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With the popularity of new energy grids with high penetration rate, classic non-intrusive
power load identification algorithms such as hidden Markov model (HMM) need to face the
uncertainty caused by new energy generation. It will cause the load state like active power
to continue to change, and new state transitions appear during operation, resulting in the
lack of robustness of state identification and power decomposition. Aiming to solve this
problem, this study proposes and constructs a Gaussian mixture model–binary parameter
hidden Markov model (GMM-BPHMM) which takes into account the randomness of new
energy power supply, clusters the load status based on active power and steady-state
current to reduce the possibility of volatile clustering results from the new energy grid under
a high penetration rate, improves the Viterbi algorithm to take into account the updating
HMM parameters to achieve the optimal prediction of the load state, considers the random
volatility of load power brought by new energy grids, constructs a power calculation
optimization model, and realizes the power decomposition of the load based on the
principle of maximum likelihood estimation. Finally, on the basis of the public data set
AMPds2, the study generated simulation data based on the new energy generation model
and verified the method, and the test case verified the effectiveness of the method.

Keywords: renewable energy, non-intrusive loadmonitor, hiddenMarkovmodel, Gaussianmixturemodel, maximum
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INTRODUCTION

In order to cope with the shortage of traditional fossil energy and increasingly severe environmental
pollution, China has been vigorously developing renewable energy in recent years. The installed
capacity of wind power and photovoltaic and other renewable energy has ranked first in the world,
and the installed capacity has been close to 20%. The main power source of the power system will
continue to increase in the future, and it is expected to exceed 50% by 2040. At the same time, due to
the strong volatility and randomness of wind and solar renewable energy output, issues such as the
consumption of new energy have attracted great attention from government departments, academia,
and industry. More importantly, as the installed scale of renewable energy continues to expand, the
operation mode and system characteristics of the traditional power grid will undergo fundamental
changes, and many technical problems need to be solved urgently, especially the power load
identification technology under the background of high penetration rate of new energy.

Non-intrusive power load identification (NIPLI) was first proposed by Hart in the 1980s
(Tongzhi, 2012), and as one of the most important components of the advanced measurement
infrastructure (AMI) (Yu, 2009), this technology is only installed as monitoring equipment at the
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user’s electrical entrance, records the electricity consumption
data, uses the monitoring algorithm to decompose the load,
and obtains the electricity consumption status and energy
consumption information of the internal load. Based on
NIPLI, grid companies can optimize the allocation of power
resources and support the construction of smart grids (Hart,
1992). At present, non-intrusive power load identification
technology is developing rapidly, and scholars have proposed a
variety of load identification algorithms. L et al. (2018) designed a
normal distribution measurement function that comprehensively
considered the steady-state harmonic current and power
characteristics, and proposed a power load identification
method based on an improved chicken flock algorithm. Li
et al. (2016) constructed a harmonic-based current feature
expression, combined power as the objective function of
device switching status identification, and used the particle
swarm algorithm to search for NIPLI. L et al. (2019) proposed
a load identification method based on an associative recurrent
neural network model, which memorizes historical input
characteristics and improves the ability to identify load
characteristics. W et al. (2019) proposed an NIPLI model
based on sequence-to-sequence and attention mechanisms,
which improved the ability to extract and utilize load
information. Tongzhi (2017); X (2018); H (2016); H et al.
(2019); Y (2019) all adopted an improved or expanded HMM,
which greatly improved the algorithm calculation speed and the
accuracy of electrical appliance status recognition.

Unlike the traditional application scenarios of NIPLI, the
high-penetration new energy grid has the characteristics of
diverse load types, random power generation, and greater
voltage fluctuations. The aforementioned traditional NIPLI
models have their own advantages in feature extraction or
load identification, but none of them considered the unknown
electrical characteristics of the high-penetration new energy grid,
and lacked the adaptability for power load identification in this
scenario. This lack of adaptability is particularly prominent in the
HMM-based NIPLI model. The observation probability and
transition probability of the HMM are calculated using
historical data, but past data do not guarantee that all working
states of the load are measured, and all transition information of
each state is determined. The aforementioned HMM-based
improvements are to make full use of the existing load
information but fail to take into account the changes in load
characteristics and model parameter updates caused by the high-
penetration new energy grid, which makes it difficult to adapt to
the power load identification under the high-penetration rate of
new energy grid. This article believes that the improvement ideas
of non-intrusive power load identification based on the HMM
under high-penetration new energy grids mainly include the
following three points: 1) reduce the impact of high-
penetration new energy grid environment on the
determination of load status; 2) take load into account
unknown observation state and new state transition, that is,
the model parameters of the HMM are considered to be
constantly updated to predict and calculate the implicit state
of the load; and 3) the random volatility of power is considered in
the power decomposition calculation.

To this end, this article proposes a non-intrusive power load
identification model based on the GMM-BPHMM. The model
first establishes the hidden Markov model based on load active
power and current and uses the Gaussian mixture model to
accurately cluster load states; after the load, implicit state
sequence is encoded and the Viterbi algorithm is improved to
advance its adaptability to HMM parameter updates and then to
achieve optimal prediction of the load state sequence; after the
load state prediction, the sequence is obtained, the random
volatility of power is taken into account, and the power
decomposition optimization model is established based on the
principle of maximum likelihood estimation, and the calculation
of power decomposition is carried out according to the mean and
variance of the cluster clusters of each working state of the load,
and finally verified the accuracy of the method with a calculation
example.

METHODS—ESTABLISHMENT OF NIPLI

This section first proposes and establishes the NIPLI model for a
new energy grid mentioned in this article and then gives a detailed
description of the performance improvement of power load
identification in the next section, especially in the high-
penetration new energy grid.

Establishment of New Energy Power
Generation System
Introduction to New Energy Management System
The household new energy management system studied in this
work is mainly composed of the energy storage system,
photovoltaic power generation system, fan power generation
system, household appliances, and smart meters, and its
structure is shown in Figure 1. The aforementioned systems
realize the interconnection of information and energy between
devices using power electronic converters. The smart meter
collects the information of power consumption and generation
every day to realize non-invasive power load identification and

FIGURE 1 | Structure chart of the household new energy management
system.
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monitor the operation of corresponding equipment according to
the demand.

Modeling of Wind Power Generation System
The power output prediction curve of the wind turbine can be
obtained in advance using the wind speed prediction value in the
weather forecast, and the power output value is given as follows
(Marian and Fratia, 2018):

Pvt,i �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, v < vci
a + bv, vci#v < vr
Pr, vr#v < vco
0, vP vco

, (1)

where Pr is rated output power, vci is cut in wind speed, vr is rated
wind speed, vco is cut out wind speed, constant coefficients a and b
are related to wind speed and rated output power, and the
calculation formula is a � Prvci / (vci - vr), b � - Pr / (vci - vr),
and units are kW and kW·s/m, respectively.

Modeling of Photovoltaic Power Generation System
The power of photovoltaic power generation is related to the
ambient temperature and the actual solar radiation intensity. The
specific calculation formula is as follows (Wang et al., 2016):

Pv,i � PsGa,i{ks[Ta,i + Ga,i(Tr − 20)
800

− Tr] + 1}/Gs, (2)

where Ga and Gs are the solar radiation intensity and the light
intensity under standard test (1,000W/m2), Tr is the reference
temperature of 25°C, Ta is the ambient temperature, Pv is the
obtained photovoltaic power, Ps and ks are the maximum power
and power temperature coefficient under standard test,
respectively, and ks is 0.0036/°C.

Modeling of Energy Storage System
In the household energy management system, the energy
storage system can store the surplus energy of renewable
energy, store energy in the period of low electricity price,
and supply energy for electrical equipment in the period of
high electricity price so as to reduce the cost of household
electricity and achieve the purpose of flexible economy. The
energy storage system is composed of multiple storage
batteries. The state of charge (SOC) represents the ratio of
the existing capacity to the rated capacity as follows:

SOCi �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

SOCin , i � 0

SOCi−1 +
(Pch

ESSηch −
Pdeh
ESS

ηdech
)Δi

Crated
ESS

, 1#i#T

, (3)

where SOCin is the initial value of the charge ratio of the energy
storage battery; Crated

ESS is the rated capacity; Pch
ESS and Pdeh

ESS are the
charging power and discharge power of the energy storage
system, respectively; ηch and ηdech represents charging
efficiency and discharging efficiency, respectively; and the
value in this article is 0.96. A day is divided equally into T
periods, and Δi is the duration of each period (h).

Establishment of BPHMM
Introduction to HMM
The hidden Markov model is a probability model about time
series (G, 2018). In the hidden Markov model, there is a time
series with unobservable values and an observable time series with
values determined by the aforementioned time series. Time series
with unobservable values are called implicit state series, and time
series with observable values are called observation series. The
model structure is shown in Figure 2.

An HMM can be described by the following parameters:

1) Implicit state set S:

S � {s1, s2, s3,/, sN}. (4)

2) Observation state set V:

V � {v1, v2, v3,/, vM}. (5)

3) State transition matrix:

A � [aii]N×N. (6)

Among them aij � P(qt+1 � si|qt � si)

4) Output matrix:

B � [bik]N×M. (7)

Among them bik � P(yt � vk|qt � si)

5) Initial probability matrix:

π � [πi]N×1. (8)

Among them πi � P(q1 � si).
It can be seen from the aforementioned formulas that the state

transition probabilitymatrixA and the initial state probability vector
π determine the hidden state sequence, and the observation
probability matrix B determines how to generate the observation
value from the hidden state. The number N and the number M of
observation states are actually defined by the previous threematrices,
so the hidden Markov model can be expressed by λ � {A,B, π}.

The HMM is used to study the following three types of
problems:

1) Probability calculation problem. Given the model λ � {A,B, π}
and the observation sequence O � {O1O2/OT }, calculate
P � (O|λ).

FIGURE 2 | Structure chart of hidden Markov model.
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2) Learning problems. Given the observation sequence
O � {O1O2/OT }, the model parameters λ � {A,B, π} are
estimated, that is, to find the maximum value P � (O|λ),
the maximum likelihood estimation method is used to
estimate the parameters.

3) Decoding problem. Knowing the model λ � {A,B, π} and the
observation sequence O � {O1O2/OT }, the state sequence
with the highest conditional probability P � (I|O) for a given
observation sequence I � {I1I2/IT} is obtained, that is, the
corresponding hidden state sequence is predicted according to
the given observation sequence.

Problem Modeling and Parameter Calculation
In the NIPLI study, the physical meaning of the two time series in
the HMM is very clear: the implicit state sequence corresponds to
the operating state of each consumer, and the observation
sequence corresponds to the measurable electrical quantity.
Therefore, the NIPLI problem is transformed into a problem
which is to obtain the most likely hidden state sequence
corresponding to the observation sequence under the given
HMM parameter and observation sequence, that is, the
decoding problem.

Further, this study builds the NIPLI problem into the
following the HMM and calculates its parameters:

1) Implicit state set S: In the NILD problem, S can be expressed
as a set of combinations of operating states of each
consumer, that is, a set of total states. The set is a
complete arrangement of the operating states of each
consumer, and the number of elements in the set is
determined by the number of clusters of the status of
each consumer, and its value is calculated using the state
coding method introduced in Section 3.1.3.

2) Observation state set V: In the NILD problem, V represents
the collection of specific electricity information data recorded
by the user’s electricity entrance. In particular, the element of
the general HMM set V is the total active power, but the
element in the set V of this article is a vector composed of the
total active power and the total steady-state current,
vi � [PL

i , I
L
i ],which is also the origin of the binary

parameters in this article.
3) State transition matrix A: aij refers to the probability of

transition from the total state of each consumer at time t,
qt � si, to the total state at time t + 1, qt+1 � sj. Calculation
method is given as follows:

aij � hij∑N
j�1

hij

, (9)

where hij is the frequency of the total state transition from qt � si
to qt+1 � sj, and N is the total number of hidden states.

4) Output matrix B: bik represents the probability that each
consumer is in a general state qt � si at time t and the
observed value is yt � vk. The calculation method is given
as follows:

bik � oik∑M
k�1

oik

, (10)

where oik is the frequency of the total state qt � si at time t and the
observed value is yt � vk, and M is the total number of observed
values.

5) Initial probability matrix π: πi represents the probability that
the overall state of each consumer is si at the initial moment.
The calculation method is as follows:

πi � di
d
, (11)

where d is the total amount of data in the training set and di
represents the frequency of occurrence of hidden statessi in the
training set.

It should be pointed out that the factor hidden Markov model
(FHMM) can be used for the modeling of multiple appliances.
The FHMM contains multiple hidden state chains, which
correspond to each appliance to be studied. However, related
studies have shown that the state recognition accuracy of FHMM
prediction is low (G, 2018). Therefore, this article improves on
the basis of the classic HMM, cooperates with the state coding
method described in Section 3.1.3 to convert the combined
vector of each consumer’s state into a binary value, and solves
the problem that the hidden state of the HMM is difficult to be
represented by a vector, while not making each consumer state
compared with the FHMM, the state transitionmatrix decoupling
theoretically retains the correlation information between the state
transitions of different appliances.

METHODS—IMPROVEMENT OF
GMM-BPHMM FOR HIGH-PENETRATION
NEW ENERGY GRIDS

Clustering and Encoding of Load Status
Based on GMM
The selection of load characteristics determines the physical
description of the load state, and clustering is the method of
determining the load state. The selection of load characteristics
and clustering methods is the first step of the method described in
this article.

Selection of Load Feature
At present, the load characteristics selected by NIPLI’s research
can be roughly divided into two kinds: transient and steady states.
Because the transient characteristics are generally synthetic data,
they are not actually collected by the measurement device, and
practicability is not strong. Therefore, this study selects the
steady-state electrical quantity as the load characteristic.

The steady-state electrical quantities mainly include active
power and steady-state current. Active power is an indicator of
power decomposition calculation. NIPLI needs to give the
decomposition value of load active power after state recognition
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is completed, so active power is a characteristic adopted by most
NIPLI research institutes. However, the steady-state power
fluctuates slightly, the steady-state current is not affected by
voltage fluctuations, and the calculated load recognition
accuracy is higher (Z, 2016). Therefore, this study selects active
power and steady-state current as load characteristics.

State Clustering
Various types of loads have different operating states during
operation due to their own electrical characteristics or working
conditions. From the perspective of power load identification,
electrical appliances can be divided into three types of
electrical appliances: switch-state electrical appliances,
limited multistate electrical appliances, and continuously
variable states according to their operating status (Hart,
1992). The number of operating states of the first two types
of electrical appliances can be counted. In theory, all operating
states can be obtained. However, the operating state of
continuously variable electrical appliances changes
continuously. To continue research into limited multistate
electrical appliances, a clustering algorithm is required to
cluster the operating states to make them discretized.

Considering that there are noisy points in the historical data,
which will interfere with the hidden laws behind the model
learning data so as to adversely affect the performance of the
model, this study uses the GMM algorithm to extract and cluster
the electrical load characteristics. The Gaussian mixture model is
based on the assumption that the sample data points obtained are
all independent and identically distributed, and the distribution is
formed by the linear superposition of several Gaussian kernel
functions (Berges, et al., 2009; Qiu, 2015). Therefore, compared
with commonly used clustering algorithms such as K-means, the
number of clusters in this algorithm does not need to be
determined in advance, and it has multiple models, and the
division is more refined. It is suitable for multi-category
division and can be applied to complex object modeling and
then smoothly to approximate the density distribution of any
shape (Ap et al., 1977; Yu et al., 2013).

When estimating the parameters of the GMM, the
expectation–maximization algorithm is generally used, so the
entire GMM clustering algorithm process is as follows:

1) Let the data to be clustered be {y1, y2, ..., yn}, establish a
Gaussian mixture model and initialize the parameters:

P(y∣∣∣∣θ) � ∑K
k�1

αkϕ(y∣∣∣∣θk), (12)

where αk is the coefficient, ∑K
k�1

αk � 1, ϕ(y∣∣∣∣θk) is the Gaussian

distribution density, θk � (μk, σ2k), and

ϕ(y∣∣∣∣θk) � 1���
2π

√
σk

exp( − (y − μk)2
2σ2

k

) (13)

is called the k-th submodel;

2) Step E: according to the current model parameters, calculates
the response of submodel k to data yj:

cjk �
αkϕ(y∣∣∣∣θk)∑K

k�1
αkϕ(y∣∣∣∣θk), (14)

where j � 1,2. . .,N, k � 1,2. . .,K;

3) Step M: calculate the model parameters of the new iteration as
follows:

μk �
∑N
j�1

cjkyj

∑N
j�1

cjk

, k � 1, 2, ...,K (15)

σ2k �
∑N
j�1

cjk(yj − μk)2
∑N
j�1

cjk

, k � 1, 2, ...,K (16)

αk �
∑N
j�1

cjk

N
, k � 1, 2, ...,K. (17)

4) Repeat steps (2) and (3) until convergence.

State Encoding
In most studies, vectors are generally used to represent the
current state of several electrical appliances at a time
(hereinafter referred to as the total state for convenience). For
example, assuming that the number of states of the three electrical
appliances is 2, 3, and 8, respectively, and the state at that time is,
respectively, is 0, 2, and 6, and then the total state can be
expressed by the vector S � [0,2,6]. However, in HMM
applications, the hidden state cannot be represented by a
vector. To this end, this study proposes a binary-based state
coding method, which encodes the hidden state vectors of
multiple appliances into a binary state value. With the
previous example, the specific steps are as follows:

1) Allocate digits: Determine the binary digits required for
coding according to the number of electrical appliances.
The number of states of the above three electrical
appliances is 2, 3, and 8, respectively, and the binary digits
allocated to each electrical appliance are 1, 2, and 3,
respectively.

2) Determine the value. The binary status value is calculated
according to the decimal status value of the electrical
appliance at the current moment. The current three
electrical appliances have decimal status values of 0, 2, and
6, respectively, and the binary status values are 0, 10, and 110,
respectively.

3) Splicing representation. The obtained binary state values are
spliced from high to low according to the sorting of electrical
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appliances, and the final result is obtained. The state value of
the state vector after splicing at the current time is 010110.

Table 1 shows other examples of the encoding method.

Implied State Prediction Taken Into Account
the Unknown Observation State and the
Transition of New State
The Viterbi algorithm was proposed by the American Italian
scientist Andrew Viterbi in 1967. The Viterbi algorithm is a
dynamic programming algorithm used to solve the shortest path
problem and is widely used in decoding and natural language
processing (Forney, 1973).

The basic idea of the Viterbi algorithm is to start at t � 1 and
recursively calculate the maximum probability of transitioning to
each state i at time t:

δ[t, i] � maxj(B[i, yt] · δ[t − 1, j] · A[j, i]) (18)

And record the state from time t-1 to the state with the highest
probability of state i at time t:

ψ[t, i] � argmaxi(δ[t − 1, j] · A[j, i]) (19)

After calculating the time T, find out the state maxi(δ[T , i])
which the probability belongs is the end point of the prediction
sequence qpT . From this point, based on the prediction, point ψ is
gradually obtained from back to front to obtain the optimal
prediction sequence Qp � (qp1qp2 ,/, qpT).

In the aforementioned classic Viterbi algorithm, the
determination of HMM parameters is the prerequisite for the
realization of the algorithm. However, in the scenario of a new
energy grid with a high penetration rate, historical data cannot
reflect the transfer relationship between all working states and
states of the load, and the new measured data are not completely
consistent with the measured electrical data. In other words, the
model parameters of the HMM are not completely determined.
Under this premise, the classical Viterbi algorithm that does not
have the ability to adapt to unknown data is difficult to accurately
solve the prediction problem of the optimal implicit sequence.

Based on the above ideas, this study proposes an improved
Viterbi algorithm and makes the following improvements: 1)
Considering that a new observation state will appear in electrical
appliances and the observation state may correspond to the
unknown operating state, this article uses the K-means

algorithm to cluster into known measurement states for the
new electrical data input; 2) considering that there may be
new state transitions in electrical appliances, the calculation
methods of δ and ψ are changed based on maximum
likelihood estimation; 3) considering the sparsity of the
state transition matrix and measurement matrix, for
example, the sparse Viterbi algorithm proposed by
(Makonin et al., 2016a), the algorithm only calculates the
state transition probability and the measurement probability
that are not zero.

For a given observation sequence Y � {y0y1,/, yT } and
implicit state sequence Q � {q0q1,/, qT}, the specific steps of
the improved Viterbi algorithm proposed in this article are as
follows:

1) Initialization:

δ[0, i] � π[i] · B[i, y0]. (20)

2) Recursive calculation:

δ[t, i] � maxj(B[i, yt] · δ[t − 1, j] · A[j, i]) (21)

ψ[t, i] � argmaxj(δ[t − 1, j] · A[j, i]). (22)

In particular, let us set yt � k as the measurement state at time t.
When this observation state occurs, according to the principle of
maximum likelihood estimation, the hidden state with the
greatest probability of occurrence should be the state i that
satisfies bik � max(B[:, k]).

When calculating δ[t, i] and ψ[t, i], change the calculation of
the above two formulas to the following:

δ[t, i] � maxj(B[i, k] · δ[t − 1, j]) ·max(A[:, :]) (23)

ψ[t, i] � maxj(δ[t − 1, j]) ·max(A[:, :]), (24)

where A[:, : ]represents the element in A.
Viterbi is a dynamic programming algorithm. It only pays

attention to the optimal solution at each step. It is unnecessary to
study the unknown but determined non-optimal solution.
Therefore, this article only focuses on the new state transition of
state i that meets bik � max(B[:, k]). The reason for the transition
probability valued max(A[:, : ]) is to prevent the path passing
through this point from being abandoned by the algorithm. If the
algorithm does not take other legal values, the model can still get
the correct result, but it will make the value smaller, thereby

TABLE 1 | State code of some electrical appliances.

Current moment Display method Appliance Appliance Appliance Total state

1 2 3

1 Decimal binary 0 0 3
0 00 011 000011

2 Decimal binary 0 1 4
0 01 100 001100

3 Decimal binary 1 2 5
1 10 101 110101

4 Decimal binary 1 0 7
1 00 111 100111
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reducing the probability that the optimal path goes through the
point in the future.

3) Calculation of termination status:

ppT � maxi(δ[T , i]) (25)

qpT � argmaxi(δ[T , i]). (26)

4) Optimal sequence backtracking:

qpt � ψt+1(qpt+1), t � T − 1,T − 2,/, 0. (27)

The sequence obtained at this time is the predicted optimal
hidden state sequence Qp � (qp1qp2,/, qpT ).

Power Decomposition Considering the
Random Volatility of New Energy
Generation
Under the new energy generation, the power of electrical
appliances in a certain stable operating state fluctuates, and
this fluctuation can be regarded as a random observation
under a certain probability distribution (Liang et al., 2010a;
Liang et al., 2010b). In this study, the normal distribution is
used to describe the randomness of generation fluctuations
during stable operation of the appliance, and it is used to
calculate the power decomposition of the appliance.

The power decomposition calculation steps in this study
are as follows: 1) According to the average value and
variance of the clusters of each electrical appliance
sample, establish a normal distribution probability density
function for each state of each electrical appliance. 2)
Establish the objective function based on maximum
likelihood estimation, that is, to obtain the maximum
value of the joint probability, and note that the sum of
the power decomposition values of the electrical
appliances at the same time should be equal to the
constraint condition of the total power. The power
decomposition calculation model is constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f[i,j](x) �
1���

2π
√

σ[i,j]
exp⎛⎝ − (x − μ[i,j])2

2σ2[i,j]
⎞⎠

max
P(1) ,...,PN

∏N
i�1

f[i,j](P(i))
s.t. ∑N

i�1
Pi � PL

(28)

In the formula, σ[i,j] and μ[i,j]refer to the standard deviation and
mean value of the j-th cluster of the i-th appliance,
respectively; N is the number of appliances; P(i) refers to
the decomposed active power of each appliance; and
PL refers to the active power of the total load. f[i,j](P(i))
refers to the probability of P(i) when appliance i is in the j
operating state. The a forementioned problem is a common
convex quadratic programming problem after taking ln() on

both sides of the objective function. The complete flow of the
non-intrusive power load identification method proposed for
high-penetration new energy grids in this study is shown in
Figure 3.

RESULTS AND DISCUSSION

Experimental Method
Since there is no public data set containing new energy power
generation equipment at present, the author will generate
simulation data based on the power generation model
described in Section 2.1 on the basis of the public data set,
for example, analysis.

This study selects the public data set AMPds2 established by a
Canadian scholar Stephen Makonin and others to verify the
method described in this article (Makonin et al., 2016b).
AMPds2 collects real electrical data of electrical equipment in a
household and records 11 electrical characteristics, including
steady-state current and active power. The sampling frequency
is 1/60 Hz, and the recording time is 2 yr. It is suitable as a data set
for analysis.

From the data set, select six kinds of appliances, such as
fireplace (WOE), clothes dryer (CDE), dishwasher (DWE),
television (TVE), washing machine (CWE), and heat pump
(HPE), for a total of 14,400 sampling points in 10 days The
active power and steady-state current data are divided into 10
groups according to time, which are recorded as test1-test10, and
10-fold cross-validation is performed. In each experiment, nine
groups of data are selected as training data, and one group is used
as test data. Finally, the average is the result. The PC configuration
used in this article is 16 GB RAM/Inter (R) Core (TM) i5-
8300H@2.30 GHz, written in Python.

Decomposition Result
In this study, the basic accuracy rate ACCstate is used to evaluate
the accuracy of load state recognition, and the root-mean-square

FIGURE 3 | Flow chart of NIPLI based on GMM-BPHMM.
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errorACCpower is used to evaluate the accuracy of load power
decomposition as follows:

ACCstate �
∑T
t�1

I(st � spt )
T

(29)

ACCpower �

�������������
1
T
∑T
t�1

(pt − ppt )2
√√

. (30)

In the formula, T is the length of the sampling period; stand ptare
the actual state and actual power value of the appliance at time t,
respectively; spt and ppt are the predicted state and decomposition
power value, respectively; and I () is the indicator function.

Select the superposition value of active power of six
electrical appliances on a certain day as the test set. The
decomposition results are shown in Figures 4–9,
respectively. The yellow line is the actual power, and the
green line is the decomposition result.

FIGURE 4 | Results of power decomposition (HPE).

FIGURE 5 | Results of power decomposition (WOE).
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This study selects the decomposition method based on the
genetic algorithm (GA) proposed in Q et al. (2018), the
decomposition method based on deep sequence translation
model in W and G (2020) and the classic HMM (G, 2018) as
comparison, and uses the same data to perform the 10-fold
cross-validation calculation The average value, the average
accuracy rate of load state identification by the four methods,
and the average accuracy rate of power decomposition are
shown in Table 2 and Figure 10, respectively. It can be seen

FIGURE 6 | Results of power decomposition (CDE).

FIGURE 7 | Results of power decomposition (CWE).

TABLE 2 | Comparison of average accuracy of state recognition.

Appliance GA/% RNN/% HMM/% GMM-BPHMM/%

HPE 95.56 96.75 96.87 97.89
TVE 93.35 95.78 95.45 96.97
DWE 92.16 94.18 93.17 95.76
CWE 93.96 91.35 90.84 93.88
WOE 92.46 95.59 96.38 98.54
CDE 95.34 95.78 95.35 97.55
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that the load decomposition method based on the binary
parameter HMM and the sparse Viterbi algorithm has a better
effect on the state identification and power decomposition of
the total load.

It can be seen from the aforementioned results that
compared with the classic HMM algorithm, the use of the
combined electrical characteristics of the method described in

this article can enable the model to extract the operating state
that better reflects the characteristics of the load, thereby
improving the solution of the NIPLI problem in the high-
permeability new energy grid performance. The power
decomposition optimization model proposed in this study
based on maximum likelihood estimation considers and
learns the volatility behind the new energy generation to a

FIGURE 8 | Results of power decomposition (DWE).

FIGURE 9 | Results of power decomposition (TVE).
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certain extent, ensuring that the sum of the monitored power
of each electrical appliance is equal to the total load power,
making the power decomposition more accurate. For the more
cutting-edge deep learning methods, the method described in
this article is better than the deep learning–based solution in
the accuracy of state recognition of multiple working state
appliances, such as TVs and washing machines.

CONCLUSION

This article proposes non-intrusive power load identification
under high-penetration new energy grids. This method
proposes and constructs the binary parameter hidden
Markov model BPHMM, uses the GMM algorithm to cluster
the load characteristics, proposes a binary-based coding
scheme to encode the load state combination, and improves
the Viterbi algorithm to make it have the adaptability of the
updating model parameter situation and then realize the
optimal prediction of the load state. Finally, an optimization
model that takes into account the random volatility of the new
energy generation is established, and the power decomposition
of the load is realized according to the mean and variance of the
appliance cluster. The results of the calculation example show
that in the high penetration rate new energy grid scenario,
compared with the recognition scheme based on heuristic
algorithms, deep learning methods, and classic HMM, the
method proposed in this article has achieved higher load
status recognition accuracy and lower power decomposition
error. This article proposes various measures to improve the
performance of the NIPLI model under high-penetration new
energy grids, such as denoising data, improving traditional
methods to increase its adaptability to unknown data, and
enabling the model to learn the statistical characteristics

behind data fluctuations. And other ideas, I also believe that
it has reference value for the practicality of NIPLI.

The research on the high-penetration new energy grid
in this work is still relatively preliminary, and the non-
electrical characteristics of load operation are not
considered. The next step of research will focus on how
to use non-electrical characteristics, such as load
working hours and user behavior habits, study the
processing of new unknown electrical appliances, and
propose a more practical non-intrusive power load
identification method.
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