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Massive popularity of plug-in electric vehicles (PEVs) may bring considerable opportunities
and challenges to the power grid. The scenario is highly dependent on whether PEVs can
be effectively managed. Dynamic economic dispatch with PEVs (DED with PEVs)
determines the optimal level of online units and PEVs, to minimize the fuel cost and
grid fluctuations. Considering valve-point effects and transmission losses is a complex
constrained optimization problem with non-smooth, non-linear, and non-convex
characteristics. High efficient DED method provides a powerful tool in both power
system scheduling and PEVs charging coordination. In this study, firstly, PEVs are
integrated into the DED problem, which can carry out orderly charge and discharge
management to improve the quality of the grid. To tackle this, a novel real-coded genetic
algorithm (RCGA), namely, dimension-by-dimension mutation based on feature intervals
(GADMFI), is proposed to enhance the exploitation and exploration of conventional
RCGAs. Thirdly, a simple and efficient constraint handling method is proposed for an
infeasible solution for DED. Finally, the proposed method is compared with the current
literature on six cases with three scenarios, including only thermal units, units with
disorderly PEVs, and units with orderly PEVs. The proposed GADMFI shows
outstanding advantages on solving the DED with/without PEVs problem, obtaining the
effect of cutting peaks and filling valleys on the DED with orderly PEVs problem.

Keywords: dimension-by-dimension mutation, horizontal vertical local search, collaborative optimization,
constraints handling method, dynamic economic dispatch, plug-in electric vehicles, real-code genetic algorithm

INTRODUCTION

The Optimization Problem
Over the last few decades, the rapid increase in the use of fossil fuel has led to a consequential
worldwide reduction of the resource; thus, its optimal utilization in power generation has become an
important research topic (Niu et al., 2014; Yang et al., 2015). In addition, massive popularity of PEVs
may bring opportunities or challenges to the power grid. Therefore, the DED with PEVs plays an
important role in power systems operation and control. Coupling with space and time, it is a
complicated optimal decision problem, and its goal is to minimize the fuel cost and fluctuation of the
power grid, on the premise of satisfying a series of constraints.
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The DED problem was first introduced in 1971 by Bechert and
Kwanty (Niu et al., 2014) and an extension of static economic
dispatch (SED), taking into account ramp rate limits. Owing to
the inertia of thermal units, the output from the units is not
changed significantly from one operating hour to the next, which
can avoid shortening the life of the units (Elaiw et al., 2013). The

fuel cost function is a highly discontinuous, nonlinear, and non-
convex curve, due to the valve-point effect (VPE) of the steam
turbine (Shen et al., 2019), and the transmission loss should not
be ignored on a large scale of the power system. As a mobile,
distributed energy storage, PEVs charge from the grid through
the grid to vehicle technology (G2V), and feedback to the grid
through the vehicle to gird technology (V2G) (Wang et al.,
2019a). So, VPE, transmission losses, and PEVs make the
DED model more complicated, but more accurate.

Over the past few years, optimization methods based on
artificial intelligence have been successfully and popularly
applied to DED. Meta-heuristic algorithms do not care
certain mathematical properties of the objective function
such as continuous, differentiability, and convex, compared
with traditional techniques. They include simulated annealing
(SA) (Panigrahi et al., 2007), genetic algorithm (GA), particle
swarm optimization (PSO) (Sawyerr et al., 2011), differential
evolution (DE), artificial immune system (AIS) (Hemamalini
and Simon, 2011a; Basu, 2011), cuckoo search (CS) (Mellal
and Williams, 2020), artificial bee colony (ABC) (Hemamalini
and Simon, 2011b; Tehzeeb-ul-Hassan et al., 2020), harmony
search (HS) (Ravikumar Pandi and Panigrahi, 2011;
Chakraborty et al., 2012; Li et al., 2019), an efficient
fitness-based differential evolution (EFDE) (Shen et al.,
2019), hybrid different evolution (DE), sequential quadratic
programming (SQP), and hybrid PSO and SQP (Elaiw et al.,
2013). However, few scholars integrate PEVs into the DED
problem to perform effective management considering
network loss. Panpan M. et al. manage the charging and
discharging of PEVs through the scene method in the
problem (Yang et al., 2014; Mei et al., 2019). Behera et al.
(2019) ignored two important constraints: the power balance
constraint and the ramp rate limit.

The Optimization Algorithm
Since GA was proposed by Holland in 1975 (Ali et al., 2018),
which has undergone two revisions: the binary-coded genetic
algorithm (BCGA) and real-coding genetic algorithm (RCGA).
RCGA was first suggested by Herrera in 1998 (Akopov et al.,
2019; Iyer et al., 2019). It is known that its performance depends
heavily on crossover and mutation operators (Thakur et al.,
2014), and then scholars mainly focused on the improvement
of crossover and mutation operators and proposed many
excellent variants of RCGA.

The crossover operator generates new individuals through
interactive information among existing ones (Nakane et al.,
2020). Arithmetic crossover (AX) (Naqvi et al., 2020) produces
offspring through the linear combination of the parents. By flat
crossover (FX) (Picek et al., 2013a), the parents exchange genes to
produce offspring, but it does not destroy genetic information in
the population. In LX (Deep and Thakur, 2007), Laplace
distribution is used as the density function to generate genes
near the parents. In 1993, Eshelman et al. used the concept of
interval schemata to develop a blend crossover operator (BLX-α)
(Wang et al., 2019b), which can do linear exploration around the
parents. SPX is a multi-paternal crossover operator based on the
nature of the simplex and is an extension of BLX (Chuang et al.,

TABLE 1 | The pseudo-code of conventional RCGA

TABLE 2 | The pseudo-code of the proposed GADMFI.
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2015). SBX (Naqvi et al., 2020), as its name implies, is formed by
simulating binary crossover operator; UNDX can produce two or
more offspring individuals from three parents (Kwak and Lee,
2016). The comparative research results have been reported in the
literature (Picek et al., 2013b; Naqvi et al., 2020) for the above-
mentioned crossover operators.

Mutation is the important operation responsible for
exploration in RCGA (Wang et al., 2018), especially the local
development. The popular and widespread mutation operators in
the literature mostly use a certain distribution as a density
function to generate random numbers around the gene to
vary, so as to carry out the local development of the gene,
which may lead to a lot of troubles in the application of the
algorithm due to the introduction of extra parameters, such as the
random mutation (RM), the non-uniform mutation (NUM)
(Wang et al., 2019b), the power mutation (PM), the
polynomial mutation (PLM), the Gaussian mutation (GM)
(Wang et al., 2019b), and Cauchy mutation (CM). In addition,
the direction mutation is presented (Tang and Tseng, 2013),
which mutates toward a promising area by utilizing statistical
population information and has achieved good results. On the
basis of previous studies, two simple and efficient mutation
operators are proposed. One is the dimension-by-dimension
mutation based on feature intervals (DMFI), which combines
horizontal search at the component level with the rule of greed to
form a directional horizontal local development strategy; what is
more, the genetic characteristics of outstanding individuals are
extracted as the variation interval, thereby providing a directional
vertical local development capability. The other is the uniform
mutation based on the interval of opposing features (UMOFI);
the opposing of feature intervals of outstanding individuals is
employed as the variation interval for the inferior individuals,
thereby introducing new information in the population.

At present, genetic algorithms have the defects of falling into
local optimal and lack of exploration capabilities for large-scale
and high-dimensional problems (Sawyerr et al., 2011; Fang et al.,
2014; D’Angelo and Palmieri, 2021; Sawyerr et al., 2014). In the
final analysis, this is a fundamental and difficult problem faced by

metaheuristics: how to balance the exploration and exploitation
of the algorithm. In general, researchers design or improve an
algorithm based on the idea that focuses on exploration in the
early stage and later on exploitation. However, if the development
capability is not enough to find the global optimal area in the early
stage, it will become stuck in the local optimal. Given this, this
study provides a new solution, based on the idea of collaborative
optimization of the superior and inferior individuals, in which
excellent individuals strengthen local search. Inferior individuals
are responsible for introducing new information to increase the
diversity of the population. Then, interacting information
between excellent individuals and inferior individuals helps to
find outstanding individuals and realizing their comprehensive
development carried out in each iterative.

The characteristics of GA’s mechanisms and the new solutions
mentioned above are consistent on the issue of balancing the
global and local search capabilities. Therefore, an RCGA based on
co-optimization of superior and inferior individuals is proposed:
1) through the rank selection and the flat crossover to realize the
genetic interaction between superior and inferior populations, 2)
using DMFI to obtain the ability of directed vertical and
horizontal local development for excellent individuals and
achieve in-depth local search, and 3) using UMOFI for the
inferior individuals, which is controlled by the mutation
probability Pm, thereby introducing new genetic information
while maintaining the diversity of the population.

Constraint Handling Methods
For constraint optimization problems, the feasibility of the
solutions is more important than the objective values. The
penalty function method is common and popular for handling
some constraints (Shen et al., 2019). However, it is a troublesome
thing to choose a suitable penalty factor. Hence, some scholars
proposed several types of repair methods to meet problem
constraints. Feasibility-based rules are used to lead the search
toward the feasible region to handle inequality constraints
effectively (Yuan et al., 2009), which is more efficient to filter
feasible solutions and ease the burden of setting the penalty factor

FIGURE 1 | Diagram of dimension-by-dimension mutation based on feature intervals.
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compared to the penalty function method. However, for
optimization problems with equality constraints, owing to
feasible solutions occupying an extremely small proportion
of the solution space, it is difficult to repair by screening
feasible solutions and guiding infeasible solutions. Heuristics
for handling constraints perform excellently to deal with

equality constraints without considering the transmission
loss (Wang et al., 2011). They adjust the output power
according to general experience to gradually reduce the
violation of the constraint until it becomes a feasible
solution, whereas this cannot efficiently solve complex
equality constraints, for instance, the power balance

FIGURE 2 | The flowchart of the implementation of GADMFI for the DED with PEVs.
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constraint with the transmission loss, and there may be an
excessive adjustment, especially when the amount of violation
is not big. The forced repair technology refers to adjusting the
output strictly according to the characteristics of the equation,
which greatly improves repair efficiency of equality constraints
(Panigrahi et al., 2007; Zou et al., 2018). Apart from equality
limits, inequality constraints also influence the feasibility,
and hence the forced repair technology may spend more
time solving the quadratic equation of DED with
transmission losses. In Li et al. (2019) and Shen et al.
(2019), the constraints handling technology combining a
heuristic repair technology and the forced repair technology
is proposed, which enhances the capability of repairing
infeasible solutions.

In summary, the methods or techniques above-mentioned
have the following shortcomings in solving DED with PEVs: 1)
the algorithms are difficult to solve large-scale problems or face
premature phenomena and 2) constraint processing techniques
are difficult to repair infeasible solutions or do not work well with
the algorithm. In view of this, this study proposed GADMFI
based on RCGA. Meanwhile, a simple and efficient constraint
processing technique is designed.

The remainder of this study is arranged as follows: The
Formulation of the Dynamic Economic Dispatch With Plug-In
Electric Vehicles gives the mathematical formulation of the DED
with PEVs. Genetic Algorithm Dimension Mutation Based on
Feature Intervals describes GADMFI in detail. In Constraints
Handling Method, the constraint handling methods are
proposed. The Implementation of Genetic Algorithm Dimension
Mutation Based on Feature Intervals for Dynamic Economic
Dispatch With Plug-In Electric Vehicles presents the
implementation of GADMFI on the DED problem.
Experimental Results and Analysis designs and analyzes
experiments. Finally, the study ends with conclusions and
further research work.

THE FORMULATION OF THE DYNAMIC
ECONOMIC DISPATCH WITH PLUG-IN
ELECTRIC VEHICLES
The DED integrating PEVs aims to determine the optimal
generation levels of all online units and PEVs, during a
specified period of time (e.g., 24 intervals a day), so as to
minimize the total fuel cost and subject to a number of
equality and inequality constraints.

The Optimization Objectives
There are two optimization objectives for this problem: one is to
minimize fuel costs and the other is to minimize the fluctuation of
the grid, that is, maximize peak shaving and valley filling. They
are described in Eqs. 1, 2.

minf1(P) � ∑T

t�1 ∑N

i�1 ai + biPt,i + ciP
2
t,i +

∣∣∣∣cisin[fi(Pmin
i − Pt,i)]∣∣∣∣.

(1)

minf2(P, PPEV) � ∑T−1
t�1

⎡⎣∑N

i�1(Pt+1,i + PPEV,t+1 − PL,t+1)
−∑N

i�1(Pt,i + PPEV,t − PL,t)⎤⎦
2

, (2)

where P and PPEV constitute the decision variables of the problem
and PL,t is the transmission loss at time t.

Constraints
The DED with PEVs is an optimization problem containing
multiple inequalities and equality constraints, including
capacity constraints, ramp rate limits, PEVs charge/
discharge limits, PEVs demand limits, and power balance
constraints.

Capacity Constraints
The capacity limits of the thermal unit are inequality constraints,
which are determined by the physical characteristics of the unit
and are given as follows:

Pmin
i ≤Pt,i ≤Pmax

i , (3)

where Pmin
i and Pmax

i represent the min and max output power of
the ith unit, respectively.

Ramp Rate Limits
Due to the inertia of thermal power units, the ramp rate limits are
considered to extend the service life of the units; that is, the output

TABLE 3 | The basic information of the six benchmark functions.

No. Function Dimension (D) Characteristics Range Min

F1 Step 30,50,100 US (−100,100) 0
F2 Levy 30,50,100 MS (−10,10) 0
F3 Rastrigin 30,50,100 MS (−5.12,5.12) 0
F4 Schwefel 30,50,100 MS (−500,500) 0
F5 Griwank 30,50,100 MN (−600,600) 0
F6 Ackley 30,50,100 MN (−32.768,32.768) 0

TABLE 4 | The private parameters of the algorithms.

Algorithms Parameter settings

GWO NP � 30.
ABC NP � 30, limit � 30.
BAHTFS NP � 100,A(0) � 0.95, r(0) � 0.9, α � 0.99, c � 0.9.
WOA NP � 30.
DEWOA NP � 30, F � 0.5,CR � 0.9.
GADMFI NP � 100, Pc � 0.7,Pm � 0.3.
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of the unit cannot be adjusted greatly in a short time, and the
output of current time will affect the output of the next time:

{Pt,i − Pt−1,i ≤URi

Pt−1,i − Pt,i ≤DRi
, (4)

where URi and DRi, respectively, represent the maximum
allowable rise and fall of the ith unit, which are limited to its
physical characteristics.

Plug-In Electric Vehicles Charge/Discharge Limits
The maximum charging power and discharging power of PEVs
should be limited to a normal range. Because different types of
electric vehicles have different models, the charging and
discharging power of PEVs at t time is described as a
variable PPEV,t:

Pmax
PEV,disc ≤PPEV,t ≤Pmax

PEV,char. (5)

The Plug-In Electric Vehicles Demand Constraint
For users’ daily travel, the PEVs demand constraint should be met
(Yang et al., 2017a), which is described as Eq. 6:

∑T

t�1 PPEV,t ≤PPEV,total, (6)

where PPEV,total is the desired power for daily use.

The Power Balance Constraint
Power balance limit is the most important and complex
constraint, especially considering the transmission loss, which
is defined as

∑T

t�1 Pt,i � PD,t + PL,t + PPEV,t, (7)

where PD,t presents the load demand at time t, PL,t is the
transmission loss, and its mathematic model is expressed by
Kron’s loss (Abdelaziz et al., 2008) as Eq. 8.

PL,t � ∑N

i�1 ∑N

j�1 Pt,iBijPt,j +∑N

j�1 B0iPt,i + B00, (8)

whereBij,B0i, andB00 represent the loss coefficients of the generation
units. In addition, the model of the transmission loss is usually
simplified as Eq. 9 (Pan et al., 2018), which is adopted in this study:

PL,t � ∑N

i�1 ∑N

j�1 Pt,iBijPt,j. (9)

TABLE 5 | The statistics data of 30 runs of the benchmarks of 30 dimensions.

No. Statistics ABC GWO WOA BA-HTFS DEWOA GADMFI

F1 Mean 0.469387 0.008336 6.63E-16 6.05E-06 8.18E-26 0
Std 0.216323 0.045657 1.1E-16 2.92E-06 1.55E-26 0
Best 0.235973 4.49E-08 4.35E-16 2.14E-06 4.98E-26 0
Runtime (s) 1.176628 0.87896 1.440756 0.680118 1.008423 0.279276
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 NA
Winner + + + + + NA

F2 Mean 1.0809 0.352752 6.03E-16 0.011978 27.22283 1.5E-32
Std 0.210637 0.208362 9.45E-17 0.030962 8.883094 1.11E-47
Best 0.634462 1.51E-07 3.83E-16 9.7E-07 15.73242 1.5E-32
Runtime (s) 3.225753 2.974774 3.628555 2.731598 3.131769 2.42477
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 NA
Winner + + + + + NA

F3 Mean 0 0 1.12E-13 3.22E-14 65.93248 0
Std 0 0 5.87E-14 4.65E-14 15.71409 0
Best 0 0 0 0 37.80841 0
Runtime (s) 0.037284 0.234023 1.454388 0.615531 1.137729 0.204316
p-value 1 1 2.56E-06 0.000488 1.73E-06 NA
Winner � � + + + NA

F4 Mean 6261.479 1278.239 0.000382 11.8921 5095.71 0.636312
Std 432.9709 1036.075 1.01E-08 36.19683 591.7563 1.787811
Best 5462.455 0.003162 0.000382 0.000881 4012.246 0.000382
Runtime (s) 1.450033 1.153483 1.703252 0.926646 1.255747 0.595745
p-value 1.73E-06 2.35E-06 0.056952 0.025637 1.73E-06 NA
Winner + + � + + NA

F5 Mean 0.000504 0 1.95E-12 0.001236 0.009351 0
Std 0.001919 0 8.85E-12 0.00439 0.009712 0
Best 0 0 1.11E-16 0 0 0
Runtime (s) 0.12435 0.080368 1.610477 0.891262 0.960121 0.233424
p-value 0.5 1 1.71E-06 5.6E-06 0.000192 NA
Winner � � + + + NA

F6 Mean 7.4E-15 4.2E-15 5.12E-14 7.51E-09 4.331715 7.76E-15
Std 1.35E-15 9.01E-16 5.68E-15 5.63E-09 1.039935 9.01E-16
Best 4.44E-15 8.88E-16 4E-14 9.86E-10 2.738319 4.44E-15
Runtime (s) 1.237275 0.954717 1.558052 0.858519 1.175921 0.463191
p-value 0.453125 1.14E-07 1.4E-06 1.73E-06 1.73E-06 NA
Winner � - + + + NA

Bold digits are the best statistical performance measures of various algorithms.

Frontiers in Energy Research | www.frontiersin.org September 2021 | Volume 9 | Article 7067826

Yang et al. Dynamic Economic Dispatch Integrating PEVs

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


PROPOSED GENETIC ALGORITHM
DIMENSION-BY-DIMENSION MUTATION
BASED ON FEATURE INTERVALS
RCGAs generally consist of selection, crossover, mutation,
and elite retention strategies, and the pseudo-code is
summarized in Table 1. Without destroying its main
structure and extra parameters, this study proposes a
simple and efficient, superior and inferior population
collaborative optimization algorithm, namely, a novel real-
coded genetic algorithm: GADMFI. Its pseudo-code is shown
in Table 2. It is worth noting that this study takes the
minimum value of the function as the optimization objective.

In the study, two novel mutation operators are proposed: the
dimension-by-dimension mutation based on feature intervals
(DMFI) and the uniform mutation based on the interval of
opposite features (UMOFI). DMFI and UMOFI are designed
based on the idea that excellent individuals strengthen local
exploitation capabilities, to improve the convergence accuracy
and speed of the algorithm; low-quality individuals introduce
new information, to improve population diversity; and good and
bad individuals exchange information by an interactive

operation. Excellent individuals perform DMFI to strengthen
local development in both vertical and horizontal dimensions.
Inferior individuals introduce new genes through UMOFI. Then,
the information of the two is exchanged through the ranking
selection (RS) and FX, so as to achieve the effect of collaborative
optimization.

The Selection and Crossover Operator
The selection operator is the first operator of GA. One of the most
widely used selection operators is the roulette selection. The
higher the fitness, the greater the probability of being selected.
However, the excellent genes of the inferior individuals may be
abandoned. The other most commonly used is RS (Chuang et al.,
2016). Excellent individuals are used as the parent 1 to cross, and
inferior individuals are used as the parent 2. All individuals
participate in the crossover with the same probability, which
does not affect the diversity of the population. RS is used in the
study; however, the difference between this study and the
literature (Chuang et al., 2016) is random matching for the
individuals, thus enhancing the population diversity.

The flat crossover (FX) is rarely used due to its poor local
development ability, but it has the characteristics of not

TABLE 6 | The statistics data of 30 runs of the benchmarks of 50 dimensions.

No. Statistics ABC GWO WOA BA-HTFS DEWOA GADMFI

F1 Mean 1.889057 0.025157 1.47E-15 1.61E-05 6.9E-32 0
Std 0.579573 0.076187 2.14E-16 5.35E-06 2.63E-32 0
Best 0.917128 1.18E-07 1.05E-15 7.52E-06 2.47E-32 0
Runtime (s) 2.785521 1.756891 2.483228 1.413194 1.838462 0.475277
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.71E-06 NA
Winner + + + + + NA

F2 Mean 2.433452 0.820967 1.42E-15 0.003063 46.05496 1.5E-32
Std 0.256288 0.294353 2.19E-16 0.016334 17.74721 1.11E-47
Best 1.995291 0.358323 9.43E-16 5.46E-06 17.44572 1.5E-32
Runtime (s) 8.467784 7.633276 8.540686 7.100606 7.783307 6.28073
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 NA
Winner + + + + + NA

F3 Mean 0 0 3.02E-12 2.65E-14 129.8418 0
Std 0 0 9E-12 4.89E-14 20.13228 0
Best 0 0 1.71E-13 0 96.51085 0
Runtime (s) 0.06699 0.234524 2.884798 1.101694 2.308427 0.41372
p-value 1 1 1.71E-06 0.007813 1.73E-06 NA
Winner � � + + + NA

F4 Mean 11793.61 1672.455 0.36091 34.99552 9070.586 3.23715
Std 790.472 1921.418 1.358315 123.4267 1098.779 6.859328
Best 10093.76 0.00519 0.000636 0.001336 7090.506 0.000636
Runtime (s) 3.492594 2.43678 3.152868 2.034369 2.513048 1.169097
p-value 1.73E-06 5.22E-06 0.734325 0.585712 1.73E-06 NA
Winner + + � � + NA

F5 Mean 0 0.000247 1.22E-14 0.00058 0.009681 0
Std 0 0.001351 3.31E-14 0.002231 0.013748 0
Best 0 0 1.11E-16 0 0 0
Runtime (s) 0.064767 0.206464 2.976106 1.885592 2.269486 0.483447
p-value 1 1 1.71E-06 5.69E-05 2.56E-06 NA
Winner � � + + + NA

F6 Mean 8.82E-15 4.09E-15 1.13E-13 2.3E-09 7.357773 1.17E-14
Std 2.02E-15 1.08E-15 1.41E-14 1.98E-09 1.212143 2.72E-15
Best 7.99E-15 8.88E-16 8.62E-14 3.22E-11 5.051174 7.99E-15
Runtime (s) 2.947703 1.952596 2.831282 1.891285 2.337538 0.848766
p-value 0.000384 1.11E-06 1.63E-06 1.73E-06 1.73E-06 NA
Winner + - + + + NA

Bold digits are the best statistical performance measures of various algorithms.
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changing the genetic information in the population that other
operators do not have. It can maintain the diversity of the
population and the interaction between individuals. The role of
RS and FX is to carry out information interaction between
individuals without changing the genetic information of the
population.

The Mutation Operator
Strong local search capabilities should be possessed for each
stochastic algorithm. At the same time, it is also indispensable to
maintain the diversity of the population. In order to illustrate
the design idea of the mutation operator, horizontal search and
vertical search are firstly defined. If there is a comparison
between the variants or a variant and ontology in an
operator, it is called horizontal search of individuals. If only
components are changed, it is called the vertical search of the
individual. In previous related studies, local search often refers
to vertical search. All the components are developed
simultaneously. In this section, horizontal search and the
greedy rule, vertical search, and feature intervals are
combined to fulfill horizontal and vertical local search so as

to obtain in-depth development for the superior population by
DMFI. In addition, new population information is also
introduced into the inferior population by UMOFI.

The Dimension-by-Dimension Mutation Based on
Feature Intervals
The dimension-by-dimension mutation is a dimension-by-
dimension search for outstanding individuals in the
characteristic interval and is combined with the greedy rule
to achieve a directed horizontal search. Figure 1 shows the
change from one dimension to the next dimension of DMFI. A
gene x1 of the chromosome X is pre-mutated to m1 in the
feature interval that is formed by the minimum and maximum
gene values of the excellent population individuals, which can be
described as Eqs. 10, 11. Because the feature interval contains
the genetic characteristics of excellent individuals, the mutation
will search toward a promising area and is used to realize the
vertical local development for the superior population, which is
different from the previous uniform mutation in that it is not
centered on the individual, but the center of the superior
population:

TABLE 7 | The statistics data of 30 runs of the benchmarks of 100 dimension.

No. Statistics ABC GWO WOA BA-HTFS DEWOA GADMFI

F1 Mean 8.729457 0.243518 4.48E-15 6.25E-05 5.07E-31 0
Std 0.878348 0.24989 8.67E-16 1.21E-05 1.3E-31 0
Best 7.13375 1.02E-06 2.99E-15 3.73E-05 2.56E-31 0
Runtime (s) 9.74352 4.879711 5.330635 4.426168 4.566675 1.025109
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 NA
Winner + + + + + NA

F2 Mean 6.322538 1.62652 4.5E-15 0.015282 72.04177 1.5E-32
Std 0.286192 0.561543 7.59E-16 0.082944 20.32359 1.11E-47
Best 5.810564 0.542552 3.29E-15 1.59E-05 37.29714 1.5E-32
Runtime (s) 31.50907 27.08374 27.96728 26.31595 26.88412 22.98865
p-value 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 NA
Winner + + + + + NA

F3 Mean 0 0 8.27E-09 4.17E-14 255.6375 5.55E-07
Std 0 0 2.54E-08 6.99E-14 36.44933 3.04E-06
Best 0 0 1.43E-11 0 184.0671 0
Runtime (s) 0.186826 0.155049 6.498615 2.56054 5.997735 1.192726
p-value 1 1 3.11E-05 0.097656 1.73E-06 NA
Winner � � + � + NA

F4 Mean 25824.59 2476.58 174.0298 135.3648 18879.06 25.38108
Std 1133.43 1961.341 100.3657 442.9999 1239.333 60.22819
Best 23031.77 0.023106 0.001274 0.005186 15004.96 0.001273
Runtime (s) 12.11576 7.066971 7.399292 6.467395 6.636016 3.162116
p-value 1.73E-06 6.34E-06 8.92E-05 0.14704 1.73E-06 NA
Winner + + + � + NA

F5 Mean 0 0 2.07E-14 0.000336 1.598701 0
Std 0 0 2.59E-14 0.001841 0.615646 0
Best 0 0 4.11E-15 0 0.893507 0
Runtime (s) 0.196128 0.240497 7.51387 4.668474 6.900636 1.455745
p-value 1 1 1.73E-06 0.015625 1.73E-06 NA
Winner � � + + + NA

F6 Mean 1.38E-14 3.73E-15 3.58E-13 2.37E-10 11.61896 2.61E-14
Std 2.18E-15 1.45E-15 6.19E-14 1.58E-10 0.963155 2.53E-15
Best 7.99E-15 8.88E-16 2.42E-13 2.35E-11 9.291818 2.22E-14
Runtime (s) 10.29742 5.368046 6.409801 6.116458 6.344188 1.987388
p-value 1.13E-06 1.11E-06 1.72E-06 1.73E-06 1.73E-06 NA
Winner - - + + + NA

Bold digits are the best statistical performance measures of various algorithms.
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FIGURE 3 | Evolution curves of six functions of 100 dimensions are shown. As can be seen, the convergence curve of the GADMFI shows superior exploration and
exploitation abilities. (A) The curve presents a straight line, which shows that when dealing with unimodal problems, the proposed DMFI has the potential to explore a
promising area. (B–F) With multiple local minima, it stays at approximately constant speed until it converges, which again confirms the role of DMFI.
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[Supper(d), Slower(d)] � {min[S(d)], max[S(d)]}, (10)

m(d) � rand × (Supper(d) − Slower(d)) + Slower(d), (11)

where Supper(d) and Slower(d) are the lower and upper limits of the
characteristic interval of the dth dimension, S(d) is the dth
dimension of the superior population, m(d)is the pre-mutation
gene of the d-dimension, and rand is a number generated
randomly from 0 to 1. And then, M is the chromosome after
the pre-mutation, and X are compared by the greedy rule. IfM is
better, then the variation is executed and the pre-mutation of the

next dimension continues; otherwise, it is not mutated. Until all
dimensions have performed the process, X is an excellent
individual who has completed directional vertical and partial
development. Its mathematical formula can be expressed as Eq. 12:

X � M, iffit(M)<fit(X). (12)

The Uniform Mutation Based on the Interval of
Opposite Features
In order to obtain new genetic information without destroying
the diversity of the population, the opposite feature intervals are
utilized as the range of variation to carry out by Eqs. 13, 14 in
UMOFI. What is more, UMOFI controls Pm:

[OL,lower(d), OL,upper(d)] � {Xlower(d), min[S(d)]}, (13)

[OR,lower(d), OR,upper(d)] � {max[S(d)], Xupper(d)}, (14)

where OL,lower(d) and OR,lower(d) represent the lower limits of
opposite feature intervals on the left and right, respectively.

CONSTRAINTS HANDLING METHOD

Ramp Rate Limits Handling

Pmin
t,i � { Pmin

i , if t � 1
max(Pmin

i , Pt−1,i −DRi), otherwise
, (15)

TABLE 8 | Six cases in three scenarios designed to verify the performance of GADMFI in DED with PEVs.

Scenario
A: only units

Scenario B: units
with disorderly PEVs

Scenario C: units
with orderly PEVs

Case I: 5 units Case III: 5 units with disorderly PEVs Case V: 5 units with orderly PEVs
Case II: 10 units Case IV: 10 units with disorderly PEVs Case VI: 10 units with orderly PEVs

TABLE 9 | Specific results of several algorithms for solving the DED without PEVs problem.

Case Algorithms Fuel costs Constraints violations

Min Mean Max Std VR VP

Case I NEHS, Li et al. (2019) 43066.0731 43490.52344 44005.36139 182.95804 0 0.00013
AIS, Hemamalini and Simon (2011a) 44385.43 44758.8363 45553.7707 NA 0 0.0012
DE-SQP, Elaiw et al. (2013) 43261 NA NA NA 0 0.0015
PSO-SQP, Elaiw et al. (2013) 43263 NA NA NA 0 0.0012
EFDE, Shen et al (2019) 43047.851 43167.757 43325.179 64.047 0 0.000011
SOA-SQP, Sivasubramani and Swarup (2010) 41923 NA NA NA 0 184.2229
SA, Panigrahi et al. (2007) 47356 NA NA NA 0 0.1083
GADMFI 43030.079 43084.676 43168.454 36.585 0 9.15E-07

Case II HCRO, Elattar (2015) 2479931.38 2480143.473 2481367.921 NA 0 0.28626
AIS, Basu (2011) 2.52E+06 NA NA NA 4.5678 32.285
DE-SQP, Elaiw et al. (2013) 2.4659 + 06 NA NA NA 0 0.0083
IBFA, Pandit et al. (2012) 2481733.25 NA NA NA 37.929 43.36
PSO-SQP, Elaiw et al. (2013) 2.4668 + 06 NA NA NA 0 0.0102
NEHS, Li et al. (2019) 2463500.84 2464881.787 2466310.211 791.781 0 0.00015
GADMFI 2464270.10 2464782.087 2.465280491 273.883 0 0.0027067

Bold digits are the best statistical performance measures of various algorithms.

FIGURE 4 | The power output of the only 10-unit power system.
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TABLE 10 | The optimal solution information for Case I: only 5-unit power system.

Hour Unit PL PD ∑N
i pi,t − PL(t) − PD(t)

U1 U2 U3 U4 U5

1 19.90517 98.98362 30.10853 125.029 139.7919 3.818258 410 1.42E-08
2 10.00983 98.45674 65.94291 124.9306 139.7901 4.130096 435 1.81E-08
3 10.51126 98.57997 105.9382 124.923 139.8295 4.781907 475 −5.9E-08
4 10.05254 98.58816 112.6764 174.9155 139.7815 6.013984 530 −6.5E-09
5 10 93.02795 112.387 209.5877 139.7542 6.756857 558 −4.2E-08
6 10 98.54863 112.6755 209.803 184.9645 7.991613 608 7.69E-09
7 10.00743 72.68313 112.4768 209.7585 229.5348 8.460606 626 4.1E-08
8 12.5504 98.53759 112.7754 209.8724 229.5223 9.258051 654 −4.3E-09
9 42.52659 105.322 112.96 209.8684 229.5219 10.19897 690 −5.6E-08
10 64.084 98.52378 112.5764 209.7966 229.5792 10.55995 704 3.17E-08
11 74.99511 103.7247 112.9192 209.8796 229.5243 11.04292 720 −2.8E-08
12 74.97861 124.6893 112.7119 209.8145 229.5255 11.7197 740 −1.1E-07
13 64.15387 98.45896 112.6127 209.8146 229.5193 10.55947 704 7.22E-08
14 48.90734 99.15647 112.747 209.8286 229.5314 10.17071 690 1.3E-07
15 18.90759 98.4442 112.7402 203.6813 229.4421 9.215378 654 −2.3E-08
16 10 82.09235 112.1867 153.6813 229.2425 7.202832 580 1.44E-08
17 10 88.0169 112.6147 124.7447 229.3068 6.683105 558 −3.8E-08
18 10.03469 98.57471 112.7078 165.1254 229.5079 7.950548 608 1.77E-08
19 12.33464 98.58259 112.9116 209.8996 229.5301 9.258485 654 −9.5E-08
20 42.33464 120.1073 112.8268 209.8358 229.5534 10.65802 704 −1.7E-08
21 39.37357 98.50906 112.6148 209.8184 229.5862 9.901916 680 2.53E-09
22 10.02334 98.59234 112.6765 162.0365 229.5421 7.87072 605 −6.5E-08
23 10 98.56103 112.6654 124.9046 186.7749 5.905862 527 1.61E-08
24 10 80.24887 112.669 124.9133 139.6562 4.48748 463 3.77E-09
Total fuel cost is 43030.079 $; total violate is 9.1507e-7 MW.

TABLE 11 | The optimal solution information for Case II: only 10-unit power system.

Hour Unit PL PD ∑N
i pi,t − PL(t) − PD(t)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

1 150.00 135.01 74.05 120.75 173.37 122.53 129.87 119.98 20.00 10.00 19.57 1036 4.82E-8
2 150.00 135.00 101.75 121.46 222.41 122.32 129.47 120.00 20.00 10.00 22.41 1110 −2.2E-08
3 150.10 135.04 179.26 132.33 223.78 126.35 129.77 119.97 50.00 40.00 28.59 1258 2.82E-8
4 150.00 135.00 249.46 180.07 223.43 159.63 129.90 119.85 51.46 42.73 35.53 1406 8.76E-9
5 150.00 135.00 279.31 229.95 224.71 155.75 129.90 120.00 51.42 43.40 39.45 1480 5.09E-9
6 150.03 135.04 335.19 279.95 243.00 159.24 129.78 120.00 79.88 43.98 48.08 1628 3.82E-8
7 150.40 187.20 340.00 300.00 243.00 160.00 130.00 120.00 80.00 44.41 53.01 1702 −6.5E-08
8 177.76 228.93 340.00 300.00 243.00 159.98 130.00 120.00 80.00 54.73 58.41 1776 −1.9E-08
9 257.76 308.79 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 70.55 1924 −0.00062
10 289.26 384.33 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 79.58 2022 −0.00058
11 369.00 396.86 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 87.86 2106 −0.00054
12 378.55 435.90 340.00 300.00 243.00 160.00 129.99 120.00 80.00 55.00 92.44 2150 −1.2E-08
13 336.70 391.72 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 84.42 2072 −0.00097
14 256.77 311.72 339.12 300.00 242.57 160.00 130.00 120.00 80.00 54.40 70.58 1924 1.41E-7
15 177.43 231.74 340.00 300.00 243.00 159.95 129.95 119.99 80.00 52.36 58.43 1776 −2.4E-09
16 150.00 151.88 297.25 252.92 240.53 160.00 129.91 120.00 51.51 43.67 43.68 1554 −1.1E-07
17 150.03 135.00 289.92 243.32 222.60 133.67 129.38 119.99 52.28 43.45 39.63 1480 −1.7E-07
18 150.00 149.67 308.27 292.70 242.41 159.93 129.64 120.00 80.00 43.43 48.06 1628 −6.2E-08
19 229.63 229.28 299.76 299.98 242.92 160.00 129.70 120.00 79.99 43.54 58.80 1776 −4.8E-08
20 309.62 309.28 340.00 300.00 243.00 160.00 130.00 120.00 80.00 54.99 74.89 1972 1.94E-9
21 263.68 302.92 339.99 299.99 243.00 160.00 129.99 120.00 80.00 54.99 70.55 1924 1.12E-7
22 183.68 223.13 291.14 252.01 222.96 159.97 129.93 120.00 50.56 43.46 48.85 1628 3.13E-8
23 150.00 143.13 211.14 202.43 222.71 120.71 129.59 119.38 51.24 13.65 31.99 1332 −3.5E-08
24 150.09 135.04 175.56 175.83 172.75 118.98 129.73 120.00 21.24 10.00 25.22 1184 6.15E-8

Total fuel cost is 2464270.102 $; total violate is 0.0027067 MW.
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Pmax
t,i � { Pmax

i , if t � 1
max(Pmax

i , Pt−1,i + URi), otherwise
, (16)

where Pmin
t,i and Pmax

t,i stand for the new lower and upper bounds,
considering simultaneously the ramp rate constraint and the
capacity limit of the ith unit for the tth time, as Eqs 15, 16.
Then, if Pt,i is beyond its new bound, it will be limited to the
bound. Namely, Pt,i is repaired by Eq. 17. It is simpler and more
efficient than the traditional penalty function method:

Pt,i � {Pmin
t,i , if Pt,i ≤Pmin

t,i

Pmax
t,i if Pt,i ≥Pmax

t,i
. (17)

The Power Balance Constraint Handling
Considering the network transmission loss, the power balance
constraint is the most difficult to repair among all constraints.
This study proposes a simple and efficient repair technology. The
overall process is designed as two stages: firstly, rough adjustment
can rapidly reduce the violation and then enter the second fine
adjustment stage to eliminate the violation; the detailed steps are
described as Steps 1–4.

Step 1. Set the set A � {1, 2, 3, . . . ,N − 1,N}, and select
randomly a unit r from A and roughly adjust the output by Eq. 18:

Pt,r � Pt,r − Vio(t), (18)

whereVio(t) is the violation of the power balance constraint at t time.
And if Pt,r does not go beyond its new boundary, it is thought that
Vio(t) is so small to repair by the fine stage and thus go to the
next step and reset A � {1, 2, 3, . . . ,N − 1,N}. Let k � 1;
otherwise, remove r unit from A. If A is an empty set, end
repair; otherwise, repeat Step 1.

Step 2. Handling the power balance constraint can be converted
as solving a quadratic equation, and the output of the unit is solved
by Eq. 19. Here, two cases are discussed as follows:

Otherwise, it can be converted as solving a quadratic equation,
and the output of the unit is solved by Eq. 19. Here, two cases are
discussed as follows:

BkkP
2
t,k + (2∑

i∈A,≠ k
BkiPt,i − 1)Pt,k + (PD,t +∑

i∈A,≠ k

∑
j∈A,≠ k

Pt,jBijPt,j −∑
i∈A,≠ k

Pt,i) � 0. (19)

Let a � Bkk, b � 2 ∑
i∈A,≠k

Bkipt,i −1, c � PD,t + ∑
i∈A,≠k

∑
j∈A,≠k

Pt,iBijPt,j

− ∑
i∈A,≠k

Pt,i; then, if existing, the roots are calculated by Sol1 and Sol2 �
−b± ����

b2−4ac√
2a when a≠0, or Sol3 �−c

b when a� 0 and b≠0 .
Case 1. If no solution, let � k + 1 ; if k<N, repeat Step 2; and

otherwise, end repair.
Case 2. If there are solutions, checking whether they satisfy the

other constraints. If satisfied, let Pt,k be equal to any, and end; if only
a solution is satisfied, let Pt,k be equal to the solution. Otherwise, let
k � k + 1; if k<N, repeat Step 2; and otherwise, end repair.

Step 1 can rapidly decrease violation of the equality constraint
associated with power balances, and Step 2 further decrease or
eliminate the violation by fine adjustment as well as solving. And
finally, if still infeasible, the feasible-rule (Yuan et al., 2009) is used
to strictly screen the feasible solutions of the population.

THE IMPLEMENTATION OF GENETIC
ALGORITHM DIMENSION MUTATION
BASED ON FEATURE INTERVALS FOR
DYNAMIC ECONOMIC DISPATCH WITH
PLUG-IN ELECTRIC VEHICLES

The Implementation of GADMFI on DED integrating PEVs is a
process that effectively combines heuristic algorithms and

TABLE 12 | Statistics of 30 trials in Scenario B, units with disorderly PEVs, and Scenario C, units without orderly PEVs with different λ.

λ Objectives Case III: 5 units integrating PEVs Case IV: 10 units integrating PEVs

Min Mean Max Std Min Mean Max Std

0 f1 4.288E+04 4.320E+04 4.350E+04 2.352E+02 2.455E+06 2.456E+06 2.457E+06 8.181E+02
f2 2.894E+04 3.950E+04 6.376E+04 1.538E+04 3.052E+05 3.215E+05 3.321E+05 1.052E+04

1 f1 4.328E+04 4.331E+04 4.339E+04 1.402E+01 2.463E+06 2.464E+06 2.465E+06 3.595E+02
f2 3.894E+03 4.096E+03 4.227E+03 8.238E+01 2.623E+05 2.705E+05 2.768E+05 2.704E+03

2 f1 4.329E+04 4.331E+04 4.336E+04 1.376E+01 2.463E+06 2.464E+06 2.466E+06 1.499E+03
f2 3.900E+03 4.122E+03 4.516E+03 2.116E+02 2.625E+05 2.701E+05 2.773E+05 6.603E+03

3 f1 4.329E+04 4.331E+04 4.343E+04 1.770E+01 2.463E+06 2.464E+06 2.466E+06 9.740E+02
f2 3.894E+03 4.093E+03 4.290E+03 1.983E+02 2.625E+05 2.686E+05 2.758E+05 3.670E+03

Bold digits are the best statistical performance measures of various algorithms.

FIGURE 5 | The power output of the 10 units with an orderly PEVs power
system.
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TABLE 13 | The optimal solution information for Case V: the 5 units with orderly PEVs.

Hour λ = 1 PL PD ∑N
i pi,t − PL(t) − PD(t)

U1 U2 U3 U4 U5 PEVs

1 10.00763 84.77189 30 124.7421 229.4654 63.75 5.236962 410 −3.2E-08
2 18.65022 98.75426 30.00133 124.9503 229.519 61.15883 5.716354 435 1.45E-08
3 10.05842 98.51895 69.26687 124.9237 229.5208 51.13098 6.157715 475 −3.4E-08
4 10.00006 96.48811 109.2515 124.7849 229.2666 32.96012 6.831012 530 −5.2E-08
5 26.84449 98.45897 112.7252 125.2689 229.5367 27.51259 7.321632 558 −1.2E-08
6 10.88256 98.61089 112.6623 175.2255 229.511 10.6552 8.237037 608 −7.3E-08
7 10.00281 82.6314 112.5842 209.8485 229.4198 9.75066 8.735997 626 8.33E-08
8 14.4919 98.65622 113.1529 209.8373 229.5681 2.391691 9.314721 654 2.54E-08
9 39.74695 98.64638 112.6786 209.7913 229.5965 -9.45676 9.916527 690 1.68E-08
10 52.80744 98.52219 112.6839 209.7079 229.5185 -11.0095 10.2495 704 3.49E-08
11 64.41219 98.54479 112.6956 209.8169 229.4505 -15.6493 10.56924 720 −2.2E-08
12 74.99786 99.40575 112.8564 209.9872 229.594 -24.0698 10.91099 740 −1.4E-08
13 58.15658 98.48497 112.6774 209.8286 229.5078 -5.74099 10.39632 704 −3.2E-08
14 49.96416 98.50633 112.6383 209.8122 229.5655 0.309664 10.17684 690 −6.6E-08
15 29.52558 98.59672 112.789 209.8117 229.5462 16.60822 9.660985 654 −2.6E-08
16 10.0064 78.63041 112.6348 209.7877 229.4994 51.93233 8.62642 580 8.31E-08
17 10.0067 64.18732 112.5355 209.8336 229.4745 59.80215 8.235522 558 −6.8E-08
18 10 85.69395 112.5494 209.5248 229.3593 30.31734 8.810133 608 1.26E-08
19 13.67358 98.79633 112.7959 209.8289 229.5454 1.348831 9.291236 654 7.73E-08
20 33.30203 98.55797 112.6687 209.8001 229.5211 -29.8994 9.749276 704 −1.7E-08
21 14.46368 98.69659 112.7496 209.8921 229.5302 -23.9748 9.306891 680 5.86E-09
22 10.00007 98.53408 112.6287 169.9267 229.5327 7.548168 8.074086 605 1.82E-08
23 10.00286 98.09282 111.3995 124.8193 229.4811 39.87367 6.921881 527 −5E-09
24 10.00138 97.04352 71.60713 124.8649 229.3884 63.75 6.155354 463 1.7E-08

Total fuel cost is 43279.905 $

TABLE 14 | The optimal solution information for Case VI: the 10 units with orderly PEVs.

Hour λ = 1 PL PD ∑N
i pi,t − PL(t) − PD(t)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 PEVs

1 150.00 135.00 85.22 120.79 222.83 128.65 129.43 119.86 20.00 10.00 63.75 22.04 1036.00 3.39E-10
2 150.10 135.01 165.22 120.50 223.57 124.32 129.98 119.95 20.01 10.00 63.75 24.93 1110.00 −1.3E-07
3 150.00 135.00 186.47 170.50 223.01 137.74 130.00 119.90 50.01 40.00 53.71 30.93 1258.00 −1.9E-08
4 150.00 135.00 266.43 200.75 223.44 159.76 129.69 119.93 51.95 43.34 36.85 37.44 1406.00 −4.6E-08
5 150.00 135.06 295.13 246.47 242.15 159.88 129.99 119.65 52.44 43.38 51.84 42.32 1480.00 −6.2E-08
6 150.08 136.51 337.95 296.47 243.00 160.00 129.87 120.00 80.00 49.93 26.11 49.70 1628.00 −4.3E-08
7 150.09 215.08 340.00 300.00 243.00 160.00 129.96 120.00 80.00 53.69 34.35 55.46 1702.00 −1.4E-08
8 226.15 223.24 340.00 300.00 243.00 160.00 130.00 120.00 80.00 54.64 39.53 61.50 1776.00 7.56E-09
9 265.89 302.17 340.00 300.00 243.00 160.00 130.00 120.00 80.00 54.97 1.36 70.67 1924.00 2.23E-08
10 303.14 351.76 339.86 300.00 243.00 160.00 129.96 119.99 80.00 54.75 -17.42 77.89 2022.00 3.45E-08
11 327.11 397.34 340.00 299.98 243.00 160.00 130.00 120.00 80.00 55.00 -37.65 84.06 2106.00 −2.3E-08
12 365.14 396.67 340.00 300.00 242.99 160.00 130.00 120.00 80.00 55.00 -47.68 87.48 2150.00 4.05E-09
13 299.49 388.25 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 -37.08 80.81 2072.00 4.04E-08
14 246.54 309.50 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 -9.67 69.71 1924.00 −2.4E-08
15 189.33 229.80 340.00 299.94 243.00 160.00 130.00 120.00 80.00 55.00 11.77 59.30 1776.00 −8.5E-09
16 150.11 150.00 297.37 300.00 234.75 159.81 129.82 119.99 80.00 43.31 63.73 47.43 1554.00 −2.8E-08
17 150.01 135.00 297.03 251.23 222.21 160.00 129.62 119.74 78.44 43.47 63.75 43.01 1480.00 4.44E-08
18 150.24 140.06 339.81 299.84 243.00 160.00 130.00 120.00 80.00 54.79 39.20 50.55 1628.00 5.71E-08
19 191.22 220.06 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 4.53 58.74 1776.00 −1.2E-09
20 250.38 299.22 339.90 300.00 243.00 160.00 129.95 119.99 79.99 55.00 -63.74 69.18 1972.00 −1.8E-08
21 225.48 271.92 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 -63.72 65.11 1924.00 2.32E-08
22 150.00 192.17 294.84 291.29 222.82 158.69 129.90 120.00 80.00 43.28 6.27 48.71 1628.00 1.03E-07
23 150.04 135.00 216.12 241.29 222.60 122.22 129.59 120.00 52.01 41.99 63.73 35.14 1332.00 4.18E-08
24 150.00 135.03 169.77 191.29 222.40 122.38 129.71 120.00 23.22 11.99 63.75 28.03 1184.00 1.2E-08

Total fuel cost is 2462765.9108 $
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constraints handling methods and optimal mathematical model.
The overall framework is described in Figure 2.

Step 1. The initialization of the population consisted of NP
individuals. Each is expressed as a matrix of T rows and (N+1)
columns by Eq. 20:

[P, PPEV] �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P1,1 P1,2 / P1,N PPEV,1

P2,1 P2,2 / P2,N PPEV,2

« « 1 « «
PT,1 PT,2 / PT,N PPEV,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

and all variables of Pt,i are initialized by Eq. 21:

⎧⎨⎩ Pt,i � Pmin
t,i + rand × (Pmax

t,i − Pmin
t,i ), t � 1, 2, . . . , T, n � 1, 2, . . . , N

PPEV,t � Pmax
PEV,disc + rand × (Pmax

PEV,char − Pmax
PEV,disc), t � 1, 2, . . . , T

.

(21)

Step 2. Checking individuals’ feasibility. If feasible, go to the
next step; otherwise, repair by constraint handling technology
and go to the next step.

Step 3. Evaluate their fitness by Eq. 22, in which the objective
functions f1 and f2 are combined into f by a weighting factor λ
and update the optimal individual. If FEs are equal to MaxFEs,
output the best solution; otherwise, go to the next step:

f1 � f1 + λf2. (22)

Step 4. Update individuals in the population via GADMFI, and
go to Step 2

EXPERIMENTAL RESULTS AND ANALYSIS

Validation of the Performance of Genetic
Algorithm Dimension Mutation Based on
Feature Intervals
In order to validate the performance of the algorithm, a set of
benchmark functions are selected from Civicioglu (2013), which

are shown in Table 3, including low-dimensional, multi-
dimensional, unimodal (U), multimodal (M), separable (S),
and non-separable (N) functions. Advanced meta-heuristics
are employed for qualitative and quantitative comparison
using the benchmark problems. They are ABC, the grey wolf
optimizer (GWO) (Mirjalili et al., 2014), the whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016), the bat algorithm
with triangle-flipping strategy (BA-HTFS) (Cai et al., 2017), and
Hybrid DE-WOA Algorithm (DEWOA) (Wang et al., 2019c). In
addition, the Wilcoxon Signed-Rank Test was used for pairwise
comparisons, with the statistical significance value α � 0.05. The
null hypothesis H0 for this test is as follows: there is no difference
between the median of the solution between the two algorithms.
The experimental computer is Intel(R) Core (TM) i9-10900F
CPU @ 3.7GHZ and its RAM is 16.0 GHz.

Parameters Setting
MaXFEs for 30, 50, and 100-dimensional benchmarks are set
asDp10000, which means that when FEs reach MaxFEs, the
optimization algorithms will be terminated. In addition, private
parameters of methods taking part in the comparison from the
corresponding references are set as in Table 4.

Performance Analysis
The performance of an optimization method should be evaluated
in convergence accuracy, speed, and robustness. Therefore, the
mean, best, and standard deviation of the objective values based
on 30 independent runs from three dimensions 30, 50, and 100
are utilized in the quantitative analysis in Tables 5–7, and several
typical qualitative graphs are shown in Figure 3.

In Tables 5–7, the optimal values of the indicators including
“mean”, “Std”, and “best” are bold among the six comparative
algorithms. Winner � 1, 0, and −1 mean GADMFI is obviously
superior, equivalent, and inferior to other methods with α � 0.05.
“NA” refers to not available. First of all, it can be seen that, as the
dimension size increases, the performance of the algorithm does
not change greatly. It can be observed from best that except for
F6, none performs better than the proposed GADMFI in terms of
the global search. This is attributed to the collaboration of
mechanisms of the proposed algorithm. From mean and Std,
it can be seen that GADMFI is the most stable and GWO,
secondly, which benefits from DMFI has the ability to be
directed fine-grained to develop near the current optimal
population. From Runtime, the running time of GADMFI is
the shortest in most problems, and it comes from the algorithm
maintaining the traditional framework of RCGAs. As can be
obtained from Winner, only in F6, problem is inferior to ABC,
and F6 of 100 dimensions is inferior to GWO, but the difference is
very small.

In Figure 3, evolution curves of six functions of 100
dimensions are shown. As can be seen, the convergence curve
of the GADMFI shows superior exploration and exploitation
abilities. In F1, the curve presents a straight line, which shows that
when dealing with unimodal problems, the proposed DMFI has
the potential to explore a promising area. In F2–F6 with multiple
local minima, it stays at approximately constant speed until it
converges, which again confirms the role of DMFI.

FIGURE 6 | The demand considering the loss and PEVs for Case VI.
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In summary, the proposed GADMFI has outstanding
performance for the benchmark problems.

Simulation Results and Discussion on
Dynamic Economic Dispatch With Plug-In
Electric Vehicles Problem
In this section, in order to verify the reliability of the proposed
algorithm and constraint handling method, three scenarios and
six cases are considered, as described in Table 8, as follows:
Scenario A: only units, Scenario B: units with disorderly PEVs,
Scenario C: units with orderly PEVs.Case I: only 5 units,Case II:
only 10 units, Case III: 5 units with disorderly PEVs, Case IV:10
units with disorderly PEVs, Case V: 5 units with orderly PEVs,
and Case VI: 10 units with orderly PEVs. It is worth noting that
PEV and transmission loss are all considered in all cases. The
population size of the algorithm is 100, Pc is 0.7, and Pm is 0.3.
MaxFEs is set to D*10000, D represents the dimension of the
decision variable; that is, for Cases I-II; D � N*24, for Cases III-
VI; D � (N + 1)*24, and in the study, T is set as 24. In addition, in
order to avoid contingency, each case is run independently 30
times. The optimization is implemented in the MATLAB ®2019b
on an Intel(R) Core (TM) i9-10900K CPU@ 3.70 GHz with RAM
is 16.0 GHz personal computer.

Scenario A: Only Units Without Plug-In Electric
Vehicles
The data of Cases I-II are derived from (Basu, 2008;
Mohammadi-ivatloo et al., 2012; Qian et al., 2020), including
predicted power demand (PD), unit information, and B
coefficients in transmission loss. Fuel costs and constraint
violations are counted in Table 9 and are compared with the
current popular literature, including the new enhanced harmony
search (NEHS), the artificial immune system (AIS), the hybrid
DE and sequential quadratic programming (DE-SQP), the hybrid
PSO and sequential quadratic programming (PSO-SQP), the
efficient fitness-based differential evolution algorithm (EFDE),
the hybrid seeker optimization algorithm (SOA) and sequential
quadratic programming method (SOA-SQP), the simulated
annealing (SA), a hybrid genetic algorithm and bacterial
foraging approach (HCRO), and the improved bacterial
foraging algorithm (IBFA).

In Table 9, the minimum, average, maximum, and standard
deviation of fuel cost of 30 independent trials are presented, as
well as the number of violations of unit ramp rate limits and
the power balance constraint. Here, the minimum value of
each statistic is bold in black font. the constraint violation
amount is greater than one and is bold in red font, indicating
that the solution is not feasible. For constrained optimization
problems, judging the quality of a solution must first meet the
conditions of a feasible solution and then evaluate the value of
the objective function. Obviously, in the two cases, the
proposed constraint processing technology can efficiently
repair infeasible solutions. In addition, compared with other
algorithms in the literature, except for the minimum value in
Case II, it is slightly inferior to NEHS, and GADMFI shows
extremely high superiority.

In order to clearly show the output of each unit, the stacked
histogram of 10 units is drawn. The impact of the ramp rate limit
on the output of the unit can be clearly seen in Figure 4; that is,
the power difference between two adjacent moments within the
smaller ranges and the optimal solution of 30 trails for Cases I-II
are shown in Tables 10-11, as well as the transmission loss (PL)
and the amount of violation.

Scenarios B andC: UnitsWith Plug-In Electric Vehicles
A total of 50,000 PEVs are assumed to be integrated into the 5-
and 10-unit power systems, and the daily average traveling
distance and expected power demand of a PEV are 32.88 miles
and 8.22 kWh, respectively (Saber and Venayagamoorthy,
2011). The total power necessity for PEVs is 411 MW and is
expected to be met by power generation. The state of charge
SOC is 50%; the number of PEVs that can provide V2G/G2V
service is 50000/36125; the average battery capacity is 15 kWh;
the charging efficiency and the discharge efficiency are both
85%; and available PEVs are 20% (Yang et al., 2017b). In that
way, the maximum discharge power
Pmax
PEV,disc � −50, 000*15KWh*85%*20%*50% � −63.75KW, and

the maximum charge power Pmax
PEV,char �

36125*15KWh/85%*20%*50% � +63.75KW. λ � 0 means
that electric vehicles are not managed; that is, for Cases III-
IV, λ> 0 means that electric vehicles are orderly managed, that
is, Cases V-VI. Comparing scenarios B and C and determining
λ, f1, and f2 in 30 trials are counted in Table 12.

In the column of Max and Std, the larger value is marked in
red, indicating that the quality of the solution is poor and
unstable, which reflects that the grid fluctuates greatly when
electric vehicles are not managed, and further, in λ � 1, 2, 3,
when the balance effect is best for f1 and f2, λ � 1; therefore, in
Scenario C, λ is set to 1, and the decision variables are listed in
Tables 13 and 14 for Cases V-VI. The output of units and PEVs
for Case VI is drawn in Figure 5.

From Eqs 15, 16, plug-in electric vehicles are effectively
managed by the proposed strategy f2, that is, during peak
demand periods, discharge through G2V and charge during
trough periods by V2G. In addition, from the perspective of
PL at various times, it is larger than or close to PPEV, so
transmission loss should be considered in DED; otherwise, a
few decisions may cause mistakes. In order to describe this effect
more clearly, PD and PL and PPEV are plotted in Figure 6. It can
be seen that the magnitude of the loss is close to the maximum
output power of electric vehicles, and the management strategy of
electric vehicles has been proved to be effective; that is, it plays the
role of cutting peaks and filling valleys.

CONCLUSION

In view of the impact of plug-in electric vehicles on the power grid,
and the complexity of dynamic economic dispatch considering the
valve-point effect and transmission loss, this study integrates PEVs
into DED and proposes a novel genetic algorithm: GADMFI, a
simple and yet efficient constraint handling method aiming at
power balance constraints. In three scenarios with two scales, only
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units, units with disorderly PEVs, and units with orderly PEVs, a
horizontal and vertical comparison was carried out. The results
show that GADMFI has an excellent performance in dealing
with multi-modal, high-dimensional, and large-scale problems
such as DED. At the same time, the proposed constraint
handling method guarantees the feasibility of solutions and
the design of target f2 had achieved the effect of adaptive
peak clipping and valley filling.
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