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In view of the intrinsic complexity of the oil market, crude oil prices are influenced by
numerous factors that make forecasting very difficult. Recognizing this challenge,
numerous approaches have been introduced, but little work has been done
concerning the interval-valued prices. To capture the underlying characteristics of
crude oil price movements, this paper proposes a two-stage forecasting procedure to
forecast interval-valued time series, which generalizes point-valued forecasts to
incorporate uncertainty and variability. The empirical results show that our proposed
approach significantly outperforms all the benchmark models in terms of both forecasting
accuracy and robustness analysis. These results can provide references for decision-
makers to understand the trends of crude oil prices and improve the efficiency of economic
activities.

Keywords: crude oil prices forecasting, forecast combination, interval-valued time series, model averaging, vector
L2-boosting

1 INTRODUCTION

As one of the most important commodities, crude oil plays a vital role in various fields. In the past
decades, crude oil prices have been extremely volatile (see Figure 1). The oil-related industries are
highly sensitive to oil price changes (Ebrahim et al., 2014; Taghizadeh-Hesary et al., 2016). Accurate
prediction of crude oil prices and the market volatility is valuable for market participants tomake risk
management plans and investment decisions (Zaabouti et al., 2016; Zhang et al., 2020). The crude oil
prices are volatile, and are dependent on many factors such as market trends, sentiments and stock
markets. The aforementioned factors make the crude oil prices unstable and makes its prediction
complicated and challenging. Thus, we aim to develop a reliable model for crude oil price forecasting.

In recent literatures, most of the existing methods focus on the point-valued crude oil closing
prices (Abramson and Finizza, 1995; Zhang et al., 2008; Kilian, 2009; Zhang et al., 2009; Shin et al.,
2013; Zhao et al., 2017; Binder et al., 2018; Álvarez-Díaz, 2019). However, the use of closing prices has
the disadvantage that it does not take into account the oil price variation information within a given
period time, e.g., the midpoint and range of crude oil prices in October 2008 are about $76.61/bbl and
$36.31/bbl respectively. While the midpoint and range of crude oil prices in November 2009 are
around $77.99/bbl and $5.42/bbl respectively.

Edited by:
Farhad Taghizadeh-Hesary,

Tokai University, Japan

Reviewed by:
Ehsan Rasoulinezhad,

University of Tehran, Iran
Robina Iram,

Jiangsu University, China

*Correspondence:
Yuying Sun

sunyuying@amss.ac.cn

Specialty section:
This article was submitted to

Sustainable Energy Systems and
Policies,

a section of the journal
Frontiers in Energy Research

Received: 12 May 2021
Accepted: 16 July 2021

Published: 19 August 2021

Citation:
Huang B, Sun Y and Wang S (2021) A

New Two-Stage Approach with
Boosting and Model Averaging for

Interval-Valued Crude Oil Prices
Forecasting in

Uncertainty Environments.
Front. Energy Res. 9:707937.

doi: 10.3389/fenrg.2021.707937

Frontiers in Energy Research | www.frontiersin.org August 2021 | Volume 9 | Article 7079371

ORIGINAL RESEARCH
published: 19 August 2021

doi: 10.3389/fenrg.2021.707937

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.707937&domain=pdf&date_stamp=2021-08-19
https://www.frontiersin.org/articles/10.3389/fenrg.2021.707937/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.707937/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.707937/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.707937/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.707937/full
http://creativecommons.org/licenses/by/4.0/
mailto:sunyuying@amss.ac.cn
https://doi.org/10.3389/fenrg.2021.707937
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.707937


Such forecasts with point-valued crude oil price data have not
been particularly successful when compared with the interval-
valued time series forecasts (see Sun et al., 2019). What is more,
recent studies also provide empirical evidence suggesting that ITS
models have achieved great success on improving the forecast
accuracy in a wide range of fields such as stock price forecasting
(Maia and de Carvalho, 2011; Xiong et al., 2017) and forecasting
in energy markets, such as electric power demand (García-
Ascanio and Maté, 2010; Hu et al., 2015), and crude oil prices
(Yang et al., 2016). By accessing more information (e.g., highs,
lows, midpoints, and range), an interval-based method is
expected to be superior to the point-based method (Sun et al.,
2018). Here, highs and lows are points of inflection for prices. The
price range is the difference between two boundaries, which gives
the interval length. It can be regarded as a measure of volatility to
reflect the price fluctuation. For example, instead of traditional
point-based method, Yang et al. (2012) introduce interval
dummy variables in the autoregressive conditional interval
models. Sun et al. (2019) apply a threshold autoregressive
interval-valued model. Qiao et al. (2019) develop an interval-
valued factor pricing model. Conclusions from prior studies
suggest that interval-valued time series (ITS) models may
produce more accurate forecasts.

Therefore, the desirable characteristics of the interval
modeling make them ideal candidates for the prediction of
crude oil prices. In addition, it is well known that a large set
of factors are responsible for changes in the crude oil price,
including overall economic conditions, demand and supply,
monetary policy, as well as speculative trading (Hamilton,
2008; Yoshino and Taghizadeh-Hesary, 2014). Thus, the
number of potential predictors can be very large. In such
cases, interval-valued variable selection is considered necessary
and becomes the critical step in achieving promising forecasting
performances in data-rich environments. On the other hand, in
practice, when only some of the variables are selected to include as
the predictors in a model, model misspecification is unavoidable,
which can worsen the model forecast performance of the model.

Therefore, model averaging is considered to take a weighted
average of possible combinations of selected interval-valued
predictors.

For these reasons, this paper proposes a new two-stage
procedure for interval valued crude oil price forecasting based
on boosting andmodel averaging. First, we extend the L2 boosting
method by Buhlmann (2006) to achieve variable selection for the
interval model. Several penalized methods have been proposed to
achieve variable selection. Examples include the class of Bridge
estimators (Frank and Friedman, 1993), where the Lasso-type
estimators are included a special case (Knight and Fu, 2000), or
the smoothly clipped absolute deviation (SCAD) estimator (Fan
and Li, 2001). Instead of these regularized (penalized) methods,
Donald et al. (2009) apply information criteria for moment
selection, Ng and Bai (2009) develop boosting for variable
selection, where variable selection and shrinkage are
performed simultaneously to increase prediction accuracy. The
proposed vector boosting algorithm can achieve significant
dimension reduction when a long list of interval-valued
variables is available.

Next, we extend the LsoMA method developed by Liao et al.
(2019) to average predictions from interval models with interval-
valued exogenous variables to reduce model uncertainty. The idea
of model averaging (MA) is first introduced to combine
predictions from many forecasting models by Bates and
Granger (1969) and has received great interest in econometrics
and statistics. Model averaging is an extension of model selection
which can substantially reduce the selection bias induced by
selecting only one candidate model. Hoeting et al. (1999)
provide a comprehensive summary of previous research on
Bayesian model averaging (BMA) where models are weighted
by the posterior model probabilities. Unlike BMA, frequentist
model averaging (FMA) usually select the optimal weighting with
the smallest information criteria scores (Buckland et al., 1997;
Hjort and Claeskens, 2003; Hjort and Claeskens, 2006; Zhang and
Liang, 2011; Zhang et al., 2012; Xu et al., 2014), Mallows model
averaging (MMA) by Hansen (2007), jackknife model averaging

FIGURE 1 | Crude oil West Texas Intermediate (WTI), January 2005–December 2020.
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(JMA) by Hansen and Racine (2012). Liao and Tsay (2016)
extend MMA to the situation of the VAR models.

Univariate and bivariate methods are broadly the two main
approaches in the interval modeling literature. In the univariate
method, models are presented separately for a pair of attributes of
interval variables (e.g., midpoint and range). The two attributes are
estimated separately (De Carvalho et al., 2004; Maia et al., 2008),
thus only information of one attribute is used in estimating model
parameters at a time. Unlike the univariate method, the bivariate
method estimates the two attributes simultaneously (e.g., Cheung
et al., 2009; He et al., 2010; Lima Neto and De Carvalho, 2010;
Arroyo et al., 2011; González-Rivera and Lin, 2013), which is more
desirable in ITS forecasting. Therefore, in this paper, in order to
consider possible interdependence between midpoint and range,
the LsoMA methods are constructed following the bivariate
modeling approach to efficiently use the contained information.

This paper proposes a two-stage vector boosting model
averaging (2SVBMA) forecasting framework: Stage 1 uses vector
L2 Boosting to select interval-valued variables; Stage 2 uses the
leave-subject-out cross-validation model averaging method with
exogenous interval-valued variables to average interval-valued
predictions. Our procedure combines the merits of these two
techniques and can be easily adapted to any new situation. We
compare our 2SVBMA method with other competing methods
including model selection methods by Akaike information
criterion (AIC), Bayesian information criterion (BIC), Hannan-
Quinn (HQ), and model averaging methods by smoothed AIC,
smoothed BIC (Buckland et al., 1997), smoothedHQ, andMMA in
interval model. The empirical results indicate that the 2SVBMA
method has better forecasting performance than the commonly
used model selection and averaging methods.

Our proposed 2SVBMA forecasting procedure has a few
appealing features. First, this approach extends the forecasting
success of point-valued data models of crude oil price to interval-
valued data models, which is capable of assessing and forecasting
the changes in both the trend and volatility of crude oil prices
simultaneously due to the informational gain from interval-
valued data. Second, our vector boosting method provides a
parsimony and feasible solution to the interval-valued variable
selection problem for interval models. Third, the extended
interval-valued LsoMA model with interval-valued exogenous
variables demonstrates the gains in forecast accuracy through
forecast combination. By doing so, our approach improves crude
oil price forecasting performances significantly.

The remainder of this paper is organized as follows. Section 2
first proposes 2SVBMA methodology, starts with extended L2
boosting to interval-valued variable selection and develops the
LsoMAwith interval-valuedmodel with interval-valued exogenous
variables. Section 3 provides the empirical implementations.
Section 4 discusses the empirical results. Section 5 concludes.

2 METHODOLOGY

2.1 Model Framework
Let (Ω,F , P) be a probability space, where Ω is the set of
elementary events, F is the σ-field of events, and

P: F → [0, 1] is the σ-additive probability measure. An interval
random variable is defined as a measurable mapping
X: F → [xL, xU ] ∈ R, such that for all x ∈ [xL, xU ] there is a set
AX(x) ∈ F , where AX(x) � {w ∈ Ω|X(w) � x} with x ∈ [xL, xU ]
(Arroyo et al., 2011; González-Rivera and Lin, 2013). A stochastic
ITS {yt � [yL,t , yU ,t]}Tt�1 can be represented by its midpoint and
range, i.e., yt � < yc,t , yr,t >, where yc,t � 1

2 (yL,t + yU ,t) and
yr,t � yU ,t − yL,t . Assume that {yt} is stationary and follows a
vector autoregressive models with interval-valued exogenous
variables:

yt � ∑p
i�1

αiyt−i +∑q
j�1

βjxt−j + εt

≡ Π′zt + εt , t � 1, . . . ,T ,

(1)

where ytb(yc,t , yr,t)′, xt−jb(xc,t−j, xr,t−j)′, and εt � (εc,t , εr,t)′ is
an interval-valued sequence with mean zero and covariance
matrix Eεtεt′ ≡ Σ , and αi and βj are the coefficient matrix
that satisfies ∑p

i�1‖αi‖<∞ and ∑q
j�1‖βj‖<∞, zt � (yt−1′ , . . . ,

yt−p′ , xt−1′ , . . . , xt−q′ )′ is a 2(p + q) × 1 vector, Π � (α1, . . . ,
αp, β1, . . . , βq)′ is a 2(p + q) × 2 vector, and the assumed initial
data are {yt}0t�−p+1. This data generating process guarantees the
natural order of the intervals, i.e., the lower bound is smaller than
or equal to the upper bound.

In matrix form, (1) is represented by

Yc � ZΠc + εc, (2)

and

Yr � ZΠr + εr , (3)

where Yc � (yc,1, . . . , yc,T )′, Yr � (yr,1, . . . , yr,T)′,
Z � (z1, . . . , zT)′, Π ≡ (Πc,Πr), εc � (εc,1, . . . , εc,T )′, and εr �
(εr,1, . . . , εr,T)′.

The least squares estimators of Πc and Πr are given by

Π̂c � (Z′Z)−1Z′Yc, (4)

and

Π̂r � (Z′Z)−1Z′Yr . (5)

2.2 First Stage: Vector Boosting
We first extend L2Boosting regularization method to interval
model to select a subset of interval-valued variables. Zk is the kth

row in Z. They are the potential interval-valued variables that will
be selected by vector boosting. Zk,t is the tth element in Zk andΠk

is the corresponding kth interval-valued coefficient of Π, where
k � 1, . . . , p + q. Let m denote the mth iteration in the vector
boosting procedure, and M̄ denote the maximum number of
iteration. At each step m, the interval-valued variable Π̂

̂

km
that

is most relevant to the “current interval-valued residual” is
selected. Denote Fm,t as the strong learner and fm,t as the
weak learner for k � 1, . . . , p + q. Let ̂εm � ( ̂εm,1, . . . , ̂εm,T)′, fm �
(fm,1, . . . , fm,T)′ and Fm � (Fm,1, . . . , Fm,T)′.

Vector L2 Boosting performs an interval-valued variable
selection for Y using the following procedure:
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1. When m � 0, the initial weak learner for yt is

F0,t � f0,t � 1
T

∑T
t�1

yt . (6)

2. For each step. m � 1, . . . ,M̄
1) Compute the “current interval-valued residual,”

̂εm,t � yt − Fm−1,t .
2) Regress the current interval-valued residual

̂εm,t � ( ̂εc,m,t , ̂εr,m,t)
′ on each Zk,t . The estimator Π

̂
k is

obtained as

Π̂c,k � minΠc,k ∑
T

t�1
̂εc,m,t − Zk,tΠc,k)2,( (7)

Π̂r,k � minΠr,k ∑
T

t�1
̂εr,m,t − Zk,tΠr,k)2.( (8)

The interval-valued variables that has the minimum sum of
squared residuals is picked up, such that

km � argmink∈{1,...,p+q} ∑T
t�1

̂εm,t − Zk,t Π̂k)2.( (9)

3) The weak learner is

fm,t � Zkm ,tΠ̂km
, (10)

where Zkm ,t is the interval-valued variable that is selected.

4) The strong learner Fm,t is updated as

Fm,t � Fm−1,t + cmfm,t , (11)

with cm > 0, where cm is a learning rate, which can be seen as a
small step size when updating Fm,t .

To avoid overfitting, a version of AIC is used to choose the
optimal number of iteration M

̂
. Define Pm � Zkm(Zkm′Zkm)

−1Zkm′
to be an T × T matrix. From Equation (10),

ZkmΠ̂km
� Pm ̂εmfm � Pm Y − Fm−1( ). (12)

The strong learner at each step m is

Fm � Fm−1 + cmPm Y − Fm−1( )
� IT×T −∏m

a�0
IT×T − ckaPka( )⎡⎣ ⎤⎦Y �: BmY.

AIC is given as

AIC(m) � log( ̂σ2m) +
1 + trace(Bm)/T

1 − (trace(Bm) + 2)/T . (13)

where log( ̂σ2m) � 1
T ∑T

t�1( ̂εm − cmfm,t)2. Then
M̂ � argminm�1,..., ̄MAIC(m).

2.3 Second Stage: LsoMA
After selecting these important exogenous interval-valued
variables, LsoMA technique is extended to interval candidate

models with interval-valued exogenous variables, which is
adopted to reduce model uncertainty and increase forecast
accuracy.

Consider S candidate models used to approximate the DGP in
Eq. (1) with S to be infinite if the sample size is going to infinity.
The sth (1≤ s≤ S) candidate model is given by

yt � ∑is
i�1

αiyt−i +∑js
j�1

βjxt,j + εt ,

≡ z(s)′t Π(s) + εt , t � S + 1, . . . ,T ,

where z(s)t � (yt−1′ , . . . , yt−is′ , xt,1′ , . . . , xt,js′ )′, Π(s) � (α1, . . . , αis,
β1, . . . , βjs)′, and 1≤ is, js ≤ S. Then in matrix form, we have

Y � Z(s)Π(s) + ε,

where Y � (yS+1, . . . , yT)′, Z(s) � (z(s)S+1, . . . , z
(s)
T )′, and

ε � (εS+1, . . . , εT)′. For each candidate model, we use
multivariate least squares (LS) method to estimate parameters

and thus the LS estimator of Π(s) is Π̂(s) � (Z(s)′Z(s))−1Z(s)′Y,
and the corresponding estimator of conditional mean μ is ̂µ(s) �
Z(s)Π̂(s) in sth candidate model.

Let the weight vector w � (w1, . . . ,wS)′ ∈ W �
{w ∈ [0, 1]S: ∑S

s�1ws � 1}. Then the model averaging estimator

of conditional mean μ is ̂µ(w) � ∑S
s�1ws ̂µ(s). To obtain the

optimal weights, it is common to minimize the following
squared loss function:

L(w) � ‖μ − μ(w)‖2. (14)

However, this loss is infeasible because of the unknown
conditional mean μ. We follow the spirit of Liao et al. (2019)
to use the following feasible leave-subject-out cross-validation
criterion of choosing weights

LsoMA(w) � trace{(Y − ̃µ(w))Σ−1(Y − ̃µ(w))′}, (15)

where ̃µ(s) � ( ̃µ(s)′
S+1 , . . . , ̃µ(s)′

T )′, ̃µ(s)
S+t � ψ(s)t

̃µ(s)
[t], ψ(s)t is the

selected matrix to select observations at time point S + t, ̃µ(s)
[t]

is the leave-subject-out cross-validation estimator after deleting

some observations around S + t, and ̃µ(w) � ∑S
s�1ws ̃µ(s); see more

discussions in Liao et al. (2019). Minimizing this criterion, we
have

ŵ � arg minw∈WLsoMA(w), (16)

and thus the model averaging estimator is ̂µ(ŵ). As Liao et al.
(2019) proved, the weight obtained by minimizing the feasible
cross-validation criterion LsoMA(w) is asymptotically optimal in
the sense of achieving the lowest possible quadratic errors, i.e.,

L(ŵ)
infw∈HTL(w)

� 1 + op(1).

This shows that the squared error loss obtained from the
selected weight vector ŵ is asymptotically equivalent to the
infeasible optimal averaging estimator.
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3 EMPIRICAL IMPLEMENTATIONS

This section applies the proposed 2SVBMA procedure to forecast
the real price of crude oil. Data and preliminary analysis are
introduced in Section 3.1. Then the selected interval-valued
factors are introduced in Section 3.2. Section 3.3 introduces
the candidate models. Section 3.4 provides competing methods.

3.1 Data and Preliminary Analysis
Following Wang et al. (2017), Chai et al. (2018) and Yu et al.
(2019), the daily point-valued WTI crude oil prices are used to
construct the interval-valued monthly prices. yU ,t and yL,t denote
the daily maximum and minimum prices within tth month. yc,t �
(yU ,t + yL,t)/2 and yr,t � yU ,t − yL,t are the midpoint and range
from an interval-valued price observation yt � 〈yc,t , yr,t〉. The
data period used in the research is from January 2005 to
December 2017. Data on crude oil prices are collected from
the US Energy Information Administration (EIA). Figure 2
presents the interval-valued crude oil prices: the range (yr,t ,
right y-Axis), the maximum (yU ,t , left y-Axis), and minimum
(yL,t, left y-Axis) prices within 1 month, where we can see that the
boundaries and ranges are interlinked, e.g., a strong increase in

volatility (yr,t) is accompanied by a significant decrease in crude
oil prices during the second half of 2008.

Table 1 presents the summary of statistical characteristics.
First, it is shown that the spread of ranges is slightly smaller than
the volatility in the boundaries (DyU ,t � yU ,t − yavg ,t−1 and
DyL,t � yL,t − yavg ,t−1), where yavg,t is the monthly prices from
EIA. In addition, the skewness and leptokurtic kurtosis are
different among yr,t , DyL,t and DyU ,t . Compared with DyL,t
and DyU ,t , yr,t is with greater skewness and higher leptokurtic.
We can see from Table 1 that the interval-valued data can capture
more information than the point-valued data.

3.2 Interval-Valued Control Variables in the
First Stage
The potential choices of monthly interval-valued explanatory
variables from various aspects are considered in this section,
including the stock market, commodity market, technology
factor, search query data, speculation, monetary market and
currency market (Pan et al., 2014; Wang et al., 2016; Wang
et al., 2017; Chai et al., 2018; Yu et al., 2019); see Table 2 for more
discussions. First, the Augmented Dickey-Fuller tests suggest that

FIGURE 2 | Interval valued crude oil prices from EIA, January 2005–December 2017.

TABLE 1 | Basic statistical analysis on monthly interval-valued crude oil prices.

Mean Median Maximum Minimum Std. dev Skewness Kurtosis

yU,t 75.63 73.19 145.31 32.74 24.32 0.35 −0.71
yL,t 67.31 65.26 122.30 26.19 22.78 0.23 −1.01
yavg,t 71.41 69.54 133.88 30.32 23.54 0.30 −0.86
DyU,t 0.06 0.06 0.32 −0.15 0.08 0.32 0.93
DyL,t −0.06 −0.04 0.13 −0.64 0.11 −1.95 6.30
yr,t 0.12 0.10 0.49 0.04 0.07 2.11 8.33
yc,t 0.00 0.01 0.22 −0.39 0.09 −1.03 2.83
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the null hypothesis for the original control variables is hardly
rejected at the 5% significance level, except for non-commercial
net long ratio (NLt) and the Federal funds rate (FDt). For
stationarity, we use the Hukuhara’s difference of interval-
valued exogenous variables. The Hukuhara’s difference
between a pair of intervals is essentially equal to the regular
difference between points in intervals. As Yang et al. (2016)
mentioned, the concept of interval with Hukuara’s difference is
useful and suitable for econometric analysis of interval data. Take
S&P 500 index (SPt) as an example. It is defined as
ΔSPt � SPt − SPt−1 � [Δ̃SPc,t , Δ̃SPr,t], where Δ is the
Hukuhara’s difference between intervals, and Δ

̃
is the regular

difference between intervals. This implies that the midpoints and
centers of these interval-valued exogenous variables are
stationary after Hukuhara’s difference. Similarly, we have
ΔDJt , ΔGFt , ΔCFt and ΔRDt ; see specific definitions in Table 2.

Second, Table 3 provides a summary of statistical
characteristics. It is shown that no matter whether the time
series is transferred by Hukuhara’s difference, the midpoints
and ranges for interval-valued control variables appear to have

different skewness and leptokurtic kurtosis properties. This
suggests that using one attribute of ITS contains partial
information only. Thus, it is highly desirable to utilize the
information contained in interval-valued data.

Third, we use the extended L2 Boosting regularization method
to select interval-valued control variables. Specifically, we set the
lag length L � 12 for every control variable and thus the number
of the potential explanatory interval-valued variables equals
12 × 9 � 108. For vector boosting, we start with the learning
rate c � 0.01, iteration � 100 times. These parameters are adjusted
during training. After using various training sets, ΔSPt+h−1,
ΔGFt+h−1, ΔGFt+h−2, ΔGFt+h−3, WBt+h−1, and GTt+h−4 are
selected with duplicates removed and used to do h-step-ahead
out-of-sample forecasts of interval-valued crude oil prices.

Furthermore, these selected interval-valued control variables
have important economic interpretation for crude oil prices as
follows:

ΔSPt+h−1: It provides information of fundamentals and
volatility contained in S&P 500. The movement of S&P 500
Index may closely mirror that of the crude oil prices (e.g.,

TABLE 2 | Monthly interval-valued exogenous variables.

Variables Description Transformation Explanation

SPt � [SPc,t ,SPr,t ] S&P 500 index Δ ln Affect expected cash flows and/or discount rates,
DJt � [DJc,t ,DJr,t ] Dow Jones industrial index Δ ln be affected through the expected rate of inflation and the expected real

interest rate
GFt � [GFc,t,GFr,t ] COMEX gold future closing prices Δ ln Safe haven against oil price movements
CFt � [CFc,t ,CFr,t ] LME copper future closing prices Δ ln
WBt � [WBc,t ,WBr,t ] WTI-Brent spot price spread Level Measure of the technology influence
FDt � [FDc,t , FDr,t ] Federal funds rate Level As oil prices increased, so did concerns about increasing inflation
RDt � [RDc,t ,RDr,t ] Generalized real US dollar index Oil price is dollar-denominated
GTt � [GTc,t ,GTr,t ] The key word of oil price in the Google trend search

engine
Level Reflect psychological behaviors of investors

NLt � [NLc,t ,NLr,t ] Non-commercial net long ratio Level Provide liquidity to offset risks

Note: (1) These interval-valued variables after transformations are used in candidatemodels. Transformations are (i) level: Xt � St; (2) Δ ln: Xt � lnSt − lnSt−1; (iii) Δ: Xt � St − St−1, where St

is the original series obtained from EIA or Wind database.

TABLE 3 | Basic statistical analysis on monthly interval-valued explanatory variables.

Mean Median Maximum Minimum Std. dev Skewness Kurtosis

ΔSPr,t 0.05 0.04 0.31 0.01 0.04 3.63 17.41
ΔSPc,t 0.00 0.00 0.06 −0.16 0.03 −1.82 7.59
ΔDJr,t 0.05 0.04 0.28 0.01 0.04 3.47 16.36
ΔDJc,t 0.00 0.00 0.05 −0.14 0.03 −1.59 5.90
ΔGFr,t 0.07 0.06 0.24 0.02 0.03 1.77 4.24
ΔGFc,t −1.81 −1.73 −1.22 −2.58 0.31 −0.55 −0.35
ΔCFr,t 0.09 0.08 0.51 0.02 0.06 3.06 17.02
ΔCFc,t 1.81 1.73 2.52 1.26 0.32 0.54 −0.49
WBr,t 2.29 1.69 15.36 0.01 2.15 2.39 9.12
WBc,t 1.12 0.86 12.24 −2.87 1.77 2.03 9.76
GTr,t 0.28 0.21 0.97 0.04 0.19 1.14 0.80
GTc,t 3.88 4.01 4.54 2.60 0.47 −0.93 0.30
NLr,t 0.03 0.03 0.12 0.01 0.02 1.48 2.97
NLc,t 0.11 0.12 0.25 −0.09 0.07 −0.23 −0.70
FDr,t 0.03 0.02 0.10 0.00 0.02 0.90 0.84
FDc,t −0.15 −0.18 0.01 −0.21 0.06 1.92 1.88
RDr,t 0.19 0.09 2.75 0.01 0.32 4.61 28.40
RDc,t 1.34 0.28 5.32 0.06 1.77 1.26 0.08
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Kilian, 2009; Miller and Ratti, 2009; Balcilar et al., 2015; Ding
et al., 2016). As discussed in Kilian (2009) and Miller and Ratti
(2009), the oil price shocks influence stock prices by affecting
expected cash flows and discount rates, since crude oil is an
important input in production and its price can influence the
costs for the manufacturing and transport sectors.

ΔGFt+h−j (j � 1,2,3): It is the logarithmic difference between
Comex gold future prices at t + h − j and t + h − j − 1, which
provides information in Comex gold future market (e.g., Baur
and Lucey, 2010; Reboredo, 2013; Souček, 2013; Kang et al.,
2017). Gold serves as store of value especially during periods of
economic uncertainties. Oil prices can affect levels of inflation
(Zhao et al., 2016). Gold investment can be used as a hedge
against inflation and currency depreciation. It can also be viewed
as a safe haven against the stock market turbulence for investors.

WBt+h−1: It is WTI-Brent spot price spread, which is the price
difference between crude oil and the byproducts refined from it.
The crack spread gives the profit margin that a refinery can
expect. Thus, a tight spread can be seen as a indicator that refiners
may slow production to tighten supply.

GTt+h−4: It is the search query data collected from Internet,
which has been widely applied as indicator when analyzing the
crude oil prices and has been demonstrated to be effective in
improving forecasts performance (Fantazzini and Fomichev,
2014; Li et al., 2015a; Wu et al., 2021; Yang et al., 2021). The
keyword “oil price” is searched in the Google Trend search
engine. Search query data is expected to reflect the
psychological aspects of investors when they making strategic
investment decisions in the crude oil market (Li et al., 2015b).

3.3 Model Averaging in the Second Stage
3.3.1 Candidate Models
We consider 6 lagged dependent variables yt−1, . . . , yt−6 and 6
exogenous variables selected from vector boosting. As we use
monthly interval-valued crude oil prices, the maximum lag is set
to 6, including the past half year information. Exogenous
variables are sorted by relevance to yt during the estimation
period. Then, 12 nested interval predictive candidate models are
considered as:

Model 1. yt+h � α1yt+h−1 + εt+h.
Model 2. yt+h � ∑2

i�1 αiyt+h−i + εt+h.
Model 3. yt+h � ∑3

i�1 αiyt+h−i + εt+h.
Model 4. yt+h � ∑4

i�1 αiyt+h−i + εt+h.
Model 5. yt+h � ∑5

i�1 αiyt+h−i + εt+h.
Model 6. yt+h � ∑6

i�1 αiyt+h−i + εt+h.
Next, 6 exogenous variables are added to Model 6 to construct

Models 7–12, sorted by relevance to Y:
Model 7. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + εt+h.
Model 8. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 + εt+h.
Model 9. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +
β3ΔGFt+h−2 + εt+h.

Model 10. yt+h � ∑6
i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +

β3ΔGFt+h−2 + β4ΔGFt+h−3 + εt+h.
Model 11. yt+h � ∑6

i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +
β3ΔGFt+h−2 + β4ΔGFt+h−3 + β5WBt+h−1 + εt+h.

Model 12. yt+h � ∑6
i�1αiyt+h−i + β1ΔSPt+h−1 + β2ΔGFt+h−1 +

β3ΔGFt+h−2 + β4ΔGFt+h−3 + β5WBt+h−1 + β6GTt+h−4 + εt+h.

These candidate models are used for LsoMA in the second
stage. We do h-step-ahead prediction with h ∈ {1, 4, 8, 12}.

3.4 Competing Methods
In this paper, we compare 2SVBMA forecasts with various
competing methods, including AIC, BIC, HQ, Mallows model
averaging (MMA; Liao et al., 2019), smoothed AIC (SAIC),
smoothed BIC (SBIC) and smoothed Hannan-Quinn (SHQ)
based on the same set of candidate models (model 1 - model 12).

The AIC criterion for the sth candidate model (1≤ s≤ 15) is
AIC(s) � ln | ̂Σ(s)| + 2s22/T , where ̂s minimizes AIC(s) and

̂Σ(s) � (T − S)−1(Y − ̃µ(s))′(Y − ̃µ(s)) as the residual covariance
matrix from the sth candidate model. Similarly, BIC and HQ
are model selection methods, minimizing the corresponding
criteria BIC(s) � ln | ̂Σ(s)| + (ln T)s22/T , HQ(s) � ln | ̂Σ(s)|+
2(ln lnT)s22/T , respectively. These three selected candidate
models ares used as benchmark models.

Four model averaging (or forecast combination) methods are
considered here. MMA proposed by Liao and Tsay (2016) is an
extension of Mallows criterion to vector regression models.
Specifically, the multivariate Mallow criterion for model
averaging takes the following form:

CT(w) �(T − S) trace ̃Σ(S)−1 ̂Σ(w)) + 2 · 22s′w(
where ̃Σ(S) � 1

T−S−2S ∑T
t�S+1 ̂εt(S) ̂εt(S)′, ̂Σ(w) � 1

T−S ∑T
t�S+1 ̂ε

t(w) ̂εt(w)′, and s′w � ∑S
s�1w(s)s. The Mallows weight vector

is defined by:

ŵ � argmin
w∈W

CT(w).

SAIC, SBIC and SHQ are simple model averaging methods
with the weights

wAIC,s � exp −AIC(s)/2( )/∑S
s�1

−AIC(s)/2( ),
and

wBIC,s � exp −BIC(s)/2( )/∑S
s�1

−BIC(s)/2( ),
and

wHQ,s � exp −HQ(s)/2( )/∑S
s�1

−HQ(s)/2( ),
respectively.

4 EMPIRICAL RESULTS

This section compares the forecasting performance of the
proposed 2SVBMA approach with various competing methods
presented in previous studies by using interval-valued crude oil
prices. The whole sample from 2005 January to 2017 December
are divided into two parts: one is used for parameter estimation,
and the other is used for out-of-sample forecasting. Various
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subsamples for estimation and forecast are used to test prediction
accuracy; see Tables 4, 5.

Tables 4, 5 report the MSPEs of h-step-ahead (1,4,8,12)
forecasts for the interval-valued crude oil prices using various
estimation and forecast samples. First, it is worth noticing that for
the horizons of 1, 4, 8 and 12 months, the 2SVBMA method
outperforms other competing methods in most cases; out of the 48
cases considered, with respect to RMSFE of midpoints and ranges,
it yields the best outcomes 42 times and the second best outcomes 6
times. Intuitively, the proposed 2SVBMA method selects the
important factors at the first stage and then give the optimal
weights averaging across the 12 nested regression forecasts. Second,
2SVBMA based on LsoMA outperforms various model averaging
and model selection methods, including MMA. One possible
explanation is that leave-subject-out cross-validation is more
suitable for vector autoregressive situations with heteroscedastic
and auto-correlated errors. Additionally, as shown in Liao et al.
(2019), the approximate unbiasedness of LsoMA and its

asymptotic optimality in terms of obtaining the lowest quadratic
errors are established. This is why LsoMA outperforms other
model averaging methods (i.e., SAIC, SBIC, and SHQ) in the
second stage.

Second, the SBIC estimators always produce the second-best
forecasts after the 2SVBMA estimator among all model averaging
methods, while SAIC achieves higher forecast criteria than other
model averaging methods. Similarly, BIC always yields best
forecasts among all model selection methods, while the AIC
estimator achieves higher MSFE in most cases. This happens
because AIC prefers selecting the relatively complicated model,
which is inappropriate for out-of-sample forecasting even though
it has good in-sample fitting. A simple model may be better for
out-of-sample forecasting.

Furthermore, it is shown that at the second stage, model
averaging forecasts outperform model selection forecasts in
almost 90% of all cases. The significant advantages of model
averaging support the argument of Rapach et al. (2010) that

TABLE 4 | MSPE (10−2) of the recursive prediction for interval-valued crude oil prices (I).

Estimation: 2005–2010; Forecast:2011–2013

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.75 2.09 1.58 1.10 1.39 5.59 1.10 5.59
ranges 0.70 2.62 1.79 1.33 1.60 4.99 3.92 5.15

4 midpoints 0.32 2.17 1.20 0.90 1.09 3.50 3.29 3.60
ranges 1.20 4.71 2.79 2.11 2.52 5.42 6.86 5.41

8 midpoints 0.38 1.55 1.06 0.85 0.98 1.71 1.93 1.78
ranges 1.05 2.99 1.98 1.65 1.85 3.61 3.68 3.64

12 midpoints 0.39 2.10 1.20 0.91 1.09 3.67 3.17 3.67
ranges 0.65 3.20 1.64 1.24 1.48 6.89 4.90 6.89

Estimation: 2006–2011; Forecast:2012–2014

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.22 0.66 0.47 0.36 0.43 1.21 0.91 1.17
ranges 0.33 1.03 0.73 0.55 0.66 2.07 1.61 1.84

4 midpoints 0.26 0.97 0.64 0.49 0.58 1.43 1.50 1.34
ranges 0.41 0.97 0.70 0.56 0.64 1.39 1.27 1.35

8 midpoints 0.22 0.75 0.47 0.33 0.41 1.29 1.20 1.23
ranges 0.40 0.80 0.50 0.42 0.47 1.57 1.22 1.50

12 midpoints 0.09 0.45 0.22 0.14 0.18 1.36 0.61 1.20
ranges 0.25 0.42 0.29 0.27 0.28 0.65 0.56 0.66

Estimation: 2007–2012; Forecast:2013–2015

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.07 0.16 0.14 0.11 0.13 0.38 0.18 0.34
ranges 0.13 0.22 0.19 0.16 0.18 0.60 0.26 0.35

4 midpoints 0.09 0.39 0.24 0.17 0.21 0.58 0.74 0.58
ranges 0.18 0.20 0.21 0.18 0.20 0.48 0.25 0.29

8 midpoints 0.17 0.24 0.24 0.23 0.23 0.30 0.35 0.36
ranges 0.37 0.39 0.46 0.42 0.44 1.36 0.31 0.79

12 midpoints 0.22 0.27 0.25 0.24 0.24 0.37 0.26 0.35
ranges 0.49 0.73 0.56 0.54 0.55 0.83 0.67 0.97

Note: “Estimation” denotes the sample during this period used to estimate parameters, and “Forecast” denotes the sample during this period used to do out-of-sample forecasts. The best
forecasts are marked by boldface, and the second best forecasts are marked by underline.
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“model uncertainty and instability seriously impair the
forecasting ability of individual predictive regression models.”

Overall, the proposed approach using interval-valued data is
capable of assessing and forecasting the changes in both level
and volatility. We can see from the results that forecasting with
model averaging is generally better than obtaining the
predictions from just one model (model selection). Since we
may choose a very different model when there are small changes
in the original data set, which may lead to a big change in the
final conclusions, resulting in non-effective decision-making
due to the unstable forecasting process. The proposed
method is able to help obtain more stable decision-making
when a long list of interval-valued predictors is available in a
wide range of fields, for example, the daily trading strategy in the
finance field.

5 CONCLUSION

We propose a novel 2SVBMA forecasting procedure to capture
the relevant information available in the interval format and
the underlying characteristics of crude oil price movements.
Vector L2Boosting in the first stage and LsoMA in the second
stage are extended to interval models with interval-valued
exogenous variables. Empirical results show that our
proposed approach outperforms other competing model
averaging and model selection methods in terms of MSFE of
midpoints and ranges.

There are some limitations and potential extensions of our
study. First, more advanced optimization algorithms for
interval-valued variable selection can be proposed in future
work. Second, the candidate models with different structures
in model averaging methods can further be developed to
enhance forecasting. It would also be interesting to develop
interval-based machine learning methods to improve forecast
accuracy. Furthermore, the proposed methodology in this
paper can be extended to the vector autoregressive (VAR)
model, which can cover more applications in economics and
finance.

In general, 2SVBMA provides a methodological framework
for interval-valued data forecasting when there are a large
number of potential predictors. For example, this methodology
can be used to quantify the impact of COVID-19 pandemic on oil
and gas industry. 2SVBMA can also provide implications for the
post-COVID recovery management. The accurate prediction of
crude oil prices will assist policy makers in understanding issues
affecting different oil industry segments, and help governments
be better prepared for the recovery.

6 COMPLIANCE WITH ETHICAL
STANDARDS

The authors thank a number of the participants at Symposium
on Interval Data Modelling: Theory and Applications
(SIDM 2019) in Beijing for their valuable comments and

TABLE 5 | MSPE (10−2) of the recursive prediction for interval-valued crude oil prices (II).

Estimation: 2008–2013; Forecast:2014–2016

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.15 0.30 0.29 0.23 0.27 0.61 0.34 0.57
ranges 0.81 1.14 1.03 0.96 1.00 1.50 1.03 1.38

4 midpoints 0.39 0.47 0.52 0.46 0.50 0.69 0.65 0.70
ranges 1.11 1.71 1.47 1.31 1.41 2.15 2.01 2.12

8 midpoints 0.47 1.38 0.93 0.77 0.87 2.83 0.43 3.29
ranges 1.07 2.44 1.98 1.61 1.82 5.63 1.03 5.34

12 midpoints 0.54 2.45 1.18 0.88 1.05 5.84 0.61 5.85
ranges 0.90 2.52 1.67 1.32 1.52 4.40 1.96 4.54

Estimation: 2009–2014; Forecast:2015–2017

h 2SVBMA MMA SAIC SBIC SHQ AIC BIC HQ

1 midpoints 0.22 0.55 0.52 0.40 0.47 1.08 0.33 1.03
ranges 1.14 2.37 2.12 1.71 1.96 4.45 1.21 4.37

4 midpoints 0.82 1.61 1.47 1.14 1.34 2.46 0.66 2.45
ranges 2.03 3.46 2.69 2.17 2.48 5.94 2.75 6.01

8 midpoints 0.47 1.67 1.17 0.87 1.05 6.87 0.35 4.15
ranges 1.52 2.92 2.51 1.91 2.25 10.06 1.58 9.45

12 midpoints 0.49 5.15 1.69 1.06 1.42 13.58 0.40 12.92
ranges 0.75 3.93 2.08 1.44 1.81 8.94 1.51 8.32

Note: “Estimation” denotes the sample during this period used to estimate parameters, and “Forecast” denotes the sample during this period used to do out-of-sample forecasts. The best
forecasts are marked by boldface, and the second best forecasts are marked by underline.
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