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In this study, the forecasting-aided state estimation (FASE) problem for the active
distribution system (ADS) with distributed generations (DGs) is investigated,
considering the constraint of data transmission. First of all, the system model of the
ADS with DGs is established, which expands the scope of the ADS state estimation from
the power network to the DGs. Moreover, in order to improve the efficiency of data
transmission under the limited communication bandwidth, a component-based event-
triggered mechanism is employed to schedule the data transmission from the
measurement terminals to the estimator. It can efficiently reduce the amount of data
transmission while guaranteeing the performance of system state estimation. Second, an
event-triggered unscented Kalman filter (ET-UKF) algorithm is proposed to conduct the
state estimation of the ADS with mixed measurements. To this end, the unscented
transform (UT) technique is employed to approximate the probability distribution of the
state variable after nonlinear transformation, which can reachmore than second order, and
then, an upper bound of the filtering error covariance is derived and subsequently
minimized at each iteration. The gain of the desired filter is obtained recursively by
following a certain set of recursions. Finally, the effectiveness of the proposed method
is demonstrated by using the IEEE-34 distribution test system.

Keywords: active distribution system, forecasting-aided state estimation, event-triggered scheme, unscented
Kalman filter, distribution generations

1 INTRODUCTION

With the widespread integration of distributed generations (DGs) in the power system, the
conventional passive distribution system is being transformed into the active distribution system
(ADS) (Ehsan and Yang, 2018; Ge et al., 2020a; Li et al., 2020; Luo et al., 2020). It is common that the
inherent intermittence and variability of DG generation increase the complexity and uncertainty of
the operation state for the ADS (Ge et al., 2021b; 2020b). In this regard, it is necessary to ensure the
accuracy and efficiency of state estimation for the ADSs, which is prerequisite for the safe and reliable
operation of the power distribution system (Chen Y. et al., 2017; Zhang et al., 2020; Ge et al., 2021a).
In general, the traditional static state estimation (SSE) methods are mainly based on the weighted
least square (WLS) that cannot meet the estimation requirements of ADSs, because it ignores the
dynamics of the system. For this reason, the forecasting-aided state estimation (FASE) is proposed to
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improve the accuracy and speed of the estimator effectively for
the ADSs (Do Coutto Filho and Stacchini de Souza, 2009; Wang
et al., 2020). The FASE method takes into consideration the time
evolution of the ADS states that can make the state prediction of
the next time instant, so as to provide the information required
for a security analysis and preventive control functions.
Moreover, when the measurement data of ADS are flawed or
even unavailable due to certain reasons, the state prediction
values can be used to provide a set of pseudo states of the
ADS, thus improving the robustness of the estimator to
external interference.

Due to the advantages of the FASE method and its promising
prospect of practical application, it has attracted increasing attention for
research, and there have been plenty of remarkable achievementsmade
in addressing FASE problems for the ADS (Ćetenović and Ranković,
2018; Macii et al., 2020; Cheng and Bai, 2021; Geetha et al., 2021). For
instance, a novel approach in assessing the process noise covariance
matrix for FASE in ADS has been proposed by Ćetenović and
Ranković (2018), which contributes in improving the accuracy of
estimation. The asynchronous hierarchical FASE method has been
proposed by Geetha et al. (2021). According to this method, the global
estimation values are calculated by collating the estimates of smaller
reduced order subsystems to reduce the overall level of computational
complexity. Cheng and Bai (2021) put forward the robust FASE for
ADSs by using a strict linearization method for the purpose of dealing
with the nonlinear measurements, which can reduce the nonlinear
error for the state estimation. However, in the prior literature, the
monitoring scope of the state estimation system is often limited to the
power network part of the ADS. In general, the DGs are modeled as
equivalent power injection, but they are notmonitored andmodeled in
detail. In fact, when there are a large number of DGs connected to the
distribution network, the accurate estimation of real-time DG states
plays a crucial role in the flexible control and dispatch of the ADS
(Yang et al., 2018). Meanwhile, with the development of smart sensor,
more information of the DG system is allowed to be collected to the
monitoring center (Fang et al., 2020). The information redundancy can
be improved by considering the measurement of DG system in the
context of ADS state estimation, thereby facilitating to enhance the
estimation performance. Therefore, it is of much practical significance
to construct an adequate model of the ADSs with DGs for expanding
the scope of state estimation and improving the estimation
performance of ADSs.

In addition, due to economic constraint and the complexity of
reconstruction, it is impractical to replace all distribution remote
terminal units (DRTUs) with phasor measurement units (PMUs)
within a short period of time (Yang et al., 2017). In the foreseeable
future, both PMUs andDRTUs will provide measurement data for the
FASE of theADSs collectively (Dobakhshari et al., 2021). Therefore, the
FASE algorithm is based on PMU/DRTU mixed nonlinear
measurements. In practice, it is significant to deal with nonlinear
measurement, which would seriously affect the performance of FASE
for the ADSs. In this regard, there are various nonlinear filtering
algorithms developed to handle the nonlinear system state estimation,
such as the particle filter (PF), the extended Kalman filter (EKF), and
the unscentedKalmanfilter (UKF). ThePF algorithm can carry out the
recursive Bayesian estimation using the nonparametric Monte Carlo
simulation method. Due to the high dimension of the distribution

system, however, a considerable amount of particles are required,
which would give rise to a huge computational workload. The EKF
algorithm linearizes the nonlinear system through the Taylor series
expansion but ignores the higher order terms (Sun et al., 2017, 2018),
which cannot guarantee the high estimation accuracy. As for the UKF
algorithm, the unscented transform (UT) technique is applied to
approximate the probability distribution of the state variable after
nonlinear transformation (Zhao andMili, 2019; Dang et al., 2020). The
UKF algorithm produces better estimation performance than the EKF
algorithm, and it is more suitable to realize the online application of
estimation.

Furthermore, with the rapid increase in the number of power users
and the extensive connection of DGs, the scale of the ADS is also
expanding. In order to meet the monitoring requirements of the ADS,
it is necessary to install more measurement devices. As a result, a
considerable amount ofmeasurement datawould be transmitted to the
estimator. Due to the limited network communication resources, the
transmission of numerous datamay contribute to the network-induced
phenomena, for example, data loss and transmission delay, which
makes it likely to lose useful information, thus affecting the estimation
performance of the ADS (Ding et al., 2017; Cheng et al., 2018; Xing
et al., 2018). In order to reduce the transmission of redundant data, the
communication strategy based on the event-triggered mechanism has
been proposed. According to this strategy, the measurement will be
transmitted to the data center for processing only when the preset
event-triggering conditions are satisfied. Compared with the traditional
time-triggered one, the event-triggered mechanism has the advantage
in alleviating the communication burden with ensuring the expected
estimation performance. Therefore, the estimation problem based on
the event-triggered mechanism has recently attracted much attention
(Liu et al., 2018; Li et al., 2019; Kooshkbaghi et al., 2020; Shanmugam
et al., 2020; Zhu et al., 2020). For instance, an event-triggered PF
algorithmhas been proposed by Liu et al. (2018) to estimate the state of
the synchronous generator in real time, and the UKF algorithm has
been used as the local estimator to provide trigger information in the
study by Li et al. (2019), which reduces the computational burden of
the intelligent terminal. So far, to our knowledge, the FASE of the ADS
based on the event-triggered mechanism has not been considered as
carefully as required.

As motivated by the above discussion, this study is purposed to
address the FASE problem for the ADS with DGs under the
constraints of communication resource, and the main
contributions of it are detailed as follows.

1) The system model of the ADSs with DGs is established by
considering the state variables and measurements of DGs in
detail, which expands the estimation scope of the ADS and
facilitates the accurate FASE of the ADS.

2) An appropriate component-based event-triggered mechanism
is adopted to reduce “unnecessary” data transmissions from
the measuring terminals to the monitoring center, thus
alleviating the burden placed on the network transmission.

3) Given the nonlinear mixed measurement of the ADS and
the intermittent observation attributed to the event-
triggered mechanism, the event-triggered UKF (ET-
UKF) algorithm is proposed to ensure the performance
of the state estimation.
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The rest of this article is organized as follows. The state and
measurement models of the ADS are built by incorporating the
state and measurement information of DGs into the distribution
system in System Model of ADS with DGs section. In FASE with
Component-Based Event-Triggered Mechanism section, the
component-based event-triggered mechanism is introduced, and the
ET-UKF algorithm is designed. In Simulation Results and Analysis
section, the IEEE-34 distribution test system is taken as an example to
verify the effectiveness of the proposed method.

2 SYSTEM MODEL OF THE ACTIVE
DISTRIBUTION SYSTEM WITH
DISTRIBUTED GENERATIONS
For the FASE of ADSs, the system model is composed of the state
model and the measurement model. The state model is linear,
which represents the transition trajectory between consecutive
states (Zhao et al., 2019). The measurement model expresses the
functional relationship between measurements and state
variables. In this study, considering the widespread connection
of DGs in the ADS, the system model is built by combining the
state and measurement variables of power networks and DGs.

2.1 State Model
The system state xk ∈ Rn is composed of the state of the network
part of the ADS and the DGs connected to the distribution
system, and xk � [xTDG,k, xTDN ,k]T . In reality, there are many
types of DGs, including DGs that are directly connected to the
distribution network such as synchronous generators and
asynchronous generators (as shown in Figure 1A), and DGs

that are connected to the grid through power electronic
converters, such as photovoltaic cells and energy storage
batteries (Chen S. et al., 2017). The most common DGs
connected to the grid via power electronic devices are the
direct current DGs, which are connected to the grid via a
chopper-inverter device (as shown in Figure 1B).

For the DGs connected to the grid directly, the state variables
are selected as xd,k � [Vre,a

d,k ,V
re,b
d,k ,V

re,c
d,k ,V

im,a
d,k ,Vim,b

d,k ,Vim,c
d,k ]T , where

Vre,p
d,k and Vim,p

d,k (p ∈ {a, b, c}) represent the real and imaginary
parts of the alternating current voltage output by the DGs,
respectively. For the direct current–type DGs connected to
grid via a chopper-inverter device, the state variables are set as
xpe,k � [Vdco,k, Idco,k,Vdc,k,V

re,a
pe,k,V

re,b
pe,k,V

re,c
pe,k,V

im,a
pe,k ,V

im,b
pe,k ,V

im,c
pe,k ]

T
,

where Vdco,k and Idco,k are the voltage and current output by the
direct current–type DGs, respectively, and Vdc,k represents the
direct current voltage output by the DC/DC transformation.
Therefore, xDG,k � [xTd,1,k, . . . , xTd,nd ,k, xTpe,1,k, . . . , xTpe,npe ,k]

T ∈ RnDG .
In addition, the state vector of the distribution network part
xDN ,k � [VT

1,k, . . . ,V
T
ι,k, . . . ,V

T
nDN ,k

]T ∈ RnDN is consisted of the real
and imaginary parts of bus voltage in the distribution network,
where Vι,k � [Vre,a

ι,k ,Vre,b
ι,k ,Vre,c

ι,k ,Vim,a
ι,k ,Vim,b

ι,k ,Vim,c
ι,k ]T is a vector

representing the state of the ι − th bus.
Then, the state model of the ADS with DGs can be described as

xk � Fk−1xk−1 + gk−1 + wk−1, (1)

where Fk−1 is the transition matrix that represents the speed of the
state transition process, and vector gk−1 is associated with the
trend behavior of the state trajectory. wk−1 ∈ Rn represents the
process noise that obeys Gaussian distribution, which satisfies
E{wk−1} � 0 and E{wk−1wT

k−1} � Qk−1. In this study, with the
consideration of the adequacy and parsimony of the state

FIGURE 1 | The models of the twomost commonly used DGs: (A)model of DGs connected to the grid directly and (B)model of direct current type DGs connected
to grid via a chopper-inverter device.
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model, we adopt the Holt–Winters double exponential
smoothing method in Eq. 1 to update Fk−1 and gk−1 as follows:

Fk−1 � αH(1 + βH)I, (2)

gk−1 � (1 + βH)(1 − αH)x̂k−1|k−2 − βHak−2 + (1 − βH)bk−2, (3)

where I is the identity matrix; αH and βH are smoothing
parameters, which are commonly in the range from 0 to 1;
x̂k−1|k−2 is the predicted state at instant k − 1; and ak and bk
are recursively defined as

ak � αHx̂k|k + (1 − αH)x̂k|k−1, (4)

bk � βH(ak − ak−1) + (1 − βH)bk−1, (5)

2.2 Measurement Model
The measured data of the ADS primarily originate from
alternating current voltage, power, other measurement
information of the network part, and the measurement
information provided by sensors in DGs.

In general, the measurements obtained from different types of
DGs are different. For the DGs directly connected to the grid, the
measurement information is
yd,k � [Pa

d,k, P
b
d,k, P

c
d,k,Q

a
d,k,Q

b
d,k,Q

c
d,k,V

a
d,k,V

b
d,k,V

c
d,k]T . Assuming

the DG is connected to the ι − th bus in the ADS, according
to the equivalent model shown in Figure 1A, the measurement
equation can be obtained as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pp
d,k � −Vre,p

d,k (Gp
dV
→re,p

d−ι,k − Bp
d V
→im,p

d−ι,k) + Vim,p
d,k (Gp

dV
→im,p

d−ι,k + Bp
d V
→re,p

d−ι,k)
Qp

d,k � −Vre,p
d,k (Gp

dV
→im,p

d−ι,k + Bp
d V
→re,p

d−ι,k) + Vim,p
d,k (Gp

dV
→re,p

d−ι,k − Bp
d V
→im,p

d−ι,k) ,

(6)

Vp
d,k �

���������������(Vre,p
d,k )2 + (Vim,p

d,k )2√
, (7)

where V
→re,p

d−ι,k � Vre,p
d,k − Vre,p

ι,k , V
→im,p

d−ι,k � Vim,p
d,k − Vim,p

ι,k . Gp
d and B

p
d are

the real and imaginary parts of equivalent admittance Yp
d , respectively.

Pp
d,k and Qp

d,k represent the active and reactive power outputs by the
DGs, and Vp

d,k is the voltage amplitude of the DGs.
For the direct current DGs connected to the grid by the chopper-

inverter device, according to the data that can be measured by the
chopper-inverter device sensors, the measurement is ype,k �
[Vdco,k, Idco,k,Vdc,k, Idc,k,Va

pe,k,V
b
pe,k,

Vc
pe,k, P

a
pe,k, P

b
pe,k, P

c
pe,k,Q

a
pe,k,Q

b
pe,k,Q

c
pe,k]T . From the equivalentmodel

shown in Figure 1B, the measurement equation can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vdco,k � Vdco,k

Idco,k � Idco,k

Vdc,k � Vdc,k

Idc,k � Idco,kVdco,kηdc
Vdc,k

(8)

Vp
pe,k �

���������������(Vre,p
pe,k)2 + (Vim,p

pe,k )2√
, (9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pp
pe,k � −Vre,p

pe,k(Gp
peV
→re,p

pe−ι,k − Bp
peV
→im,p

pe−ι,k) + Vim,p
pe,k (Gp

peV
→im,p

pe−ι,k + Bp
peV
→re,p

pe−ι,k)
Qp

pe,k � −Vre,p
pe,k(Gp

peV
→im,p

pe−ι,k + Bp
peV
→re,p

pe−ι,k) + Vim,p
pe,k (Gp

peV
→re,p

pe−ι,k − Bp
peV
→im,p

pe−ι,k) ,

(10)

where V
→re,p

pe−ι,k � Vre,p
pe,k − Vre,p

ι,k , V
→im,p

pe−ι,k � Vim,p
pe,k − Vim,p

ι,k . Idc,k is the
DC/DC converter output current, ηdc is the efficiency of the DC/
DC converter, and Vp

pe,k represents the voltage amplitude at the
ports of power electronic grid–connected devices. Gp

pe and B
p
pe are

the real and imaginary parts of equivalent admittance Yp
pe,

respectively.
The measurement information of the network part is

mainly provided by the PMUs and the DRTUs. The PMU
can measure the real and imaginary parts of bus voltage and
branch current, respectively. Moreover, the DRTU can
measure the voltage amplitude, injected power of the
bus, and the power flow of the branch. Figure 2 shows
the three-phase line model of the distribution system.
Combined with the circuit theorem, the functional
relationship between measurement variable and state
variable can be calculated.

Then, the PMU measurements are expressed as

{Vre,p
ι,k � Vre,p

ι,k

Vim,p
ι,k � Vim,p

ι,k

, (11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ire,pι−ι′,k �

1
2
bpι−ι′V

im,p
ι,k + ∑

q∈{a,b,c}
Gpq

ι−ι′ V
→re,q

ι−ι′,k − Bpq
ι−ι′ V
→im,q

ι−ι′,k

Iim,p
ι−ι′,k �

1
2
bpι−ι′V

re,p
ι,k + ∑

q∈{a,b,c}
Gpq

ι−ι′ V
→im,q

ι−ι′,k − Bpq
ι−ι′ V
→re,q

ι−ι′,k

, (12)

and the DRTU measurements are expressed as

Vp
ι,k �

���������������(Vre,p
ι,k )2 + (Vim,p

ι,k )2√
, (13)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pp
ι,k � Vre,p

ι,k ∑
ι′∈Nι

∑
q∈{a,b,c}

Gpq
ι−ι′ V

→re,q

ι−ι′,k − Bpq
ι−ι′ V

→im,q

ι−ι′,k

+Vim,p
ι,k ∑

ι′∈Nι

∑
q∈{a,b,c}

Gpq
ι−ι′ V

→im,q

ι−ι′,k + Bpq
ι−ι′ V

→re,q

ι−ι′,k

Qp
ι,k � −1

2
∑
ι′∈Nι

bpι−ι′ [(Vre,p
ι,k )2 + (Vim,p

ι,k )2]
−Vre,p

ι,k ∑
ι′∈Nι

∑
q∈{a,b,c}

Gpq
ι−ι′ V

→im,q

ι−ι′,k + Bpq
ι−ι′ V

→re,q

ι−ι′,k

+Vim,p
ι,k ∑

ι′∈Nι

∑
q∈{a,b,c}

Gpq
ι−ι′ V

→re,q

ι−ι′,k − Bpq
ι−ι′ V

→im,q

ι−ι′,k

, (14)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pp
ι−ι′,k � −Vre,p

ι,k ∑
q∈{a,b,c}

Gpq
ι−ι′ V

→re,q

ι−ι′,k − Bpq
ι−ι′ V

→im,q

ι−ι′,k

+Vim,p
ι,k ∑

q∈{a,b,c}
Gpq

ι−ι′ V
→im,q

ι−ι′,k + Bpq
ι−ι′ V

→re,q

ι−ι′,k

Qp
ι−ι′,k � −1

2
bpι−ι′ [(Vre,p

ι,k )2 + (Vim,p
ι,k )2]

−Vre,p
ι,k ∑

q∈{a,b,c}
Gpq

ι−ι′ V
→im,q

ι−ι′,k + Bpq
ι−ι′ V

→re,q

ι−ι′,k

+Vim,p
ι,k ∑

q∈{a,b,c}
Gpq

ι−ι′ V
→re,q

ι−ι′,k − Bpq
ι−ι′ V

→im,q

ι−ι′,k

, (15)

where Vp
ι,k represents the p-phase voltage amplitude at the ι − th

bus. Pp
ι,k and Q

p
ι,k represent the p-phase–injected active power and

reactive power at the ι − th bus, respectively. Pp
ι−ι′ and Qp

ι−ι′
represent the p-phase active power and reactive power flow at
the ι − ι′ branch, respectively. Nι represents the set of bus directly
connected to the ι − th bus.

Combining all measurements of PMUs, DRTUs, and DGs’
sensors, the measurement output yk ∈ Rm is composed as follows:

yk � h(xk) + vk, (16)

where yk � [yTDG,k, yTDN ,k]T , and yDG,k �
[yTd,1,k, . . . , yTd,md ,k

, yTpe,1,k, . . . , y
T
pe,mpe ,k

]T is the measurement
vector of DGs, yDN ,k � [yTDRTU ,k, y

T
PMU ,k]T represents the

measurement vector of the network part, h(·) is a high-order
nonlinear function, and vk ∈ Rm is themeasurement noise subject
to the Gaussian distribution, which satisfies E{vk} � 0 and
E{vkvTk } � Rk.

Remark 1: In this study, the system model of ADS with DGs is
established by considering the state variables and measurements
of DGs in detail, which expands the scope of ADS state estimation
from the network to the DGs and improves estimated accuracy. It
should be noted that the two most commonly used DGs are taken
as examples for modeling in this study. The modeling methods of
other DGs are similar to it. In practical applications, the models
can be established according to the specific structure of the DGs.

Remark 2: According to the IEEE standard c37.118–2005,
the PMUs ought to provide data in both the angular form (i.e., the
phasor angles and magnitudes) and the rectangular form (i.e., the
real and imaginary parts of voltages of the buses) (Martin et al.,
2008). In this study, both the state and measured variables are
presented in the rectangular form to build a linear PMU
measurement model. In doing so, the complexity of the
estimator is reduced, and the estimation performance is
improved.

3 FASE WITH THE COMPONENT-BASED
EVENT-TRIGGERED MECHANISM
3.1 Component-Based Event-Triggered
Mechanism
With the event-triggered mechanism, the event generator
determines whether the newly obtained measurement is
sent to the estimator or not, which is based on the
difference between the previously transmitted measurement
and the latest measurement. To reduce the amount of data
transmissions from measurement terminals to the estimator
and ensure the desired estimation performance, each
measurement terminal examines the event generator
independently, and the consistency with other
measurement terminals in the ADS is not required. As
such, the component-based event-triggered mechanism is
adopted in the data transmission of the ADS (Figure 3).
The measured data are obtained by the measurement
terminals (e.g., the DRTUs, the PMUs, and the DGs’
sensors) and screened by the event generator with the
triggering condition. Then, the measured data meeting the
triggering conditions are transited to the communication
system. Moreover, the trigger detector determines which
terminals have triggered and which terminals have not, and
then the “zero-order hold” strategy is adopted to update the
measurement data in the detector. Last, the data are passed
into the estimator for processing.

FIGURE 2 | Three-phase line model of the distribution system.
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The event-triggered condition is described as

ci,k �
⎧⎪⎪⎨⎪⎪⎩ 1, li(yi,si

k−1
, yi,k)> 0

0, li(yi,si
k−1
, yi,k)≤ 0 , (17)

where li(yi,sik−1 , yi,k) �
∣∣∣∣∣∣∣∣∣∣∣∣∣∣yi,sik−1 − yi,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ − δi, {sik} represents the
triggering instants sequence, si0 � 0 and sik �
min
k≥ sik−1

{k ∈ N+
∣∣∣∣∣∣∣li(yi,sik−1 , yi,k)> 0}.

In this study, the “zero-order hold” strategy is used to update
the measurement y

�
k received by the estimator subject to the

component-based event-triggered mechanism, where y
�
k �

[y�T
1,k,/, y

�T
i,k, / , y

�T
m1 ,k

]T and y
�
i,k is the received measurement

data associated with the ith measuring device.

y
�
i,k � { yi,k, ci,k � 1

y
�
i,k−1, ci,k � 0

. (18)

Based on the above analysis, we can get y
�
i,k−1 � ysik−1 . ysk �[yT1,s1k , y

T
2,s2k

, / , y
�T
m1,s

m1
k
]T is defined to the measurement

transmitted under the event-triggered mechanism, and the
matrix ϕk � diag{c1,kI1, . . . , ci,kIi, . . . cm1 ,k

Im1} is defined, where
Ii is an identity matrix. Then, the measurement received by the
estimator at instant k can be expressed as

y
�
k � ϕkyk + (I − ϕk)ysk−1. (19)

It is possible for the component-based event-triggered
mechanism to make the measurement information
transmitted in the communication network incomplete.
Despite the “zero-order hold” strategy being used to
update the measurement in the triggering detector, the
non-triggering error would bring about serious effect on
the estimation performance of the ADS. As such, it is
necessary to design a suitable filter algorithm for reducing
the impact of the non-triggering error. Fortunately, with the
component-based event-triggered mechanism, the estimator
can acquire some valuable information that will facilitate
the effective design of the filter. On the one hand, the
triggering sequence of the triggering generator is known.
On the other hand, the non-triggering error would fall
into a certain range.

Remark 3: In order to save network communication resources
of the ADS, the component-based event-triggered mechanism is
employed, with which the measurement transmission of each
component is scheduled individually according to its own
triggering condition. The component-based event-triggered
mechanism pays attention on the individual change of each
component of the system output, while the usual one

FIGURE 3 | State estimation with the event-triggered mechanism in the ADS: (A) flow of the event-triggered mechanism and (B) event generator.
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focuses on the output vector. Considering that there are the
characteristics of extremely different operating states
between the busses, complex structure, and wide
distribution in the ADS, the component-based event-
triggered mechanism is more suitable for the ADS.

3.2 Event-Triggered UKF Algorithm
In order to ensure the state estimation performance of the ADS
with DGs under the event-triggered mechanism, a filter is
designed based on the framework of the UKF algorithm. First,
the one-step prediction and filtering error covariances are
calculated. Second, some parameters were adjusted by using
some lemmas to find the upper bound of the covariance. Last,
such an upper bound is minimized by designing an appropriate
filter gain.

For the state model Eq. 1 and event-triggered measurement
model Eq. 19, the filter is designed as follows:

x̂k|k−1 � Fk−1x̂k−1|k−1 + gk−1, (20)

x̂k|k � x̂k|k−1 + Kk(y�k − ŷk|k−1), (21)

where x̂k−1|k−1 denotes the estimation of the state xk−1, x̂k|k−1 is the
one-step state prediction at time instant k, Kk is the filter gain to
be deigned, and ŷk|k−1 is the predicted value of the measurement.
Then we define ~ek|k−1 � xk − x̂k|k−1 and ~ek|k � xk − x̂k|k that
represent the one-step prediction and filtering error,
respectively, and the corresponding covariance matrices are
defined as Pk|k−1 � E{~ek|k−1~eTk|k−1} and Pk|k � E{~ek|k~eTk|k}.

Before proceeding, the following lemma is recalled, which will
be used in later developments.

Lemma 1 (Cheng and Bai, 2021): For any two vectors
X,Y ∈ Rn, the following inequality holds:

XYT + YXT ≤ aXXT + a−1YYT , (22)

where a is a positive scalar.Combining Eqs 19, 21, we can get the
state estimation at instant k:

x̂k|k � x̂k|k−1 + Kk(yk − ŷk|k−1) + Kkεk, (23)

FIGURE 4 | Configuration of measurement devices and DGs in the IEEE-34 distribution test system.

TABLE 1 | Measurement noise in different scenarios.

Parameters RPMU,k RDRTU,k RDG,k

Scenario 1 8 × 10−6 I 8 × 10−4 I 8 × 10−6 I
Scenario 2 6 × 10−6 I 6 × 10−4 I 6 × 10−6 I
Scenario 3 4 × 10−6 I 4 × 10−4 I 4 × 10−6 I
Scenario 4 2 × 10−6 I 2 × 10−4 I 2 × 10−6 I
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FIGURE 5 | Actual state and its estimation of a-phase voltage at the 816 bus. (A)Real part of bus voltage in the case of Scenario 1, (B) imaginary part of bus voltage
in the case of Scenario 1, (C) real part of bus voltage in the case of Scenario 2, and (D) imaginary part of bus voltage in the case of Scenario two.

FIGURE 6 | RMSE between the estimation and true values under the proposed and conventional models. (A) Scenario 1 and (B) Scenario 2.
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where εk � (I − ϕk)(ysk−1 − yk) represents the non-triggered error.
The estimation error at instant k can be expressed as

~ek|k � ~ek|k−1 − Kk(yk − ŷk|k−1) − Kkεk. (24)

Then, covariance of the filtering error can be calculated as
following:

Pk|k � E{~ek|k~eTk|k}
� E{~ek|k−1~eTk|k−1}
−E{~ek|k−1(yk − ŷk|k−1)T}KT

k − KkE{(yk − ŷk|k−1)~eTk|k−1}
+KkE{(yk − ŷk|k−1)(yk − ŷk|k−1)T}KT

k

−E{~ek|k−1εTk }KT
k − KkE{εk~eTk|k−1}

+KkE{(yk − ŷk|k−1)εTk }KT
k + KkE{εk(yk − ŷk|k−1)T}KT

k

+KkE{εkεTk }KT
k .

(25)

Theorem 1: Consider the system described by Eqs 1, 19 with
filter Eqs 20, 21 and define the following two Riccati-like different
equations.

Pk|k−1 � Fk−1Pk−1|k−1Fk−1 + Qk−1, (26)

Pk|k � μ1,kPk|k−1 − E{~ek|k−1(yk − ŷk|k−1)T}KT
k

−KkE{(yk − ŷk|k−1)~eTk|k−1} + μ2,kKkE{(yk − ŷk|k−1)(yk − ŷk|k−1)T}KT
k

+μ3,kKk
⎛⎝ ∑

i∈Nc�0
δ2i I⎞⎠KT

k ,

(27)

where μ1,k � 1 + a1,k, μ2,k � 1 + a2,k, and μ3,k � 1 + a−11,k + a−12,k, a1,k,
and a2,k are positive scalar. If there exist positive-definite
solutions Pk|k−1 and Pk|k with initial conditions P0|0 � P0|0, the
matrix Pk|k is the upper bound of covariance matrix Pk|k, namely,
Pk|k ≥ Pk|k.

Proof: According to Lemma 1, the following inequalities are
obtained:

−E{~ek|k−1εTk }KT
k − KkE{εk~eTk|k−1}≤ a1,kPk|k−1 + a−11,kKkE{εkεTk }KT

k , (28)

KkE{(yk − ŷk|k−1 )εTk }KT
k + KkE{εk(yk − ŷk|k−1)T}KT

k

≤ a2,kKkE{(yk − ŷk|k−1)(yk − ŷk|k−1)T}KT
k + a−12,kKkE{εkεTk }KT

k . (29)

According to the event-triggered condition Eq. 17, we can obtained

FIGURE 7 | Actual state and its estimation of DG2. (A) Voltage output by the DG2 in the case of Scenario 1, (B) current output by the DG2 in the case of Scenario 1,
(C) voltage output by the DG2 in the case of Scenario 2, and (D) current output by the DG2 in the case of Scenario 2
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FIGURE 8 | Actual state and its estimation of a-phase voltage at 864 bus. (A)Real part of bus voltage in the case of Scenario 3, (B) imaginary part of the bus voltage
in the case of Scenario 3, (C) real part of bus voltage in the case of Scenario 4, and (D) imaginary part of bus voltage in the case of Scenario 4.

FIGURE 9 | RMSE between the estimated and true values for ET-UKF and ET-EKF algorithms. (A) Scenario 3 and (B) Scenario 4.
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εkε
T
k ≤ ε

T
k εkI ≤ ∑

i∈Nc�0
δ2i I, (30)

where Nc�0 represents a set of measurement devices that are not
triggered by an event.Then

−E{~ek|k−1εTk }KT
k − KkE{εk~eTk|k−1}≤ a1,kPk|k−1

+ a−11,kKk
⎛⎝ ∑

i∈Nc�0
δ2i I⎞⎠KT

k , (31)

KkE{(yk − ŷk|k−1 )εTk }KT
k + KkE{εk(yk − ŷk|k−1)T}KT

k ≤ a2,kKkE{(yk
− ŷk|k−1)(yk − ŷk|k−1)T}KT

k + a−12,kKk
⎛⎝ ∑

i∈Nc�0
δ2i I⎞⎠KT

k . (32)

This completes the proof.After that, the filter gain Kk can be obtained by
the Pk|k.

ztr(Pk|k)
zKk

� −2E{~ek|k−1(yk − ŷk|k−1)T }
+2μ2,kKkE{(yk − ŷk|k−1)(yk − ŷk|k−1)T} + 2μ3,kKk ∑

i∈Nc�0
δ2i I. (33)

Let ztr(Pk|k)/zKk � 0, and through some algebraic operations,
the filter gain can be obtained.

Kk � Pxy,k|k−1P−1
δ,k|k−1, (34)subject to

Pδ,k|k−1 � μ2,kPyy,k|k−1 + μ3,k ∑
i∈Nc�0

δ2i I, (35)

FIGURE 10 | Variation of the RMSE and Jdrt with the trigger threshold (in the case of Scenario 3).

FIGURE 11 | Actual state and its estimation of c-phase voltage at the 814 bus (in the case of Scenario 3). (A) Real part of bus voltage and (B) imaginary part of bus
voltage.
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where Pyy,k|k−1 � E{(yk − ŷk|k−1)(yk − ŷk|k−1)T} and Pxy,k|k−1 �
E{~ek|k−1(yk − ŷk|k−1)T } represent the predicted measurement
covariance matrix and state-measurement cross-covariance
matrix, respectively. Then the upper bound of the covariance
matrix can be expressed as

Pk|k � μ1,kPk|k−1 − KkPδ,k|k−1Kk. (36)

Next, the UT technology is employed to calculate the prediction
of measurement and predicted measurement covariance matrix
and state-measurement cross-covariance matrix. Considering
the high-dimensional nonlinearity of the ADS, in order to
ensure the accuracy of the algorithm, while avoiding non-
local effects and high-order term errors, in this study, the
proportional symmetric sampling strategy is selected as the
sigma point sampling strategy of the UT (Wang et al., 2019).
The calculation method of the sigma points and its weight is as
follows:

χj,k|k−1 �
⎧⎪⎨⎪⎩ x̂k|k−1, j � 0

x̂k|k−1 + ψj,k|k−1, j � 1, . . . , n
x̂k|k−1 − ψj−n,k|k−1, j � n + 1, . . . , 2n

, (37)

where ψj,k|k−1 � (
�����������
(n + λ)Pk|k−1

√
)j represents the jth column of

the square root of the positive definite matrix (n + λ)Pk|k−1. In
order to obtain the prediction of measurement and covariance
matrix, we define two set weighted coefficient θmj and θcj as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θmj � λ

n + λ
, j � 0

θcj �
λ

n + λ
+ (1 − a2 + β), j � 0

θmj � θcj �
1

2(n + λ), j � 1, 2,/, 2n

, (38)

where λ � α2(n + κ) − n. κ is used to capture the information of
higher-order moments of a given probability distribution, and the

value of κ is usually 0 or 3 − n. α is the scale correction factor
to determine the distribution range of sigma points, and for
the Gaussian distribution, commonly α ∈ [10−4, 1]. β is a
parameter related to the prior distribution of the state vector,
and for the Gaussian distribution, β � 2 is optimal.The prediction
of measurement and covariance matrix can be calculated as
follows:

ŷj,k|k−1 � h(χj,k|k−1), j � 0, 1, . . . , 2n, (39)

ŷk|k−1 �∑2n
j�0

θmj ŷj,k|k−1, (40)

Pxy,k|k−1 �∑2n
j�0

θcj(χj,k|k−1 − x̂k|k−1)(ŷj,k|k−1 − ŷk|k−1)T , (41)

Pyy,k|k−1 �∑2n
j�0

θcj(ŷj,k|k−1 − ŷk|k−1)(ŷj,k|k−1 − ŷk|k−1)T+Rk. (42)

In order to show the proposed filtering algorithm more clearly,
the ET-UKF algorithm is summarized as in Algorithm 1.

Algorithm 1ET-UKF Algorithm.

1: Initialization: select the initial values of x̂0|0 and P0|0, set
k � 0 and the maximum computation step kmax, and set a1,0,
a2,0, and δi.
2: At time k, compute the state prediction value x̂k|k−1 and the upper
boundof stateprediction error covariancematrixPk|k−1 byEqs20,26.
3: Compute 2n + 1 sigma points and weigh coefficients by using
Eqs 37, 38. Then compute the prediction of measurement ŷk|k−1
and the covariances Pxy,k|k−1 and Pyy,k|k−1 by using Eqs 39–42.
4: Calculate filter gain Kk by using Eq. 34.
5: With the obtainedKk, compute x̂k|k andPk|k by usingEqs 21, 36.
6: Set k � k + 1, if k> kmax , exit. Otherwise, go to step 2.

Remark 4: In this study, for the purpose of saving network
communication resources of the ADS, the component-based

FIGURE 12 | Triggering sequences of the measurement device installed at the 814 bus (in the case of Scenario 3).
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event-triggered transmission mechanism is adopted to reduce the
unnecessary data transmission. However, this method makes it
difficult to calculate the error covariance matrix recursively. To this
issue, an alternative approach is proposed to introduce some adjustable
parameters (e.g., a1,k and a2,k) through some lemmas to obtain the
upper bound of the covariance matrix. Next, the upper bound is
minimized by designing appropriate filtering gain, and the minimized
bound of the covariancematrix is closely related to the parameters. For
this reason, with these parameters selected appropriately, the possible
conservatism of the upper bound can be reduced. Fortunately, the
research on optimization is a significantly active field of applied
mathematics, which helps determine the optimal parameters.

4 SIMULATION RESULTS AND ANALYSIS

4.1 Simulation Settings
In this section, the IEEE-34 distribution test system is adopted to
simulate and verify the effectiveness of the proposed state estimation
algorithm. The topology structure and line parameters of the IEEE-34
distribution test system are originated from the study by Kersting
(1991). The simulation is implemented in MATLAB R2019b. The
dynamic variation of the ADS is simulated by changing the load
dynamically. The law of load change is assumed to be
SL,k+1 � (1 + 0.1rands(·))SL,k, and SL,0 represents the initial load
provided in the study by Kersting (1991). The measuring devices
consist of the DRTUs, the PMUs, and the DGs’ sensors. Figure 4
illustrates the installation positions of themeasuring devices andDGs
in the test system.

In the simulation, the parameters are set to a1,k � a2,k � 0.5. The
process noise parameter is expressed as Qk � 4 × 10−3I. In the
Holt–Winters double exponential smoothing method, the parameters
αH and βH are selected as αH � 0.9 and βH � 0.1. The initial value of
the covariance matrix is set to P0|0 � 4 × 10−6I. Moreover, in order to
further evaluate the effectiveness of theproposed state estimationmethod
under different scenarios, four measurement noise scenarios are set in
the simulation, and their noise parameters are shown in Table 1.

4.2 Result Analysis
1) Verification of the proposed ADS system model.

In this section, the ET-UKF algorithm (δi � 0) is applied for
state estimation under different scenarios, so as to validate the
system model proposed in this study. The estimation results will
be compared between the model proposed and the conventional
model where DGs are not modeled in detail. Figure 5 shows the
root-mean-square error (RMSE) of state variables associated with
the network obtained by the two models under different noise

scenarios, where RMSE(k) �
����������
1
n ∑n

j�1
(~ej,k|k)2

√
. It can be found out

that the estimated result produced by the proposed model is more
accurate than the conventional model in all scenarios. To make the
estimation results more intuitive, Figure 6 plots the state tracking
curves of the a-phase voltage at the 816 bus. Figure 7 presents the
state tracking curves of the DG2. Obviously, the proposed model can
not only improve the accuracy of the state estimation but also expand
the scope of state estimation, which is effective in monitoring the
operation states of the IEEE-34 distribution test system and the DGs.

2) Verification of the ET-UKF algorithm.
In order to demonstrate the performance of the event-triggered

mechanism, a data transmission ratio (DTR) is defined as a
transmission performance index by Jdrt � 1

mkmax
∑j�m
j�1

∑k�kmax
k�1

cj,k × 100%.

In particular, to demonstrate the superior performance of the ET-UKF

algorithm, simulation is performed with the event-triggered threshold
δi � 5 × 10−3 under the two noise scenarios. In the case of scenarios 3
and 4, the DTRs are Jdrt � 61.60% and Jdrt � 55.81%, respectively.
Figure 8 shows the state tracking curves of the a-phase voltage at the
816 bus. From this figure, it can be seen that the ET-UKF algorithm is
capable to track the changes in the system state in real time and make
accurate estimates even if only a part of the measurement data is
received, which is attributed to the non-triggering error getting well
handled by the ET-UKF algorithm. InFigure 9, the RMSE of estimated
results is compared between the ET-UKF algorithm and the ET-EKF
algorithm. It is evident that the estimation accuracy of the ET-UKF
algorithm is higher than that of the ET-EKF algorithm under any
situation, which is because the UT technology is advantageous over the
linearization method applied by the EKF algorithm.

3) The impact from the different triggering thresholds on
estimation performance.

In order to figure out the impact of various triggering thresholds on
estimation performance, simulations are conductedwith δi � 2 × 10−3,
δi � 4 × 10−3, and δi � 6 × 10−3, respectively. Figure 10 shows the
RMSE of estimation results and DTR with different triggering
thresholds. In order to view the estimation results more intuitively,
Figures 11, 12 show the state tracking curve and measuring device
trigger sequence of the 814 bus c-phase with different event-triggering
thresholds, respectively. It can be found out from these figures that the
DTR decreases sharply with the increase in the triggering threshold,
which is because the large triggering threshold prevented more
measurement data from being transmitted to the remote estimation
center, suggesting that the event-triggered mechanism contributes to
reducing data transmission in the communication network and
alleviating the communication pressure. With the increase in the
threshold, however, the RMSE for the estimation results of the ET-
UKF algorithm would also rise. Therefore, choosing an appropriate
threshold in thepracticalADS is effective in relieving the communication
pressure and ensuring the performance of state estimation.

5 CONCLUSION

In this study, a FASEmethod for theADSwithDGs has been developed
under the condition of limited communication resources. First, the
system model of the ADS has been built to improve the accuracy and
extend the scope of state estimation. Moreover, in order to solve the
network-induced phenomena attributed to considerable data
transmission in ADS, the component-based event-triggered
mechanism has been adopted to reduce the amount of data
transmitted through communication network and save the
communication resources. Besides, the ET-UKF algorithm has been
designed to guarantee the estimation performance of the system. Finally,
the effectiveness of the proposed method has been verified by the
simulation. In view of the importance of the integrated energy
system as a development trend in the energy field, the development
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of high-performance state estimation algorithms for the
integrated energy system has become a top priority. Future
study will consider the dynamic characteristics and time
scales of different systems in the integrated energy system
(Chen et al., 2020; Chen et al., 2021) and apply the algorithm
proposed in this study to integrated energy systems.
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