
Evaluation of Single-Node
Performance of Parallel Algorithms for
Multigroup Monte Carlo Particle
Transport Methods
Donghui Ma1, Bo Yang1, Qingyang Zhang1, Jie Liu1,2 and Tiejun Li 1*

1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology,
Changsha, China, 2Laboratory of Software Engineering for Complex Systems, National University of Defense Technology,
Changsha, China

Monte Carlo (MC) methods have been widely used to solve the particle transport equation
due to their high accuracy and capability of processing complex geometries. History-
based and event-based algorithms that are applicable to different architectures are two
methods for parallelizing the MC code. There is a large work on evaluating and optimizing
parallel algorithms with continuous-energy schemes. In this work, we evaluate the single-
node performance of history-based and event-based algorithms for multigroup MC
methods on both CPUs and GPUs with Quicksilver, a multigroup MC transport code
that has already implemented the history-based algorithms. We first implement and
optimize the event-based algorithm based on Quicksilver and then perform the
evaluation work extensively on the Coral2 benchmark. Numerical results indicate that
contrary to continuous-energy schemes, the history-based approach with multigroup
schemes outperforms the event-based algorithm on both architectures in all cases. We
summarize that the performance loss of the event-based algorithm is mainly due to: 1)
extra operations to reorganize particles, 2) batched atomic operations, and 3) poor particle
data locality. Despite the poor performance, the event-based algorithm achieves higher
memory bandwidth utilization. We further discuss the impact of memory access patterns
and calculation of cross sections (xs) on the performance of the GPU. Built on the analytics,
and shed light on the algorithm choice and optimizations for paralleling the MC transport
code on different architectures.

Keywords: parallel computing, performance evaluation, history-based, event-based, particle transport

1 INTRODUCTION

Particle transport problems such as shielding radiations and power reactor calculations require
solving the Boltzman equation, which describes how particles transport through and interact with
materials. Deterministic methods solve such problems by numerical calculations to obtain the
required physical quantities. Different from deterministic methods, Monte Carlo (MC) methods
(Metropolis and Ulam, 1949) construct a stochastic model through statistical sampling and particle
weighting and are capable of handling complex geometry and physics models. The expected value of
a physical quantity is then estimated by the weighted average of behaviors of numerous independent
particles. Random numbers following the specific probability distributions are used to model various

Edited by:
Qian Zhang,

Harbin Engineering University, China

Reviewed by:
Rongliang Chen,

Shenzhen Institutes of Advanced
Technology (CAS), China

Xiaowen Xu,
Institute of Applied Physics and

Computational Mathematics (IAPCM),
China

Kenli Li,
Hunan University, China

Qingming He,
Xi’an Jiaotong University, China

*Correspondence:
Tiejun Li

tjli@nudt.edu.cn

Specialty section:
This article was submitted to

Nuclear Energy,
a section of the journal

Frontiers in Energy Research

Received: 06 May 2021
Accepted: 25 June 2021
Published: 23 July 2021

Citation:
Ma D, Yang B, Zhang Q, Liu J and Li T

(2021) Evaluation of Single-Node
Performance of Parallel Algorithms for

Multigroup Monte Carlo Particle
Transport Methods.

Front. Energy Res. 9:705823.
doi: 10.3389/fenrg.2021.705823

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058231

ORIGINAL RESEARCH
published: 23 July 2021

doi: 10.3389/fenrg.2021.705823

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.705823&domain=pdf&date_stamp=2021-07-23
https://www.frontiersin.org/articles/10.3389/fenrg.2021.705823/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.705823/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.705823/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.705823/full
http://creativecommons.org/licenses/by/4.0/
mailto:tjli@nudt.edu.cn
https://doi.org/10.3389/fenrg.2021.705823
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.705823

events (collision, fission, capture, etc.), thus causing statistical
uncertainty. Increasing the number of particle histories is usually
used to reduce uncertainty, but meanwhile, it comes at a
significant computational cost. To reduce the runtime, MC
transport codes such as Shift (Pandya et al., 2016), OpenMC
(Romano and Forget, 2013), and MCNP (Forster and Godfrey,
1985) are usually targeted at large-scale parallelization on high-
performance supercomputers with tens of thousands of
computing nodes.

There are two parallel algorithms for MC methods, history-
based and event-based algorithms. History-based algorithms loop
over a large number of independent particles, each of which is
simulated from the birth to the death by a fixed thread. Because
each particle has an independent trajectory and a different history
length, history-based algorithms are appropriate for multiple-
instruction multiple-data (MIMD) architectures. The MC
transport loop over particles is not suitable for vectorization
because different instructions are required at different times.
To exploit the vectorization capabilities of computing
architectures, the event-based MC method was proposed in
the 1980s (Brown and Martin, 1984). This approach processes
a batch of particles based on the next event that particles will
undergo. Particles that have the same next event will be processed
together.

Traditionally, MC codes are parallelized on CPU-based
machines. To achieve higher floating-point operations per
second (FLOPS), supercomputers tend to rely on vectorized,
single-instruction multiple-data (SIMD) or single-instruction
multiple-threads (SIMT) architectures such as graphical
processing unit (GPU) and Intel Xeon Phi processors (MIC).
A large amount of research uses vectorized architectures to obtain
better performance. Li et al. (2017) proposed a multi-stream
approach based on GPU for matrix factorization to accelerate
stochastic gradient descent and achieved 5–10× speedup. Yan
et al. (2020) presented an optimized implementation for single-
precision Winograd convolution on GPUs. Its implementation
achieved up to 2.13× speedup on Volta V100 and up to 2.65×
speedup on Turing RTX2070. Existing research shows that
computation-intensive programs can obtain a significant
performance improvement.

A number of MC codes on vectorized architectures (Du et al.,
2013; Liu et al., 2014; Bergmann and Vujić, 2015) have been
developed. Most recent studies of GPU-basedMCmethods (Choi
et al., 2019; Hamilton and Evans, 2019) have focused on event-
based algorithms. The WARP code (Bergmann and Vujić, 2015)
adapted event-based algorithms to the new GPU hardware and
realized a generalized GPU-based implementation for
continuous-energy MC transport. Substantial gains in
performance are achieved by using event-based algorithms in
the Shift code (Hamilton and Evans, 2019), a continuous-energy
MC neutron transport solver. All of the GPU-based studies above
are based on continuous energy, on which the event-based
approach outperforms the history-based method by a large
margin.

We consider the single-node performance of the history-based
and event-based algorithms for multigroup MC methods.
Compared with continuous-energy MC methods, the

multigroup scheme has a simpler logic. The energy ranges in
the multigroup energy spectrum are usually subdivided into a few
hundred groups and averaged in different ways over the
continuous-energy schemes, thus avoiding the need to carry
out a lookup over very large cross section tables, which
constitute a significant fraction of runtime. Therefore,
multigroup MC methods have extremely different memory
access patterns and conditional branches. To further optimize
the performance of the multi-group MC programs, it is necessary
to evaluate the performance of history-based and event-based
algorithms on modern architectures. Hamilton et al. (2018)
provided a comparison of history-based and event-based
algorithms for multigroup MC methods on GPUs. However, it
lacks a comparative analysis of the multigroup and continuous
energy schemes, as well as a comparative analysis of performance
on the CPU and GPU.

This article is aimed at providing a detailed analysis of the
single-node performance difference between different parallel
algorithms with different cross section schemes on both CPUs
and GPUs. The studies were performed using Quicksilver
(Richards et al., 2017), a proxy application for the MC
transport code Mercury (LLNL, 2017). It implements the
history-based algorithm on both CPUs and GPUs through a
thin-threads approach (Bleile et al., 2019).

The main contributions of this work are that:

• We implement the event-based algorithm for multigroup
MC methods in the Quicksilver code on both CPUs and
GPUs. The implementation details, including modification
of data structures, loop organization, and optimization on
the GPU, are provided.

• We explore the performance difference of the history-based
and event-based algorithms for multigroup MCmethods on
both CPUs and GPUs. The results show that the event-
based algorithm for multigroup MC methods is over 1.5×
slower than the history-based algorithm on both
architectures, but achieves a higher memory bandwidth.

• We analyze the performance-affecting factors, including
memory access patterns and xs schemes. Built on the
analytics, we provide suggestions for optimizations and
algorithm choices for the MC transport code on different
architectures.

2 BACKGROUND

2.1 Monte Carlo particle Transport
MC methods are very different from deterministic transport
methods. MC methods solve the transport equation by
simulating individual particles and recording some aspects
(tallies) of their average behavior. The average behavior of
particles in the physical systems is then inferred (using the
central limit theorem) from the average behavior of the
simulated particles. Deterministic methods typically give fairly
complete information throughout the phase space of the problem,
while MC methods supply information only about specific tallies
requested by the user.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058232

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

MC methods transport particles between events (for example,
collisions) that are separated in space and time. The individual
probabilistic events that comprise a process are simulated
sequentially. The probability distributions governing these
events are statistically sampled to describe the total
phenomenon. Probability distributions are randomly sampled
using transport data to determine the outcome at each step of
its life.

2.2 History-Based Algorithm
As the particle histories are independent, it is natural to achieve
parallelism over individual particles. This means each thread
or process will process a single particle for its whole life
cycle until it is absorbed, escapes from the system, or reaches
the end of a time step. Algorithm 1 is the basic history-based
algorithm with a loop over simulated particles. The loop body
sequentially processes particle histories that would alternate
between moving particle to collision site and processing
particle collision. Moving particle to collision site involves
calculating several distances, including sampling distance to
next collision and other geometric operations. Processing
particle collision encompasses the most sophisticated control
flow, which involves sampling the nuclide to interact with the
reaction type.

In the GPU implementation, the loop is replaced by a CUDA
kernel launch where the total number of CUDA threads is equal
to the number of particles. The number of particles is much larger
than the number of threads the device can physically execute
simultaneously to hide the latency of accessing global memory.
Owing to the limited GPU resources, particles are usually
simulated in batches. In Algorithm 1, each particle has a
different history length and therefore will collide at different
times, which represents a thread divergence ofMCmethods at the
highest level.

2.3 Quicksilver
This work was performed in the Quicksilver code (Bleile et al.,
2019; Richards et al., 2017), a proxy application of the full
production code Mercury developed and maintained by
Lawrence Livermore National Laboratory (LLNL). Quicksilver is
designed to represent the key features of Mercury and offers an
approximation of the critical physical routines that form the
essential part of the full production code. It only implements
some of the most common physical interactions but keeps
enough to represent crucial computational patterns. Mercury
supports meshes with multiple types and solid geometry, while

Quicksilver is limited to only a 3D polyhedral mesh. Additionally,
Mercury uses both continuous and multigroup cross sections,
while Quicksilver only supports the multigroup nuclear data.

Quicksilver offers only two types of predefined tallies: balance
tallies and a cell-based scalar flux tally. Balance tallies record the
total number of times specific events occur (such as collisions,
facet crossings). Scalar flux tally scores the flux of particles
through each mesh cell. In addition, Quicksilver implements
history-based algorithms on both CPUs and GPUs. Thread
safety is handled by using atomic operations. In this article,
we implement the event-based approach.

3 EVENT-BASED ALGORITHM

In this section, we implement the basic event-based algorithm on
both CPUs and GPUs and present some optimizations on GPUs.
Instead of being simulated by a fixed task from the creation to
completion, event-based transport processes particles with the
same next event (e.g., calculate total macro cross section)
together. It offers an opportunity to exploit vectorization
capabilities. As discussed in Ozog et al. (2015), employing an
event-based algorithm to the MC transport code is not trivial
because nearly all the data structures and loop organization
require to be modified.

The notations used in this work are listed in Table 1.

3.1 Basic Event-Based Algorithm
Suppose there are N particles to be simulated in a cycle. N
particles form the initial particle vector. Because storing the
attributes of N particles simultaneously is not feasible on a
GPU, the number of particles in a given batch is often limited
to at most B particles. We refer to a vector of particles to be
processed in a batch as a particle bank. We denote the initial
particle vector and particle bank by Vp and Vb, respectively.
Before the particles undergo the next event together, they should
be banked. As described in Romano and Siegel (2017), there are
two main variations on how to bank particles that have the same
event type. In the first method, the particles within a particle bank
execute the same event at any given time. But some may be
masked because they either have different undergoing events or
have already been terminated, which might cause the occurrence
of idle threads. The other approach is the queue-driven approach,
in which several event queues are maintained and particle indices

TABLE 1 | Summary of notations.

Symbol Meaning

N The number of particles in a cycle
B The number of particles in a batch
E Event type
Vp Initial particle vector
Vb Particle bank
Qxs Queue that handles xs calculations
Qad Queue that handles particle advancing
Qcl Queue that handles collisions
Qcf Queue that handles facet crossings

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058233

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

in the particle bank are pushed into or popped off the queues
according to the next event type. This article is based on the
queue-driven method and will extend the algorithm to improve
the performance of GPUs.

3.1.1 Event-CPU Algorithm
Algorithm 2 is the basic event-based algorithm on CPUs. The
algorithm begins by getting a batch of particles from the initial
particle vector (line 2). The next step is an initialization (line 4) of
event queues that correspond to four event types: computing
cross sections, advancing, collision, and crossing facet. Four event
queues are abbreviated as Qxs, Qad , Qcl , and Qcf , respectively.
Computing cross sections is to access cross section data
corresponding to the particle’s current energy group and
calculate total macro cross sections at the current cell.
Advancing is to move a particle to the next location, which
involves computing three distances, including the distance to
cencus, the distance to facet, and the distance to reaction.
Collision means sampling reaction type (scatter, fission, or
absorption) and processing sampled reaction. The crossing
facet aims to determine whether the particle crosses to the
neighbor cell located on the current rank or the neighbor cell
located on the other rank.

Before generating trajectories, all particles must first calculate the
cross sections, which is the first event of the particle. Therefore,
the initialization of event queues is to put all particles in the bank
into Qxs. It should be noted that each event queue is an array
storing the particle indices into the particle bank. Storing only
particle indices avoids a large amount of memory transfer, which
frequently occurs when performing pushes and/or pops on the
event queues.Following the initialization is a while loop (lines
5–16), the body of which is to process the particles in the longest
queue until all the particles in Vb are simulated. When dealing
with collisions, the secondary particles produced by fission are

added to the fission bank by performing an atomic add on the
length of the fission bank. At the end of each event processing,
active particles require to be redistributed to event queues. Each
thread performs an atomic operation to put the particle index
into the corresponding queue. In particular, after computing
cross sections each particle will move to the next location, that
is, all the particles in Qxs will be put into Qad . Therefore, there is
no need to perform atomic operations because each particle’s
position in Qad can be directly obtained by adding its position in
Qxs to the length of Qad .

3.1.2 Event-GPU Algorithm
The basic event-based algorithm on GPUs is still as shown in
Algorithm 2, but all the events are processed through GPU
kernels. Compared with the large kernel in the history-based
algorithm, a smaller event kernel means that most branching
logic is handled outside the kernel, resulting in less thread
divergence within kernels and therefore an improved
utilization of vectorization. In addition, smaller kernels are
capable of providing the reduced computational complexity
and therefore each thread occupies fewer GPU resources
(registers, etc.). Because of a fixed amount of resources
available, more threads can be executed simultaneously to
achieve a higher occupancy, which is an important
consideration for improving GPU performance. The
performance of multigroup MC methods on GPUs is affected
by many factors, one of which is thread divergence. Reducing
thread divergence results in an improved arithmetic performance,
but may also bring some changes in other aspects, such as
memory access patterns, which may cause more serious
performance losses.

3.1.2.1 Tallies
An essential concern is the update of tallies. Quicksilver only
provides two kinds of tallies, one of which is the scalar flux tally.
One way to update the scalar flux tally is to allocate a copy for
each particle in Vb. Each particle updates its copy and finally, a

FIGURE 1 | AoS vs. SOA on Nvidia Tesla K80 GPU.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058234

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

reduction operation is performed on all copies. However, this
method requires a large amount of memory since numerous
particles will be simulated. A batch method is employed in this
article. Fixed-length (much less than B) scalar flux copies are
maintained in GPU. Each particle updates the corresponding
copy indexed by the remainder of its index divided by the length
of the copies.

3.1.2.2 Data Structure
The particle’s basic information, including position, energy,
direction, velocity, etc., is represented by a data structure. One
approach for storing the initial particle vector and particle bank is
to allocate an array of these structures, which is known as AOS.
The second method is to store each data component of these
structures in distinct arrays, which is usually called SOA. On
CPUs, AOS is often used to improve cache efficiency due to its
better locality. The SOA pattern is usually recommended to be

used for GPU so that coalescedmemory accesses can be efficiently
utilized. We explored the performance difference between AOS
and SOA on the GPU. The results in Figure 1 demonstrate that,
on the GPU, the SOA pattern performs better on both problem 1
and problem 2 (see Section 4.1 for the introduction of these two
problems), but only brings very little performance gains. In the
following experiments, we use AOS for CPU implementations
and SOA for GPU.

3.1.2.3 Memory Management
Figure 2 shows the memory management of the event-GPU
algorithm. Since all operations of event queues, including
event kernels and initialization, can be handled on the GPU,
the memory of event queues only needs to be allocated on the
GPU, avoiding data movement between host and device. Data on
geometry, materials, and multigroup cross sections are all
transferred from the CPU to the GPU during the initialization
of Quicksilver and will not be modified in the subsequent
execution. The initial particle vector Vp is allocated memory
on both the CPU and the GPU. At the beginning of each cycle,
particles generated on the CPU are transferred from the CPU to
the GPU and simulated on the device until all particles die.
Similar to event queues, we only allocate memory for particle
bank Vb on the GPU and Vb are initialized by a GPU kernel at the
beginning of each batch. Tallies are accumulated on the GPU and
transferred from the GPU to the CPU at the end of the
simulation.

3.1.2.4 Event Kernel Switch
The kernel that handles events in the longest queue (this means
that GPU can concurrently simulate a maximum number of
particles) is launched each time. To know which queue is the
longest, we allocate memory for an array of length four using
cudaMallocManaged and maintain it to represent current lengths
of event queues. Then the maximum length can be determined on
the host. Kernels are switched over and over until all the particles
in that batch are simulated.

FIGURE 2 | Memory management of main data structures in the event-GPU algorithm.

FIGURE 3 | The number of active particles as a function of event cycles
for the basic event-based algorithm and the event-fixed algorithmwith 4 × 104

particles per batch.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058235

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

3.2 Optimization on GPUs
In the basic event-GPU algorithm, particles will be terminated
when it is absorbed, escapes from the system (or subdomain), or
reaches the end of a time step, leading to a gradual decrease in the
number of active particles in Vb. In case the number of particles
within a batch drops to a threshold that cannot efficiently occupy
GPUs, the overall performance of the GPU will be reduced
significantly. The dotted line in Figure 3 is the change in the
number of active particles within a cycle in the basic event-GPU
algorithm. It can be seen that the performance degradation
caused by the decrease in GPU occupancy will occur multiple
times within a cycle because a cycle contains multiple batches. To
maximize GPU occupancy, we first implement the “Source
Event” method proposed in Hamilton et al. (2018) and then
propose the hybrid method.

3.2.1 Occupancy Enhancement
Hamilton et al. (2018) proposed to replace terminated particles
with new particles to maximize GPU occupancy, which keeps the
number of active particles in a cycle for a significant fraction of
cycle runtime. To achieve this, instead of killing terminated
particles directly, we replace terminated particles in Vb with
new particles from Vp and also put their indices into Qxs. We
refer to this method as event-fixed. The solid line in Figure 3
shows the change in the number of particles within a cycle in the
event-fixed method. In this way, the performance degradation
only occurs at the end of the cycle.

It should be noted that the meaning of “batch” is no longer the
same as the original meaning. The difference is that “batch” in the
event-fixed method is based on the number of terminated
particles, not source particles. Specifically, a global counter is
maintained and incremented atomically when particles are
terminated. Once the counter rises above B, it is considered
that a batch of particles has been processed.

At the conclusion of event processing atomic operations are
utilized to redistribute active particles. However, the atomic
operation would have a great impact on the overall
performance because the GPU will typically execute many
more threads simultaneously and the redistribution operation
will occur frequently. We consider another method based on
prefix sum to collect the indices of active particles, thus avoiding
atomic operations on queues.

For event queue QE with a given event type E, indices of
particles whose next event type is E are collected through the
method shown in Algorithm 3. There are two auxiliary arrays in
Algorithm 3, Vmap and Voffset . At the end of the previous event
kernel, each particle will get a 1 in Vmap at its index location if its
next event is E; otherwise, it will get a 0 (line 1). Voffset is the
exclusive prefix sum of Vmap (line 2) and is also the offset of the
particle’s position in QE relative to the current length of QE. After
generating Vmap and Voffset , a CUDA kernel is executed to update
QE (lines 4–8).

3.2.2 Hybrid Method
When the number of active particles falls below a threshold.
For example, from the circle in Figure 3, the cost of
multiple event kernel startups will exceed the benefits
brought by the event-based algorithm itself. The main
reason is that the event kernel cannot be executed
efficiently for a small number of particles in flight. From
the threshold, we switch to the history-based algorithm
to track the residue particles. We refer to this method as
an event-hybrid approach. Before switching to the history-
based algorithm each particle may be going to undergo a
different next event, which means that all event queues
are not empty. Performing the following three steps, all
particles will be merged into Qxs.

• Execute advancing kernel. After this step, surviving particles
inQad are moved to the next location and then will collide or
cross the nearest facet. As a result, at the end of the kernel,
all survive particles in Qad will be put into Qcl or Qcf . Now
Qad is empty.

• Execute collision kernel. After colliding with sampled
nuclides, survive particles will enter Qxs to recompute
cross sections. Now both Qad and Qcl are empty.

• Execute crossing kernel. Particles in Qcf may be terminated
(escape from the system or subdomains on local rank), or
enter other subdomains on the local rank. Consequently, all
survive particles inQcf will be put intoQxs. Now all the other
three event queues except Qxs are empty.

Finally, we perform a history-based algorithm on all particles
in Qxs.

TABLE 2 | Problem definition in the Cora 2 benchmark. Two problems have
different numbers of isotopes and reactions.

Problem Isotope Reaction Energy group

Problem 1 20 9 230
Problem 2 10 3 230

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058236

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

4 PERFORMANCE EVALUATION

In this section, we present a single-node performance comparison
of the history-based and event-based algorithms of Quicksilver on
both CPUs and GPUs. In addition, some experiments were
conducted to further explain the reasons for the performance
evaluation results.

4.1 Experiment Setup
For performance evaluations, we perform some experiments on
the Tianjin HPC1 system, each node of which contains two
fourteen-core Intel Xeon E5-2690 v4 CPUs operating at 2.6 GHz
along with four NVIDIA Tesla K80 GPUs. L1 cache is one of the
factors that can affect performance on GPUs. On the Kepler
architecture, all memory transactions only use an L2 cache, but
the L1 cache is disabled by default and must be enabled using the
compiler flag “-Xptxas -dlcm –ca.” In the following experiments
on GPUs, L1 cache is enabled. To simplify the execution within
a rank, we use one rank for a GPU and 4 ranks per node as a
result of running on 4 Tesla K80 GPUs.

We utilize a single problem, Godiva in water (Cullen et al.,
2003), as the basis of our study. This problem was generated to be
used as a Cora 2 benchmark in Quicksilver due to its balanced
reactions and balanced nature to match a classic MC test problem.
The benchmark is defined by multiple parts, including cross
sections, materials, and geometries. The cross sections define
the detailed information to describe reactions that will occur
when colliding with different isotopes. Materials mainly define
physical information, such as the number of isotopes and the
number of reactions considered in the corresponding material.
Geometries contain the size of themesh and the size of subdomains
related to domain decomposition.

This benchmark defines a Cartesian mesh with 10 × 10 × 10
elements per rank. There are two specific problems in the Cora 2
benchmark. Table 2 shows the specific definitions. There are 20
isotopes and nine reactions in problem 1, while in problem 2
there are only 10 isotopes and three reactions. The biggest

difference between these two problems is that cross sections in
problem 1 are tailored to give a broader energy spectrum for the
particles and a different reaction mix compared to problem 1.
Both of these two problems use 230 energy groups.

4.2 Event-GPU Algorithm Comparison
We describe the implementation details of the basic event-based
algorithm on GPUs in Section 3.1.2 and implement three
optimized methods (event-fixed, event-hybrid, and event-
prefix) for enhancing the GPU performance. We now perform
a comparison of these algorithms. Besides, we also investigate the
performance gains by enabling L1 cache (event-based, L1).
Figure 4 shows the average cycle runtime for different GPU
algorithms on both problem 1 and problem 2, respectively.
Results are obtained using 100 cycles and 4 × 106 neutrons per
cycle. Each algorithm in Figure 4 is modified based on the
previous one. As expected, both the algorithmic developments
and the availability of the L1 cache bring performance
improvements.

The results indicate that there is a big gap between the
performance of the atomic-based and prefix-sum-based
methods. The prefix sum method outperforms the atomic
method by a factor of approximately two on the problems
considered. This proves that there is a significant benefit to
replacing atomic operations with the prefix sum method when
redistributing survive particles. The event-fixed approach
achieves an obvious performance increase. This is because
GPU efficiency is reduced multiple times within a cycle due to
the decrease in the number of particles in each batch, which keeps
the GPU not fully occupied for a large fraction of the calculation.
Replacing terminated particles with new source particles allows
the GPU to maintain a high occupancy rate until the end of each
cycle. Compared with the event-fixed approach, the event-hybrid
algorithm brings little performance gains, which is not surprising.
The tracking using the hybrid algorithm at the end of each cycle
only accounts for very few calculations; therefore, the
performance gains by using event-hybrid are very limited.

It is worth noting that the L1 cache only brings a slight
advantage due to the event-based algorithm’s inability to
efficiently exploit the L1 cache. There are several reasons.
One reason is that the light kernel offers little opportunity
for event-based methods to reuse data. Particle data are only
used during the execution of short-lived event kernels, the data
required by the previous kernel are often different from the next
event kernel, leading to frequent invalidation of the cache of
earlier loaded data. Another reason is that the particle
redistribution results in less spatial locality. In event-based
methods, although the first access to a particle data will
cause the particle to be cached in the L1 cache, very few
components of a particle data would be accessed later in the
same event kernel. Therefore, the event-GPU algorithms obtain
a small performance increase by enabling the L1 cache due to its
insensitivity to the L1 cache.

4.3 History vs. Event Performance
This article now explores the single-node performance of the
history-based and event-based algorithms on both CPUs and

FIGURE 4 | Average cycle runtime of different event-GPU algorithms on
problem 1 and problem 2.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058237

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

GPUs. All experiments on GPUs are based on event-hybrid
algorithm and L1 cache is enabled.

4.3.1 Particle-Tracking Rate
Table 3 provides the particle-tracking rate for the history-based
and event-based algorithms on both CPUs and GPUs. It can be
seen from Table 3 that, on the CPU, the history-based algorithm
is over 1.5x faster than the event-based algorithm in all cases. The
serious performance degradation of event-CPU relative to
history-CPU is mainly caused by the following reasons:

1) Extra operations: Event-CPU requires extra operations to
organize the particles periodically to ready them for the
different event-processing routines. These additional
operations introduce extra overhead compared to the
history-based algorithm on the CPU.

2) Atomic operations: The atomic operations in history-CPU are
randomly distributed along the history of each particle,
whereas the atomic operations in event-CPU are batched
into a single-event loop. Therefore, more threads are
waiting for atomic operations in the event-CPU.

3) Particle data locality: There are more opportunities for
history-CPU to reuse data. In history-CPU, particle data
can be cached in registers; thus consecutive particle data
access can be hit directly in registers. However, in event-
CPU, data required by the current event loop are often part of

the complete particle data and are often different from the
previous loop. Very few components of particle data would be
accessed later in the current event loop.

It should be noted that the event-GPU algorithm did not
achieve the speedup as expected and only provides 19–23
equivalent CPU cores that are 3x slower than history-GPU.
Different from previous studies on the continuous-energy MC
code (Bergmann and Vujić, 2015; Choi et al., 2019; Hamilton and
Evans, 2019) where the lookup of energy grids occupies a very
large portion of the calculation. Table 3 shows the remarkably
superior performance of the history-based method relative to the
event-based approach on the GPU. The main advantage of event-
GPU is that the top level branches of history-GPU are removed,
which decreases thread divergence on the GPU. Nevertheless,
event-GPU has many disadvantages that would significantly
affect the performance of the event-GPU algorithm for the
multigroup transport code. Apart from the drawbacks related
to extra operations, atomic operations, and particle data locality,
memory access pattern is another factor. We will design several
experiments in Section 4.4 to analyze the factor in detail.

4.3.2 Memory Bandwidth Utilization
MC transport is a random memory access problem, and the
memory bandwidth of each algorithm requires to be measured.
We measured the memory bandwidth using the perf and nvprof
tools. On the Intel Xeon E5-2690 v4 CPU, the available memory
bandwidth is measured by the STREAM benchmark. Table 3
shows the achievable memory bandwidth of the history-based
and event-based algorithms on the CPU and GPU. On problem 1,
the history-based algorithm achieves approximately 9 GB/s or
roughly 9% of available memory bandwidth on the CPU, while
the event-based algorithm achieves roughly 15%. The result on
the GPU is similar to that on the CPU. The history-based
algorithm achieves 95 GB/s memory bandwidth, whereas the

TABLE 3 | Tracking rate (104n/s) and achieved memory bandwidth (GB/s) of history-based and event-based algorithms on CPUs and GPUs for problem1 and problem 2.

Algorithm Problem 1 Problem 2

Tracking rate Memory bandwidth Tracking rate Memory bandwidth

History-CPU 87.9 9 38.5 7
Event-CPU 48.4 15 21.9 14
History-GPU 224.8 95 95.2 93
Event-GPU 72.9 140 27.3 135

FIGURE 5 | Thread parallel efficiency of problem 1 on the two-sockets of
Intel Xeon E5-2690 v4 14 core CPU. Only one process is used.

TABLE 4 | Percentage (%) of time spent on subroutines of event-based algorithm
on CPU and GPU for problem 1 and problem 2.

Subroutine Event-CPU Event-GPU

Problem 1 Problem 2 Problem 1 Problem 2

xs calculation 6.7 4.1 7.8 5.6
Advancing 63.4 44.6 64.7 45.2
Collision 17.3 44.0 15.4 42.1
Crossing facet 12.6 7.3 12.1 7.1

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058238

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

event-based algorithm achieves 140 GB/s or roughly 40% of the
available memory bandwidth. The results on both architectures
demonstrate that despite the poor performance, the event-based
algorithm can achieve higher memory bandwidth.

It should be noted that the memory bandwidth cannot be
saturated by the MC code due to its random memory access
patterns, especially for the history-based algorithm. In most cases,
only one item in the cache line can be used, because of which the
performance of MC methods is bounded by memory access
latency. The ability of GPU to support more concurrent
memory requests and to hide memory access latency makes
the performance on the GPU better (Table 3 shows two
algorithms are faster on the GPU).

4.3.3 Thread Scaling
Figure 5 shows the parallel efficiency as the thread count (one
process) is increased on the CPU. We can see that both the
history-based and event-based algorithms achieve over 60%
parallel efficiency when using less than 14 threads (within one
socket), while the parallel efficiency drops rapidly when the
second socket is used. This is because nonunified memory
access occurs when the second socket is consumed. Compared
to the event-based algorithm, the parallel efficiency of the history-
based algorithm drops and becomes slower since more threads
are waiting for the atomic operations in the event-based
algorithm, as demonstrated in Section 4.3.1. We further use
two processes with 14 threads per rank and find that the parallel
efficiency of the two algorithms increases to more than 50% when
scaling to 28 threads. This shows that the MC particle transport
code is sensitive to memory access latency and using MPI across
sockets reduces the impact of nonunified memory access.

4.3.4 Runtime of Subroutines
Table 4 provides a comparison of time spent on different event
subroutines on both CPUs and GPUs. The experiments were
carried out using one rank. The process of generating source
particles is excluded during the measurement. As observed, xs

calculation only occupies less than 8%. This is because in the
multigroup MC simulation, macroscopic cross section
corresponding to a specific energy group is computed only
once and subsequent calls to the function of xs calculation
directly return the cached value. The results indicate that
calculating cross sections in the multigroup scheme is not as
time-consuming as in the continuous-energy scheme. The time
spent on xs calculation for problem 2 constitutes a larger fraction
than problem 1 on both two architectures due to more isotopes
and reactions in problem 2.

4.4 Discussion of Performance on GPUs
The intra-node results provided in Section 4.3.1 indicate that for
the multigroup particle transport code, history-GPU outperforms
event-GPU by factors of three to four across a range of the
problems considered, whereas previous studies on continuous-
energy schemes demonstrate that event-GPU is faster than
history-GPU. The reasons for this performance difference
mainly contain two factors: memory access pattern and
calculation of cross sections. In this section we will design
several experiments to answer the following two questions:

1) How does the memory access pattern affect the performance
of the history-based and event-based algorithms for
multigroup MC transport methods on the GPU?

2) Why is the event-based algorithm for continuous-energy MC
transport methods faster than the history-based algorithm on
the GPU?

4.4.1 Question 1
On the GPU, a good coalesced access can be achieved when the
neighboring threads access neighboring locations in memory.
Memory coalescing offers an opportunity to combine multiple
memory accesses into a single transaction, greatly improving
efficiency.

4.4.1.1 Theoretical Analysis
In the history-based algorithm, contiguously stored particles are
assigned to neighboring threads, leading to a good coalesced
access. In the event-based algorithm, however, disjoint memory
accesses are encountered because of the reallocation of particles to
different threads at the conclusion of each event cycle. This
prevents the event-based algorithm from utilizing memory
coalescing. Therefore, the cost caused by poor memory access
patterns may outweigh the benefit of reducing thread divergence.

FIGURE 6 | Runtime of original and sorted xs kernel on Problem 1 and
Problem 2. The x-axis represents the number of xs events in the execution of
event-GPU.

TABLE 5 | Runtime (s) of continuous-energy cross section lookups on CPU and
GPU in XSBench.

Algorithm History-CPU Event-GPU

Nuclide grid 38.2 1.6
Unionized grid 7.7 0.6
Hash-based 9.4 0.8

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 7058239

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

4.4.1.2 Experimental Analysis
To demonstrate the impact of disjoint memory accesses, we
modify the memory access patterns of event-GPU. We sort
the particle bank before executing each event kernel so that
contiguously stored particles are assigned to neighboring
threads. Then we compare the runtime of the original and
sorted event kernel. Figure 6 shows the runtime of the
original and sorted xs kernel. The sorted xs kernel achieves
lower runtime on both two problems every time the cross
sections are calculated, indicating that there is a significant
performance loss for the original xs kernel. However, the
performance of sorted xs kernel cannot be achieved as sorting
the particle bank is very expensive.

4.4.2 Question 2
Numerous studies on continuous-energy MC methods achieve
the opposite results to the conclusion of this article that is based
on multigroup schemes. The major difference between the
continuous-energy and multigroup schemes is the former
needs time-consuming energy lookups. Several algorithms for
accelerating energy lookups have been proposed, such as the
unionized grid method (Leppänen, 2009) and hash-based
approach (Brown, 2014; Walsh et al., 2015), which can
provide speedups of up to 20x over conventional schemes.

4.4.2.1 Theoretical Analysis
In the history-based algorithm, it would take much more time to
calculate cross sections in the continuous-energy scheme than
that in the multigroup scheme. Fortunately, there are some
existing optimization techniques on the GPU to accelerate the
continuous-energy xs event kernel in the event-based algorithm,
such as sort event queue by material or energy, and kernel
splitting, etc. For the continuous-energy scheme, the speedup
of accelerating xs event kernel would exceed the cost caused by
poor memory access patterns. Therefore, the event-GPU is faster
than history-GPU with the continuous-energy scheme.

4.4.2.2 Experimental Analysis
Wewill design experiments with XSBench (Tramm et al., 2014), a
mini app representing continuous-energy cross section kernel, to
investigate the impact of calculations of cross sections. XSBench
has already implemented both conventional and optimized
energy lookup algorithms. To show the difference in the time
of xs calculation between continuous-energy andmultigroupMC,
we also performed an experiment with OpenMC.

Experiment with XSBench and OpenMC. To verify the
theoretical analysis, we first test XSBench on the GPU to show
the significant speedup of the continuous-energy xs kernel.
Table 5 shows the runtime of three algorithms implemented
in XSBench on the CPU and GPU. The history-based and event-
based methods are used on the CPU and GPU respectively. The
results are obtained on the same CPU and GPU shown in Section
4.1. On the CPU, the number of particles is set to 5 × 105 and the
number of lookups to perform per particle is set to 34. On the
GPU, the number of lookups is set to 1.7 × 107. It can be seen
from Table 5 that the use of event-based method on the GPU for
all these three algorithms achieves more than 10× speedup
relative to the history-based method on the CPU.

OpenMC has implemented the event-based algorithm with
the continuous-energy scheme. We simulated Pincell case
(Horelik et al., 2013) using OpenMC to show the percentage
of time spent on different subroutines when using continuous-
energy cross sections. Table 6 shows the results. Compared with
the results in Table 4, it can be seen that the time percentage
needed to compute xs in the continuous-energy scheme is much
larger than that in the multigroup scheme.

Experiment with XSBench and Quicksilver. We modify
Quicksilver by adding accesses to continuous-energy cross
sections for each particle. The modified code is aimed at
approximating the program features of the continuous-energy
MC code by bridging the major gap between the multigroup
scheme and the continuous-energy scheme. For history-CPU and
history-GPU, it is only necessary to add relative implementation
in XSBench at the location where the distance to the next collision
is computed. For event-GPU, an event kernel that performs
calculations of continuous-energy cross sections is called.

Table 7 shows the tracking rate of modified algorithms for
problem 1 and problem 2. Event-GPU outperforms other
algorithms by factors of approximately 1.2–1.5 after adding
accesses to continuous-energy cross sections. The superior
performance of event-GPU relative to history-based algorithms
is dominantly due to two factors. On the one hand, calculating
continuous-energy cross sections on the GPU using the event-
based method is capable of obtaining a significant speedup as
shown in Table 5. The speedup of computing continuous-energy
cross sections exceeds the cost of disjoint access to particle data.
On the other hand, the calculation of continuous-energy cross
sections is much more time-consuming than the multigroup
scheme, causing more serious thread divergence in history-
GPU. This means that continuous-energy event-GPU would
reduce much more thread divergence than multigroup, that is
to say, the corresponding benefit would be larger.

TABLE 6 | Percentage (%) of time spent on different subroutines in the Pincell
case, which is simulated using event-based implementation in OpenMC with
the continuous-energy scheme.

Subroutine Event-CPU

xs calculation 64.4
Advancing 17.2
Collision 9.9
Crossing surface 8.5

TABLE 7 | Tracking rate (104 n/s) for problem 1 and problem 2 in the continuous-
energy Quicksilver code.

Algorithm Problem 1 Problem 2

History-CPU 21.0 6.4
History-GPU 40.6 17.2
Event-GPU 61.0 21.1

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 70582310

Ma et al. Single-Node MC Performance Evaluation

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

4.5 Evaluation Summary
We have characterized history-based and event-based algorithms
for multigroup MC transport code. Built on the analytics, we
make the following summaries.

4.5.1 Algorithm Choice on the CPU and GPU
For multigroup MC transport methods, the event-based
algorithm suffers from performance loss caused by extra
operations to organize particles, batched atomic operations,
and poor particle data locality. Besides, memory access pattern
is another factor that weakens the performance of event-GPU.
The history-based algorithm outperforms the event-based
algorithm on both two architectures in all cases. Thus the
history-based algorithm is recommended on both the CPU
and GPU for multigroup MC transport methods.

For continuous-energy MC methods, the event-based
algorithm is faster on the GPU due to the overwhelming
speedup of the cross section kernel. We recommend using the
history-based algorithm on the CPU and the event-based
algorithm on the GPU.

4.5.2 Optimizations for Multigroup Scheme on
the GPU
The history-based algorithm suffers from serious thread divergence
on the GPU. One reason is that each particle has a different history
length. To reduce branches, we can limit each particle to a prescribed
number of collisions. In addition, the proposed optimizations,
including event-fixed and event-hybrid, can also be applied to
event-based implementation with continuous-energy schemes.

4.5.3 Suitable Architecture for MC Methods
Despite the fact that the event-based algorithm can achieve higher
memory bandwidth utilization on both the CPU and GPU, the
memory bandwidth cannot be saturated since the majority of the
memory access patterns are random. We have characterized the
MC transport code as memory latency bound. GPU can hide the
latency to access memory by executing many more threads than
the device can physically execute simultaneously, which helps
GPU provides higher performance. In terms of memory access, a
suitable architecture for executing the MC transport code should
be a many-core architecture that can support a large number of
simultaneous memory requests and hide memory access latency.
The more the number of cores, the better the performance.
Considering the issue of power consumption, each core
requires to be specially designed in accordance with the
characteristics of the MC particle transport code. To obtain a
hundredfold speedup on a single node, an MC-specified
architecture should be designed.

5 CONCLUSION

This article evaluates the performance of the history-based and
event-based algorithms for the multigroup MC particle transport
on CPUs and GPUs using Quicksilver, a multigroup MC code
with only the history-based implementation. In this article, we
first implement and optimize the event-based algorithm. The

queue-based method is used to implement the event-based
algorithm. To improve the performance on the GPU,
terminated particles are replaced with new particles so that the
number of active particles will remain fixed for most of the time.
A hybrid history and event-based method is also implemented.
The results show that both two methods benefit the basic event-
based algorithm.

Then we used the Coral2 benchmark to evaluate the intra-
node performance and other factors of history-based and event-
based algorithms. The event-based algorithm suffers from
performance loss due to extra operations to reallocate
particles, batched atomic operations, and poor particle data
locality. We further focus on the performance affecting factors
on the GPU and the performance difference between the
multigroup and continuous-energy MC code. Different from
the results on continuous-energy MC codes, the history-based
algorithm on the GPU with the multigroup scheme outperforms
the event-based algorithm by a factor of around three. This is
because the disjointed memory accesses are encountered in the
event-based algorithm, which prevents the kernel from utilizing
memory coalescing. The cost of poor memory access patterns
outweighs the benefit of reducing thread divergence. For
continuous-energy MC code, the speedup of accelerating xs
event kernel would exceed the cost by poor memory access
patterns, thus the event-based algorithm for the continuous-
energy MC code obtains a superior performance.

The evaluation results build on our analytics. For multigroup
MC codes, despite the poor performance, the event-based
algorithm can achieve higher memory bandwidth utilization
on both CPU and GPU. Compared with the CPU, the GPU is
more suitable for executing the MC transport code due to its
capability of supporting a large number of simultaneous memory
requests and hiding memory access latency. In future research, we
plan to optimize the MC transport code on modern architectures
and develop MC-specified architecture.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/LLNL/Quicksilver/tree/
master/Examples/CORAL2_Benchmark.

AUTHOR CONTRIBUTIONS

DM designed the research. TL and JL guided the research. DM
drafted the manuscript. BY helped perform experiments and
organize the manuscript. QZ helped revise the paper. DM
revised and finalized the paper.

FUNDING

This research work was supported in part by the National Key
Research and Development Program of China (2017YFB0202104
and 2018YFB0204301).

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 70582311

Ma et al. Single-Node MC Performance Evaluation

https://github.com/LLNL/Quicksilver/tree/master/Examples/CORAL2_Benchmark
https://github.com/LLNL/Quicksilver/tree/master/Examples/CORAL2_Benchmark
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

REFERENCES

Bergmann, R.M., andVujić, J. L. (2015). Algorithmic Choices inWARP -A Framework
for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries
on GPUs. Ann. Nucl. Energ. 77, 176–193. doi:10.1016/j.anucene.2014.10.039

Bleile, R., Brantley, P., Richards, D., Dawson, S., McKinley, M. S., and O’Brien, M.
(2019). “Thin-threads: An Approach for History-Based Monte Carlo on Gpus,”
in 2019 International Conference on High Performance Computing &
Simulation (HPCS), Dublin, Ireland (Tentative), June 15–19, 2019 (IEEE),
273–280. doi:10.1109/HPCS48598.2019.9188080

Brown, F. B., and Martin, W. R. (1984). Monte Carlo methods for radiation
transport analysis on vector computers. Progress in Nuclear Energy 14 (3).
(Elsevier), 269–299. doi:10.1016/0149-1970(84)90024-6

Brown, F. B. (2014). New Hash-Based Energy Lookup Algorithm for Monte Carlo
Codes. Technical Report. Los Alamos, NM (United States). Los Alamos
National Lab.(LANL).

Choi, N., Kim, K. M., and Joo, H. G. (2019). “Initial Development of Pragma–A
Gpu-Based Continuous Energy Monte Carlo Code for Practical Applications,”
in Transactions of the Korean Nuclear Society Autumn Meeting, Goyang,
Korea, October 24–25, 2019 (Goyang, Korea), 24–25.

Cullen, D. E., Clouse, C. J., Procassini, R., and Little, R. C. (2003). Static and
Dynamic Criticality: Are They Different?. Technical Report.

Du, X., Liu, T., Ji, W., Xu, X. G., and Brown, F. B. (2013). “Evaluation of Vectorized
Monte Carlo Algorithms on Gpus for a Neutron Eigenvalue Problem,” in
Proceedings of International Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering, Sun Valley, Idaho, May
5–9, 2014 (Sun Valley, Idaho, USA), 2513–2522.

Forster, R., and Godfrey, T. (1985). Mcnp-a General Monte Carlo Code for
Neutron and Photon Transport 77, 33–55. doi:10.1007/BFb0049033

Hamilton, S. P., and Evans, T. M. (2019). Continuous-energyMonte Carlo Neutron
Transport on Gpus in the Shift Code. Ann. Nucl. Energ. 128, 236–247.
doi:10.1016/j.anucene.2019.01.012

Hamilton, S. P., Slattery, S. R., and Evans, T. M. (2018). Multigroup Monte Carlo
on Gpus: Comparison of History-And Event-Based Algorithms. Ann. Nucl.
Energ. 113, 506–518. doi:10.1016/j.anucene.2017.11.032

Horelik, N., Herman, B., Forget, B., and Smith, K. (2013). “Benchmark for Evaluation
and Validation of Reactor Simulations (Beavrs), V1. 0.1,” in Proceedings of
International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering, Sun Valley, Idaho, May 5–9, 2014. 5–9

Leppänen, J. (2009). Two Practical Methods for Unionized Energy Grid
Construction in Continuous-Energy Monte Carlo Neutron Transport
Calculation. Ann. Nucl. Energ. 36, 878–885. doi:10.1016/j.anucene.2009.03.019

Li, H., Li, K., An, J., and Li, K. (2017). Msgd: A Novel Matrix Factorization
Approach for Large-Scale Collaborative Filtering Recommender Systems on
Gpus. IEEE Trans. Parallel Distributed Syst. 29, 1530–1544. doi:10.1109/
TPDS.2017.2718515

Liu, T., Du, X., Wei, J., Xu, X. G., and Brown, F. B. (2014). “A Comparative Study of
History-Based versus Vectorized Monte Carlo Methods in the Gpu/cuda
Environment for a Simple Neutron Eigenvalue Problem,” in SNA + MC 2013 -
Joint International Conference on Supercomputing in Nuclear Applications +
Monte Carlo, Paris, October 27–31, 2013. doi:10.1051/snamc/201404206

[Dataset] LLNL (2017). Mercury. Available at: https://wci.llnl.gov/simulation/
computer-codes/mercury (Accessed February 18, 2020).

Metropolis, N., and Ulam, S. (1949). The Monte Carlo Method. J. Am. Stat. Assoc.
44, 335–341. doi:10.1080/01621459.1949.10483310

Ozog, D., Malony, A. D., and Siegel, A. R. (2015). “A Performance Analysis of Simd
Algorithms forMonte Carlo Simulations of Nuclear Reactor Cores,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, Hyderabad, India,
May 25–29, 2015 (IEEE), 733–742. doi:10.1109/IPDPS.2015.105

Pandya, T. M., Johnson, S. R., Evans, T. M., Davidson, G. G., Hamilton, S. P., and
Godfrey, A. T. (2016). Implementation, Capabilities, and Benchmarking of
Shift, a Massively Parallel Monte Carlo Radiation Transport Code. J. Comput.
Phys. 308, 239–272. doi:10.1016/j.jcp.2015.12.037

Richards, D. F., Bleile, R. C., Brantley, P. S., Dawson, S. A., McKinley, M. S., and
O’Brien, M. J. (2017). “Quicksilver: a Proxy App for the Monte Carlo Transport
Code Mercury,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), Hawaii, United States, September 5–8, 2017 (IEEE), 866–873.
doi:10.1109/CLUSTER.2017.121

Romano, P. K., and Forget, B. (2013). The OpenmcMonte Carlo Particle Transport
Code. Ann. Nucl. Energ. 51, 274–281. doi:10.1016/j.anucene.2012.06.040

Romano, P. K., and Siegel, A. R. (2017). Limits on the Efficiency of Event-Based
Algorithms for Monte Carlo Neutron Transport. Nucl. Eng. Techn. 49,
1165–1171. doi:10.1016/j.net.2017.06.006

Tramm, J. R., Siegel, A. R., Islam, T., and Schulz, M. (2014). Xsbench-the
Development and Verification of a Performance Abstraction for Monte Carlo
Reactor Analysis. PHYSOR 2014 - The Role of Reactor Physics Toward a
Sustainable Future, The Westin Miyako, Kyoto, Japan, September 28, 2014.

Walsh, J. A., Romano, P. K., Forget, B., and Smith, K. S. (2015). Optimizations of
the Energy Grid Search Algorithm in Continuous-Energy Monte Carlo Particle
Transport Codes. Comput. Phys. Commun. 196, 134–142. doi:10.1016/
j.cpc.2015.05.025

Yan, D., Wang, W., and Chu, X. (2020). “Optimizing Batched Winograd
Convolution on Gpus,” in Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, San Diego,
California, February 22–26, 2020, 32–44. doi:10.1145/3332466.3374520

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ma, Yang, Zhang, Liu and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 70582312

Ma et al. Single-Node MC Performance Evaluation

https://doi.org/10.1016/j.anucene.2014.10.039
https://doi.org/10.1109/HPCS48598.2019.9188080
https://doi.org/10.1016/0149-1970(84)90024-6
https://doi.org/10.1007/BFb0049033
https://doi.org/10.1016/j.anucene.2019.01.012
https://doi.org/10.1016/j.anucene.2017.11.032
https://doi.org/10.1016/j.anucene.2009.03.019
https://doi.org/10.1109/TPDS.2017.2718515
https://doi.org/10.1109/TPDS.2017.2718515
https://doi.org/10.1051/snamc/201404206
https://wci.llnl.gov/simulation/computer-codes/mercury
https://wci.llnl.gov/simulation/computer-codes/mercury
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1109/IPDPS.2015.105
https://doi.org/10.1016/j.jcp.2015.12.037
https://doi.org/10.1109/CLUSTER.2017.121
https://doi.org/10.1016/j.anucene.2012.06.040
https://doi.org/10.1016/j.net.2017.06.006
https://doi.org/10.1016/j.cpc.2015.05.025
https://doi.org/10.1016/j.cpc.2015.05.025
https://doi.org/10.1145/3332466.3374520
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Evaluation of Single-Node Performance of Parallel Algorithms for Multigroup Monte Carlo Particle Transport Methods
	1 Introduction
	2 Background
	2.1 Monte Carlo particle Transport
	2.2 History-Based Algorithm
	2.3 Quicksilver

	3 Event-Based Algorithm
	3.1 Basic Event-Based Algorithm
	3.1.2 Event-GPU Algorithm
	3.1.2.1 Tallies
	3.1.2.2 Data Structure
	3.1.2.3 Memory Management
	3.1.2.4 Event Kernel Switch

	3.2 Optimization on GPUs
	3.2.1 Occupancy Enhancement
	3.2.2 Hybrid Method

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Event-GPU Algorithm Comparison
	4.3 History vs. Event Performance
	4.3.1 Particle-Tracking Rate
	4.3.2 Memory Bandwidth Utilization
	4.3.3 Thread Scaling
	4.3.4 Runtime of Subroutines

	4.4 Discussion of Performance on GPUs
	4.4.1 Question 1
	4.4.1.1 Theoretical Analysis
	4.4.1.2 Experimental Analysis
	4.4.2 Question 2
	4.4.2.1 Theoretical Analysis
	4.4.2.2 Experimental Analysis

	4.5 Evaluation Summary
	4.5.1 Algorithm Choice on the CPU and GPU
	4.5.2 Optimizations for Multigroup Scheme on the GPU
	4.5.3 Suitable Architecture for MC Methods

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

