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Battery energy storage systems (BESSs) are a key technology to accommodate the
uncertainties of RESs and load demand. However, BESSs at an improper location and size
may result in no-reasonable investment costs and even unsafe system operation. To
realize the economic and reliable operation of BESSs in the distribution network (DN), this
paper establishes amulti-objective optimization model for the optimal locating and sizing of
BESSs, which aims at minimizing the total investment cost of BESSs, the power loss cost
of DN and the power fluctuation of the grid connection point. Firstly, a multi-objective
memetic salp swarm algorithm (MMSSA) was designed to derive a set of uniformly
distributed non-dominated Pareto solutions of the BESSs allocation scheme, and
accumulate them in a retention called a repository. Next, the best compromised
Pareto solution was objectively selected from the repository via the ideal-point decision
method (IPDM), where the best trade-off among different objectives was achieved. Finally,
the effectiveness of the proposed algorithm was verified based on the extended IEEE 33-
bus test system. Simulation results demonstrate that the proposed method not only
effectively improves the economy of BESSs investment but also significantly reduces
power loss and power fluctuation.

Keywords: distribution networks, battery energy storage systems, optimal locating and sizing, multi-objective
memetic salp swarm algorithm, ideal-point decision method

INTRODUCTION

In recent years, distributed generators (DGs) and controllable load in the distribution network (DN)
have continued to increase, meaning that the traditional DN faces many challenges (Sepulveda
Rangel et al., 2018; Liu et al., 2020; Peng et al., 2020). At present, one obvious tendency is that the
rapid-developed photovoltaic (PV) and wind turbine (WT) power generation technologies make the
permeability of distributed PV andWT in the DN higher. A series of problems ensue, such as voltage
quality declination and power supply reliability reduction, etc (Wang et al., 2014; Yu et al., 2016; Sun
et al., 2020). The active power through the line increases at the peak of power load, the loss increases,
and a large voltage offset appears at the end of the line (Kerdphol et al., 2016a; Zhou et al., 2021).

Battery energy storage systems (BESSs) have the characteristics of flexibility and fast response and
are an effective way to solve the above problems. The application of BESSs can greatly improve the
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connection of renewable energy sources (RESs) (Kerdphol et al.,
2016b; Gan et al., 2019; Hlal et al., 2019). BESSs can effectively
solve the problems of enlarging the load peak and off-peak
difference, delay in the power grid upgrading, alleviate the
power supply capacity shortage in the transition phase of the
power grid, improve the reliability and stability of the power grid,
and optimize the power flow of the grid, as well as improving the
economic benefits of system operation (Chong et al., 2016; Chong
et al., 2018; Murty and Kumar., 2020). BESSs could provide a new
direction for large-scale RESs integration, which is one of the
most effective ways to solve renewable energy grid access (Trovão
and Antunes, 2015; Liu et al., 2018; Wu et al., 2019).

However, prudent BESSs allocation and sizing in DN
determine the satisfactory performance of BESSs applications.
The optimal allocation and sizing of BESSs are crucial for the
power quality improvement of DN and transmission system
protection settings. Once BESSs are connected to the DN, the
dispatching system of DN sends dispatching instructions to the
BESSs according to the real-time running state of the system load,
and then BESSs absorbs or sends power to the parallel network
through its two-way energy flow (He et al., 2017; Jia et al., 2017;
He et al., 2020). This two-way power regulation can save
investment and improve the reliability and economy of BESSs.
If the location and sizing of BESSs are not set reasonably, or the
operation strategy adopted fails to efficiently play the role of
BESSs, the voltage quality may deteriorate, and further increase
investment and operation costs (Li et al., 2020). To enable us to
take full advantage of distributed BESSs and make their access to
the DN have a positive impact, it is important to select the
appropriate location and sizing of BESSs based on the appropriate
operation strategy (Li et al., 2018).

Recently, a large number of scholars have performed studies in
this field (Yang et al., 2020). The literature (Oudalov et al., 2007)
tends to optimize the location and power capacity of BESSs by
calculating the sensitivity of network loss, and then reduce the
power loss of DN. In one study (Pang et al., 2019), a semi-definite
relaxation method was proposed to solve the optimal BESSs
allocation problem. Another study (Wong et al., 2019)
introduces a whale optimization algorithm for the optimal
location and sizing of BESSs, while the optimization results do
not achieve a significant breakthrough.

This paper devises a multi-objective optimization model
considering total investment cost, power loss cost, and power
fluctuation for optimal BESSs locating and sizing. For the sake of
solving this model, a multi-objective memetic salp swarm
algorithm (MMSSA) is proposed to search the non-dominated
solutions of BESSs allocation strategy, which reach significant
improvement and better balance on the global exploration and
local exploitation abilities compared with the salp swarm
algorithm (SSA). Furthermore, the ideal-point decision method
(IPDM) is adapted to objectively determine the optimal weight
coefficients of each objective function and then select the best
compromised solution. To verify the effectiveness, the proposed
model and algorithm are implemented in the extended IEEE-33
bus test system.

The rest of this paper is organized as follows: Problem
Formulation develops the multi-objective optimization model.

In Multi-Objective Memetic Salp Swarm Algorithm Based on
Pareto, MMSSA based on IPDM is introduced. Case studies
are undertaken in Case Studies. Finally, Conclusion
summarizes the main contributions of this study.

PROBLEM FORMULATION

Objective Functions
The optimal allocation of BESSs is a multi-objective optimization
problem with multiple variables and constraints. To realize the
economic and reliable operation of BESSs in the DN, a multi-
objective optimization model is established based on the Pareto
principle, where minimizing the total investment cost of BESSs,
power loss cost, and power fluctuation are the main objectives.

Total Investment Cost
This paper focuses on the DN that has been built and operated, so
the investment and construction costs of DN other than BESSs
are not included in the cost model. The economic parameters of
BESSs are provided in Table 1, extracted from a previous study
(Behnam and Sanna, 2015). The total investment cost is
considered as the annual costs of BESSs, which can be
mathematically formulated as follows

Min F1 � Cins + Cequ + Com (1)

where F1 is the annual total investment cost of BESSs; Cins, Cequ,
and Com represent the annual installation cost, equipment cost,
and operation and maintenance (O&M) cost, respectively.

The annual installation cost of BESSs is expressed as

Cins � Ccap · NBESS · μCRF (2)

where Ccap means the cost of per BESS for installation;NBESS is the
number of BESSs deployed in DN; μCRF denotes the capital
recovery factor (CRF) that is the knowing present worth. The
CRF translates the costs throughout the useful life of BESSs to the
initial moment of the investment, which is obtained by

μCRF �
r · (1 + r)y
(1 + r)y − 1

(3)

where y is the economic life cycle of BESSs; r means the discount
rate, which is calculated by the weighted average cost of capital as
follows (Harvey, 2020)

r � fd · id + (1 − fd) · ie (4)

TABLE 1 | The economic parameters of BESSs.

Parameters Values

Installation cost 1470000 ($/per BESS)
Equipment cost 175,000 ($/MW)

225,000 ($/MW h)
O&M cost 4,000 ($/MW year)

2000 ($/(MW h) year)
Lifetime 20 (year)
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where fd and ie represent the debt ratio and the return on equity,
is respectively, 80 and 50%; id denotes the interest rate of 4.165%.

The annual equipment cost of BESSs is calculated by

Cequ � ∑NBESS

i�1
(α · PBESS,i + β · EBESS,i) · μCRF (5)

where α and β mean the costs per unit power and per unit
capacity, respectively; PBESS,i and EBESS,i are the power capacity
and energy capacity of the ith BESS.

The annual O&M cost of BESSs is expressed as

COM � ∑NBESS

i�1
(λ · PBESS,i + c · EBESS,i) · μCRF (6)

where λ and c are respectively the O&M cost of per unit power
and per unit energy of BESSs. Note that the O&M costs of
rectifier, inverter, and charge regulator are neglected.

Power Loss Cost
BESSs grid-connected will change the power flow of DN (Injeti
and Thunuguntla, 2020). Furthermore, the different locations
and sizes of BESSs will have different influences on power losses.
For the sake of minimizing the total active power losses, the
power losses index is established in the optimization model, as
follows

Min F2 � ∑T
t�1
(ρloss(t) · Ploss(t)) (7)

Ploss(t) � ∑L
j�1
(RjI

2
j (t)) (8)

where F2 is the daily cost of power losses; ρloss(t) and Ploss(t)
represent the time of use (TOU) electricity prices and power
losses at time t; L is the total number of lines in the DN; Rj means
the resistance on the jth line; Ij(t) denotes the current on the jth
line at time t. The lower F2 is that the greater positive effect of
BESSs deployment in reducing power loss.

Power Fluctuation
Owing to the intermittent nature of RESs, the integration of them
into power grids poses significant power fluctuation in the grid
connection point. However, BESSs can provide an effective
supplement for RESs in smoothing power fluctuation to
improve power quality. The power quality index can be
expressed as

Min F3 �

����������������∑T
t�1

(Pgrid(t) − Pgrid)2√√
(9)

where F3 is the daily total power fluctuation of the grid
connection point; Pgrid(t) represents the power fluctuation at
time t; Pgrid means the mean power fluctuation over a day.

Constraints
Power Balance

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Pi(t) � Vi(t)∑N

j�1
Vj(t)(Gij cos θij(t) + Bij sin θij(t))

Qi(t) � Vi(t)∑N
j�1

Vj(t)(Gij sin θij(t) − Bij cos θij(t)) (10)

wherePi(t) andQi(t) represent the injected active power and reactive
power at ith node in theDN at time t, respectively;Vi(t) is the voltage
of the ith node at time t; Gij and Bij represent the admittance and
susceptance between the ith node and the jth node; θij(t) is the power
angle between the ith node and the jth node at time t.

Range of Node Voltages

Vmin
i <Vi <Vmax

i (11)

where Vmin
i and Vmax

i represent the upper and lower limits of the
voltages of the ith node.

Charging and Discharging Power Limits of BESSs

{ 0≤ Pcha,i(t)≤ PBESS,i · ηcha−PBESS,i · ηdis ≤ Pdis,i(t)≤ 0
(12)

where Pcha,i(t) andPdis,i(t) represent the charging and discharging
power of BESSs at time t, respectively; ηcha and ηdis are
respectively the charging and discharging efficiency of BESSs.

State of Charge Limits

SOCmin < SOC(t)< SOCmax (13)

where SOCmin and SOCmax, respectively, mean the upper and
lower limits of SOC, is that 20 and 90%.

Multi-Objective Optimization Model
Establishment of the Optimization Model
In terms of multi-objective optimization problems such as BESSs
allocation, all objectives generally conflict with each other, and
optimizing one of the objectives leads to the deterioration of other
objectives in most cases. It is difficult to objectively evaluate the
superiority-inferiority of all solutions because there is no absolute
optimal solution for the overall objective (Huang et al., 2020).
Nevertheless, there exists an optimal solution set, elements of
which are named Pareto optimal solutions, realizing the optimum
matching among objectives (Fonseca and Fleming, 1993). In this
paper, the multi-objective optimization model of BESSs locating
and sizing is designed to simultaneously meet investment
economy and operation reliability requirements, as follows
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⎧⎪⎨⎪⎩min F(x) � [F1(x), F2(x), F3(x)]T
s.t.E(x) � 0
I(x)≤ 0

(14)

where F(x) represents the target space consists of all objective
functions; x denotes the decision space that is constituted by all
optimization variables; E(x) and I(x) are respectively, equality
and inequality constraints that need to be satisfied in the multi-
objective optimization model.

Design of Optimization Variables
Optimization variables include the installation locations, power,
and energy capacities of two BESSs, all of which need to be
constructed in a reasonable range, otherwise, some negative
effects on the power flow, relay protection, voltage, and
waveform of the original power grid raise. In this paper, nodes
in the range of (Mirjalili et al., 2017; Liu et al., 2020) were selected
as the installation locations, in which environmental and
geographical factors need to be considered in engineering
practice. The limits of power and energy capacities are
determined to consider the topology of DN, the power limit of
the interconnection point, especially the total load power.
Therefore, the power capacity allowed to access the power grid
of a BESS is determined as 90% of the total active power load of
the power grid, and the numerical value of energy capacity limit is
equal to power capacity limit, as follows

{ PBESS,i ≤ Pmax
BESS

EBESS,i ≤ Emax
BESS

(15)

where PBESS,i and EBESS,i are the power capacity and energy
capacity of the ith BESS; Pmax

BESS and Emax
BESS denote the upper

limits of the energy capacity and power capacity of BESSs, are
respectively, 3375 and 3375 kWh.

Note that the power and energy capacities of two BESSs are
continuous, while installation locations are discrete. In this paper,
continuous variables can converge to the optimal value in the
iteration process while the optimal value of discrete variables
needs to be rounded in continuous space (Zhang et al., 2017).

MULTI-OBJECTIVE MEMETIC SALP
SWARM ALGORITHM BASED ON PARETO

Memetic Salp Swarm Algorithm
Optimization Framework
SSA is inspired by the swarming motility and foraging behavior of
salps, which successfully solves varieties of optimization problems
since it has a simple search mechanism and high optimization
efficiency (Mirjalili et al., 2017). In recent years, the memetic
algorithm has developed into a broad class of algorithms and can
properly combine global search and local search mechanisms
(Moscato, 1989; Neri and Cotta, 2012). In this paper, the memetic
computing framework first proposed by Moscato (Moscato,
1989) is adopted in the memetic salp swarm algorithm
(MSSA) to improve the searching ability of SSA. Then,
multiple slap chains were employed to better balance global

exploration and local exploitation abilities. Therefore, there are
two important search mechanisms in MSSA, namely the local
search in a single chain and the global coordination in the whole
population. In MSSA, multiple salp chains are arranged in
parallel, where each salp chain is regarded as a swarm of salps
that independently perform local searches similar to SSA.
Meanwhile, all salp chains are regrouped by information
communication among all salps for the improvement of
convergence stability. The optimization framework of MSSA is
illustrated in Figure 1.

Mathematical Model
In the single chain, the salps can be divided into two roles,
including the leaders and the followers. As illustrated in Figure 1,
the leader is regarded as the salp at the front of each salp chain,
while the rest of the salps are followers. In each iteration, the
leading salp seeks the food source, while the follower salps follow
each other in a row. Note that the best salp with the best fitness is
considered to be the food source, and will be chased by the whole
salp chain. The position of the leading salp and follower salps can
be updated as follows (Mirjalili et al., 2017)

x j
m1 � { F j

m + c1(c2(ub j − lb j) + lb j), if c3 ≥ 0
F j
m − c1(c2(ub j − lb j) + lb j), if c3 < 0

(16)

x j
mi � 1

2
(x j

mi + x j
m,i−1), i � 2, 3, . . . , n; m � 1, 2, . . . ,M (17)

where the j means the jth dimension of searching space; x j
m1 and

x j
mi respectively denote the positions of the leading salp and the
ith follower salp in themth salp chain; Fj

m is the position of a food
source; ub j and lb j are respectively the upper and lower limits of
the jth dimension variables; n and M represent the population
size of a single salp chain and the number of salp chains,
respectively; c2, and c3 are both the uniform random numbers
from 0 to 1; c1 is a random number that is related to the iteration
number, as follows (Mirjalili et al., 2017)

c1 � 2e−( 4k
kmax

)2

(18)

where k and kmax are the current iteration number and maximum
iteration number, respectively.

In the salp population, each salp is taken as an individual
of the virtual salp population. At each iteration, the
population can be regrouped into multiple new salp chains
based on the descending order of all salps’ fitness values. In
the regroup operation, the global coordination among
different salp swarms is achieved, as shown in Figure 2. It
can be seen that the best solution is assigned to salp chain #1,
and then the second-best solution is assigned to salp chain #2,
and so on. Therefore, the mth salp chain can be updated by
(Eusuff and Lansey, 2015)

Ym � [xmi, fmi|xmi � X(m +M(i − 1)),
fmi � F(m +M(i − 1)), i � 1, 2,/, n], m � 1, 2,/,M (19)

where xmi and fmi are the position vector and fitness value of the
ith salp in the mth chain, respectively; X and F denote a position
vector set and a fitness value set of all the salps, respectively.
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Multi-Objective Memetic Salp Swarm
Algorithm
As discussed in Problem Formulation, the solutions for a
multi-objective problem should be a set of Pareto optimal
solutions. MSSA can drive salps towards the food source with
the best solution for the optimization problem and update it
at each iteration. The design of MMSSA is first to equip the

food sources with a repository to restore the non-dominated
solutions obtained by MSSA so far (Coello et al., 2004). In
the optimization process, every new non-dominated solution
needs to be compared against all residents in the repository
using the Pareto dominance operators, as follows (Faramarzi
et al., 2020).

• If a new solution dominates a set of solutions in the
repository, they have to be swapped;

• If at least one of the solutions in the repository dominates
the new solution, this new solution should be discarded
straight away;

• If a new solution is non-dominated in comparison with all
repository residents, this new solution will be added to the
repository.

The repository can just store limited solutions. Therefore,
a wise method adopted to remove the similar non-
dominated solutions in the repository, is that the one in
the populated region is identified as the best candidate to be
removed from the repository to improve the distribution
diversity of the Pareto optimal solution set. The solutions
that are removed from the repository need to satisfy the
following equation⎧⎪⎪⎨⎪⎪⎩ |Fh(xm) − Fh(xn)<Dh|, h � 1, 2, 3

Dh � Fmax
h − Fmin

h

Nr

(20)

where Fh(xm) and Fh(xn) denote the hth fitness value of themth
salp and the nth salp, respectively;Dh is the distance threshold of
the Pareto solution set; Fmax

h and Fmin
h , respectively, represent the

maximum and minimum of the hth objective function obtained
as far; Nr is the maximum size of the repository to store the non-
dominated solutions.

FIGURE 1 | Conceptual optimization framework of MSSA.

FIGURE 2 | Regroup operation of salp population for global
coordination.
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In this paper, the IPDM was adopted to filter out the best
compromised solution of the Pareto non-dominated solution set,
which is often used in multiple attribute decision making. Firstly,
the objective functions of all Pareto non-dominated solutions
obtained by MPOA are normalized as follows

fh(xm) � yh(xm) − ymin
h

ymax
h − ymin

h

(21)

where yh(xm) is the hth objective function value of the non-
dominated solution xm; fh(xm) represents the normalized value of
the hth objective function; ymin

h and ymax
h mean the maximum and

minimum of the hth objective function.
Thus, an ideal point can be selected in the target decision-

making region formed by all Pareto non-dominated solutions. It
is worth mentioning that the objective functions of the ideal point
can be normalized to be (0, 0, 0) in terms of the minimization

problem. Crucially, the squared Euclidean distance between
different solutions and the ideal point is taken as an important
basis for ranking all non-dominated solutions and then decide the
best compromised solution from them. The squared Euclidean
distance can be calculated by

EUi � ∑3
h�1

[ fh(xm) − 0]2 · ω2
h (22)

ωh means the weights of the hth objective function, as follows

ωh � 1∑Nr
m�1 [ fh(xm) − 0]2 · ∑3

h�1
1∑Nr

m�1 [fh(xm)−0]2
(23)

Owing to the weights of each objective function obtained by
IPDM, it does not rely on the evaluation and preference of experts
so that the decision is credible. In the end, the best compromised
solution is expressed as

xbest � arg min
m�1,2,...,Nr

∑3
h�1

[ fh(xm) − 0]2 · ω2
h (24)

To sum up, the flowchart of MMSSA to solve the optimal
locating and sizing of BESSs is shown in Figure 3.

CASE STUDIES

Test System
In this section, the optimal locating and sizing of BESSs based on
MMSSA is implemented in the extended IEEE-33 bus system for
verifying the effectiveness of the proposed algorithm. The
topology structure of the test system with a total load of 3,715
+ j2300 kVA is depicted in Figure 4. It is assumed that the
resource units include one PV and three WT, where the
maximum generation limits of PV and WT both are 0.2 MW.
The typical daily curves of load, wind and PV power are
demonstrated in Figure 5. In addition, multi-objective particle
swarm optimization (MOPSO) (Hlal et al., 2019) is used for

FIGURE 3 | The flowchart of MMSSA for the optimal locating and sizing
of BESSs.

FIGURE 4 | Extended IEEE-33 bus test system.
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comparison. For the sake of a relatively fair comparison, the
population size of MMSSA and other algorithms all are set to
100, and the maximum iterations are set to be 500. The size of
the repository was chosen to equal 100 for multi-objective
optimization. Some specific parameters of all comparison
algorithms were set to the default values. If the parameters are
not chosen properly, the convergence time will be too long or the
local optimum will be trapped. It is worth mentioning that the key
parameters in theMMSSA algorithm, such as c1, themost important
parameter since they can directly influence the trade-off between

exploration and exploitation. To achieve a proper balance, it was
designed according to the iteration number.

Simulation Results
Figure 6 and Figure 7, respectively, exhibit the bi-objective
Pareto front curves by two algorithms, including the total
investment cost versus the power loss cost, the total
investment cost versus the power fluctuation, as well as the
power loss cost versus power fluctuation, which demonstrates
these three bi-objective Pareto fronts obtained by MMSSA are

FIGURE 5 | Typical daily curves: (A) hourly load curves; (B) hourly wind and PV power curves.

FIGURE 6 | Three-objective Pareto front results obtained by MOPSO.

FIGURE 7 | Bi-objective Pareto front results obtained by MMSSA.
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more uniform than MOPSO from the perspective of distribution.
Figure 8 shows the three-objective Pareto front obtained by two
algorithms. As can be seen from Figure 8, MMSSA can acquire
the Pareto solution set with higher quality compared with
MOPSO. Moreover, the schematic diagram of the IPDM based
on MMSSA is illustrated in Figure 9. Figure 9 shows the
normalized objective function curve based on MMSSA, as well
as the decision-making schematic for the best compromise
solution of BESSs allocation. IPDM based on MMSSA can
obtain the objective weight coefficients and select the best
compromise solution by means of the sum of squares of
Euclidean distance.

To better compare the convergence and diversity of the Pareto
solution set obtained by two algorithms, the performance indexes are
evaluated in Table 2, including coverage over the Pareto front (CPF)
(Tian et al., 2019), spread (Wang et al., 2010), spacing (Schott, 1995),
and execution time. It is worth mentioning that CPF defines the

diversity of Pareto solution set as its coverage over the Pareto front in
an (M-1) dimensional hypercube (Wang et al., 2010), while spread
and spacing respectively denote the diversity and the evenness of the
Pareto solution set, which are all the negative indexes. In addition,
Table 3 shows the best compromise decision scheme of BESSs
allocation from two algorithms, along with the objective function
values. It is evident that theMMSSA outperforms theMOPSO in the
multi-objective optimization model for optimal locating and sizing
of BESSs:

FIGURE 8 | Three-objective Pareto front results obtained by two algorithms: (A) MOPSO; (B) MMSSA.

FIGURE 9 | The schematic diagram of IPDM based on MMSSA.

TABLE 2 | Comparison of performance metrics of two algorithms.

Algorithm Performance metric

CPF Spread Spacing Time (s)

MOPSO 0.4996 0.4753 9,075.45 1.5428e+04
MMSSA 0.1636 0.4481 3.3858 1.4676e+04
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• It has the smallest CPF value, indicating that MMSSA owns
better diversity;

• It gains the smallest spread and spacing value, which
indicates that the Pareto solutions obtained by MMSSA
are evenly and widely distributed on the Pareto front;

• It also has the smallest execution time, which means that
MMSSA can converge to the Pareto front much faster than
conventional MOPSO;

• It has the least investment cost, meaning that MMSSA can
improve the economy of BESSs investment;

• It slightly reduces power loss cost, and ensures a higher
operation economy of DN;

• It significantly gains lower power fluctuation of the grid
connection point, which means MMSSA can contribute to
power supply reliability.

CONCLUSION

In this paper, a multi-objective optimization model based on the
Pareto principle was established. This study proposes MMSSA as
a method for solving the optimal location and size of BESSs in
DN. The contributions of the proposed approach are as follows:

• The multi-objective optimization model takes the economic
criteria, incorporates time value into cost, and the technical
criteria relate to system reliability and take it into
consideration, which aims to make BESSs more cost-
effective and ensure the reliable operation of DN;

• The proposedMMSSA has a strong global search ability and
convergence ability under complex multi-objective
functions, which can quickly search high-quality non-
dominated solutions, and then objectively select the best
compromised solution with the help of IPDM;

• The simulation results based on the extended IEEE-33 bus
test system effectively verify that the best-compromised
solution of BESSs allocation scheme obtained by MMSSA
owns the lowest investment cost, power loss cost, and power
fluctuation, which is beneficial for DN to increase economic
efficiency and improve system reliability.

However, there are several limitations to this work, including
the inapplicability of the proposed MMSSA for the high-
dimension optimization problem, and the limited scenario
design in terms of validating its effectiveness. Therefore, the
MMSSA can be further enhanced to improve the accuracy for
high-dimensional objective optimization. Meanwhile, a multi-
scenario design that combines different typical daily data in a year
should be conducted to capture the time-variable nature and
uncertainties related to RESs and load demand.
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GLOSSARY

BESSs battery energy storage systems

CRF capital recovery factor

DN distribution network

IPDM ideal-point decision method

MMSSA multi-objective memetic salp swarm algorithm

MOPSO multi-objective particle swarm optimization

O&M operation and maintenance

PV photovoltaic

RESs renewable energy sources

SOC state of charge

SSA salp swarm algorithm

TOU time of use

WT wind turbines

Variables

PBESS,i power capacity of the ith BESSs.

EBESS,i energy capacity of the ith BESSs.

Pcha,i(t) charging power of the ith BESSs at time t

Pdis,i(t) discharging power of the ith BESSs at time t

ρloss TOU electricity prices

Ploss(t) power loss at time t

Pgrid(t) power fluctuation of the grid connection point at time t

xjmi positions of the ith follower salp in the mth salp chain

Fj
m position of food source

ωh weights of the hth objective function

n population size of single salp chain

M the number of salp chains

Nr the maximum size of the repository
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