (t) − η
zE
W l−1

ij

(11)

blj(t + 1) � blj(t) − η
zE
zblj

(12)

where η represents the learning efficiency, E represents the error
function.

CNN Parameter Settings
For different classification tasks, the determination of the CNN
structure requires both theoretical analysis and experimental
observation to select appropriate parameters. Each network
contains a different number of convolutional layers and
corresponding pooling layers, and the parameter settings of
each convolutional layer and pooling layer are also different.

The convolution kernel parameters that need to be set are:
stride (sliding step size), padding (convolution method) and the
size of the convolution kernel. Stride should not be set too large,
because too large will result in the loss of the feature amount of
the input data, so stride is generally set to 1 or 2. There are two
modes of padding setting: same and valid, same means that after
the convolution operation, the dimensionality of the input data
remains unchanged (0-padding is performed on the periphery of
the input data according to stride’s value); valid means that the
dimensionality of the input data will be reduced correspondingly
after the convolution operation, and the size of the convolution

kernel is determined according to the dimensions of the input
data. The calculation method of the output data size is as follows

U � [(I − C + 2pP)
S

] + 1 (13)

whereU is the size of the output data, I is the size of the input data,
C is the size of the convolution kernel, P is the number of zero
padding, and S is the size of the stride.

The sole purpose of the pooling layer is to reduce the
dimensionality of the input data, and its parameter settings
are: the selection of the pooling method, the size of the
pooling layer and the sliding step length. Take an example to
introduce the size and sliding step length of the pooling layer:
input a 4×4 data, set the size of the pooling layer to 2×2, and set
the step length to 2, and get an output 2×2 data after pooling.
Figure 10 shows several common pooling methods.

Max-pooling only retains the maximum value in the area.
Mean-pooling preserves the average value of the feature points in

FIGURE 9 | LeNet-5 structure chart.

FIGURE 10 | Common pooling methods.
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the area. Stochastic pooling only needs to randomly select the
elements in the feature map according to their probability value,
and the probability of element selection is positively related to its
value. Among them, Max-pooling retains the maximum value,
ignoring other values, which can reduce the impact of noise,
improve the robustness of the model, reduce the number of
model parameters, help reduce model overfitting problems, and
be more suitable for power quality classification problems.

EXAMPLE CONSTRUCTION

Mathematical Model of Power Quality
Disturbance
The validity of real-time power quality disturbance data is affected
by some other factors. For example, obtaining real-time power
quality disturbance data requires a long monitoring time, and the
location of the power quality disturbance event is uncertain, which
greatly affects work efficiency. Therefore, using MATLAB to
simulate the mathematical model of the power quality
disturbance signal, the disturbance signal obtained by the
simulation can accurately describe the real-time data in
accordance with international standards (Chowdhury et al.,
2016). Voltage sags, swells, spikes, interruptions, flickers,
transient oscillations, harmonics, sags and harmonics, swells
and harmonics are several common power quality disturbance
signals. Attached schedule 1 is the model of 10 kinds of disturbance
signals and standard signals, which are expressed as S0, S1,/S9.
among them f � 50Hz; ω � 2πf ; T � 1

f .

Construction of Simulation Experiment
Platform
This paper uses a two-dimensional CNN structure based on deep
learning, uses TensorFlow deep learning framework, and Python
3.5 programming language to build a network model. The
TensorFlow deep learning framework was built using a laptop
equipped with a 64-bit Ubuntu Linux 16.04LTS system and
NVIDIA GTX1080 graphics card. TensorFlow is an open-
source software library that uses data flow graphs for numerical
calculations. Its workflow is relatively easy, its API is stable, its
compatibility is good, and it can be perfectly combined with
NumPy. TensorFlow’s compilation time is very short, it can be
iterated faster, and its flexibility and efficiency are relatively high.
Using TensorFlow to build a two-dimensional convolutional
neural network model, the program compilation is simple, the
simulation speed is relatively fast, the flexibility is high, and it can
be well adapted to the numerical optimization task.

The CNN Model Used in This Article
The CNN model used in this paper is improved based on the
traditional LeNet-5 architecture model, including two
convolutional layers and two pooling layers. The parameter
settings of two convolution kernels are different, the specific
parameter settings of the first convolution kernel: stride is set to 1,
padding is set to same, the size of the convolution kernel is 3×3.
The parameter settings of the second convolution kernel: stride is

set to 1, padding is set to same, and the size of the convolution
kernel is 5×5. The parameter settings of the two pooling layers are
the same. The specific parameter settings are: Max-pooling is
selected as the pooling method, the size of the pooling layer is
5×5, and the step size is set to 5. The dimension of the data input
in this paper is 125×125, after the convolution and pooling
operation, the dimension of the output data obtained is 5×5,
and the output data obtained is input into the fully connected
layer for normalization processing to avoid the impact of
classification with large data values. Figure 11 shows the
convolutional neural node pair network model used.

The cross-entropy loss function is used as the loss function of
the CNN, and the SoftMax classification layer is used for
classification. Figure 12 shows the system structure model of
this article.

In the field of machine learning, if the model has too many
parameters and the number of training samples is too little, it will
lead to overfitting of the trained model. Overfitting often occurs
in the training process of neural networks, the specific
performance is: the model has a small loss function and high
prediction accuracy on the training data, while on the test data,
the loss function is relatively large and the prediction accuracy is
low. In order to prevent the occurrence of overfitting, the CNN
model used in this paper adds the Dropout function. In the
process of forward propagation, the Dropout function allows a
certain neuron to stop working with a certain probability, which
can make the generalization ability of the neural network model
stronger, so that it will not rely too much on some local features.

The role of the Dropout function:

1) Averaging effect: The Dropout removes neurons in different
hidden layers is similar to training different networks, and the
Dropout is equivalent to averaging multiple different neural
networks.

2) Reduce the complex co-adaptation relationship between
neurons: The update of weights no longer depends on the
joint action of hidden nodes with fixed relationships, forcing
the network to learn more robust features.

3) Dropout is similar to the role of gender in biological evolution:
In order to survive, species tend to adapt to the new
environment and can breed new species that adapt to the
environment. This behavior is similar to training an applicable
network model, which effectively prevents overfitting.

Disturbance Signal Classification Process
The flow diagram of the classification of power quality
disturbance signals is shown in Figure 13.

The specific steps are as follows:

1) Preprocess the power quality disturbance signal generated by
MATLAB, use S-transform to extract the time-frequency
matrix representing the disturbance signal, and draw a 3D
network diagram of the disturbance signal.

2) According to the time-frequency matrix extracted from the
3D network graph of the disturbance signal, a new matrix of
dimension 125×125 is obtained, and the training set is formed
to train the CNN.
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3) The cross-entropy loss function is adopted, and the Dropout
function is added in the forward propagation stage to prevent
the occurrence of overfitting. Use stochastic gradient descent
method to update the parameter model, and optimize the
model through error back propagation.

4) After the input data is convolved and pooled, the
characteristics of the disturbance signal are extracted, and
the SoftMax classification layer is used for classification. Then
the verification and test sets are used for verification and
testing to obtain the final classification results.

SIMULATION AND ANALYSIS

CNN Training
This article uses MATLAB to generate the power quality signals
shown in Supplementary Table S1. Normal signals and every

type of disturbance signal each generates 500 random samples, a
total of 5,000 samples, each signal is added with a signal-to-noise
ratio (SNR) of 20, 30 and 40dB Gaussian white noise. The feature
matrix of all power quality signals is extracted from S-transform,
and the feature matrix is trimmed using a 3D mesh graph. The
trimmed feature matrix is integrated into a row of feature values
by row, and a digital label is added to each row of data (0–9,
respectively represent the labels of 10 disturbance signals). Shuffle
all the data in rows and extract the first 3,000 rows of data from
the disrupted data set to form the training set, the middle 1,000
rows of data form the verification set, and the last 1,000 rows of
data form the test set. Use CNN to read the csv file containing the
disturbance signal data.

In order to evaluate the training status and training effect of
the network, the cross-entropy loss function and the classification
accuracy rate are drawn with the number of iterations (each
epoch represents training 50 times), namely the loss function

FIGURE 11 | CNN model.

FIGURE 12 | System structure model presented in this paper.
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curve and the classification accuracy curve. As shown in
Figure 14, the loss function curve has a relatively large decline
when the network is first trained. As the number of iterations
increases, the loss function curve begins to fluctuate, but gradually
stabilizes. As shown in Figure 15, the classification accuracy
curve gradually increases as the number of iterations increases,
and finally rises to a higher classification accuracy close to 1. As
the number of iterations increases, the two curves gradually tend
to converge, which proves that the entire network is continuously
optimized and improved, and the stability of the network is
gradually increasing. By comparing the classification effects of
disturbance signals with different signal-to-noise ratios, it can be

seen that the network still maintains a high classification accuracy
rate for signals with different noises, indicating that the method
has certain noise immunity and strong robustness.

Classification Effect
In order to further verify the effectiveness of this method, tests are
performed under different noise intensities. The classification
accuracy is shown in Table 1. It can be seen from Table 1 that
CNN has higher accuracy under different noise intensities,
indicating that the proposed method has strong noise
immunity performance in the classification of power quality
disturbance signals. In order to further determine the
misclassification of disturbance signals, take the case of a
signal-to-noise ratio of 40dB as an example, and list the
classification results of each disturbance signal in the table
below. It can be found that the classification accuracy of each
signal is relatively high, and there is no excessive misclassification.
The specific classification results of various disturbance signals
are shown in Table 2.

FIGURE 13 | Process diagram of classification of power quality
disturbance signals.

TABLE 1 | Classification accuracy of CNN with different SNR.

Disturbance type SNR/dB

20 30 40

Sinusoidal signal S0 1.000 1.000 1.000
Swell S1 0.985 0.988 0.995
Sag S2 0.987 0.990 0.991
Flicker S3 1.000 1.000 1.000
Transient pulse S4 0.986 0.989 0.993
Interrupt S5 0.984 0.987 0.989
Harmonics S6 0.983 0.989 0.994
Transient flicker S7 0.987 0.993 0.996
Swell and harmonics S8 0.991 0.993 0.997
Sag and harmonics S9 0.988 0.990 0.994
Average 0.989 0.992 0.995

FIGURE 14 | Training loss function curve.

FIGURE 15 | Classification accuracy curve.
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Comparative Analysis With Existing
Classification Models
The proposed classification model and existing classification
models are compared and analyzed to judge the classification
effect of the classification model proposed in this paper. Models
used for comparison include Probabilistic Neural Networks (PNN)
(Zhengming et al., 2018), Principal Component Analysis-based
Support Vector Machines (PCA-SVM) (Jiang et al., 2019a), and
traditional Convolutional Neural Networks (CNN) (Song et al.,
2018). The parameter setting of each model is set according to the
existing reference documents, and will not be repeated here.

As shown inTable 3, it is the comparison result of the classification
accuracy of different noise disturbance signals for each model.
Comparing and analyzing the accuracy of different classification
algorithms under different noise conditions, it is clear that the
algorithm proposed in this article maintains a high classification
accuracy rate under 20–40dB noise conditions. The results show
that the classification accuracy of PNNandPCA-SVM is slightly lower
than the model proposed in this paper. Since S-transform-CNN has
an additional step of feature extraction using S transform, the model
proposed in this paper has a higher classification accuracy and better
noise immunity than traditional CNN model.

In addition to classification accuracy, this paper also compares
classification time, the comparison results are shown in Table 4.
It can be seen that the training time of PNN is relatively longer,
because its structure is relatively complex and the number of
neurons is relatively large, so the computational complexity is
higher than the proposed method in this paper. The SVM in
PCA-SVM belongs to binary classification, and the training and
testing time is long. Since the proposed model has an extra feature
extraction process compared with the traditional CNN, the
training time is slightly longer.

From the comprehensive analysis results of the above two tables,
it can be seen that when considering the two factors of accuracy and
time consumption, the classification accuracy of the S-transform-
CNN method proposed in this paper is slightly lower than that of
PNN, but the time consumed is much less than that of PNN. The
reason is that the number of neurons in the PNN is relatively large,
which greatly increases the computational complexity and the time
consumed by the network. Among the existing disturbance signal
classification methods, most of the classification methods focus on
off-line detection and disturbance classification of power quality
disturbance signals. As power quality problems become more and

more complex and users have higher and higher requirements for
power quality, it is necessary to conduct online analysis of power
quality problems, and a shorter classification time is even more
important. Considering comprehensively, the method proposed in
this paper has higher classification accuracy and lower Time-
consuming, which indicates that it can reduce the time of
network training and testing and improve work efficiency while
ensuring the classification accuracy.

CONCLUSION

This paper proposes a new method of power quality disturbance
classification based on S-transform and CNN. Use S-transform to
extract characteristics of disturbance signals, extract the time-
frequency matrix representing the characteristics of the disturbance
signal, then use the 3D mesh graph of the disturbance signal to trim
the extractedmatrix, and input the processedmatrix into the CNN for
classification. Under different noise levels, this method obtains
relatively good classification accuracy for power quality disturbance
signals, and has good noise immunity. The difference between this
method and other methods based on CNN is the input form of the
CNN. Traditional methods input the gray image of the disturbance
signal. This paper directly inputs the characteristic matrix of the
disturbance signal into the CNN. Compared with the traditional
method, themethod in this paper is more concise and reduces the loss
of characteristics. Under the premise of ensuring classification
accuracy and noise immunity. Further research will try to improve
the performance of thismethod by introducing new feature extraction
rules, and consider introducing more complex disturbance signals for
classification to meet actual power quality analysis needs.
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TABLE 2 | Classification result details when the SNR is 40dB.

Type S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

S0 100 0 0 0 0 0 0 0 0 0
S1 0 99 0 1 0 0 0 0 0 0
S2 0 1 98 0 0 1 0 0 0 0
S3 0 0 0 100 0 0 0 0 0 0
S4 0 0 0 0 99 0 1 0 0 0
S5 0 0 1 0 0 99 0 0 0 0
S6 0 0 0 0 0 0 99 1 0 0
S7 0 0 0 0 0 0 0 99 0 0
S8 0 1 0 0 0 0 0 0 99 0
S9 0 0 1 0 0 0 0 0 0 99

TABLE 3 | Classification accuracy of different algorithms.

Algorithm Classification accuracy

20dB 30dB 40dB

PNN 0.986 0.989 0.992
PCA-SVM 0.965 0.968 0.971
CNN 0.952 0.954 0.958
S-transform-CNN 0.986 0.992 0.995

TABLE 4 | Time consumption comparisons of different algorithms.

Algorithm Training time(s) Testing time(s) Total time(s)

PNN 637 1.1 638.1
PCA-SVM 468 1.3 469.3
CNN 193 0.6 193.6
S-transform-CNN 205 0.8 205.8
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