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There is a large number of grounding switches along the isolated ground wire for the de-
icing in the large-scale wind farm. If any of these grounding switches are left open by
accident, this can create an unexpected abnormal grounding point in the isolated ground
wire. Based on the analysis of the output power of de-icing devices, the output power of
different poles can be applied for the abnormal grounding point fault location. Since the rise
of output current to the rated current of de-icing devices requires a long time to build up,
the protective relay may lock the de-icing device before the output current reaches the
rated current. Thus, the ratio of output energy of two poles can be selected to locate the
abnormal grounding point. This study verified this location method by conducting a large
number of simulations.
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INTRODUCTION

The wind farms of the northeast area of Yunnan province are a significantly important renewable
energy base in China’s Southern Power Grid (Miao et al., 2013). However, the cold rain in winter on
the Yunnan-Guizhou Plateau freezes the ground wire of the transmission lines of the wind farms in
this area (Juanjuan et al., 2012). To reduce the unfavorable harm induced by the freeze, a de-icing
device that melts the ice in the ground wires, by injecting the direct current (DC) to ground wires to
heat them (Sun et al., 2011; Zhu et al., 2019a), is widely applied in the China Southern Power Grid.
Although the DC de-icing device can eliminate the ice in ground wires, studies on the fault location
for ground wires are urgently needed. In addition, the ground wire, which connects the earth with the
tower, needs to be isolated from the tower for the propagation of the DC current. Thus, any
grounding points in the tower can block the de-icing for the whole line (Hao et al., 2015; Jiazheng
et al., 2016; Zhu et al., 2019a; Zhu et al., 2019b; Guo et al., 2019; Haleem and Rajapakse, 2019; De
Oliveira Neto et al., 2021). To maintain the lightning protection of ground wires, grounding switches
are distributed along transmission lines. Normally, grounding switches are closed to connect ground
wires to the earth, so ground wire keeps the potential with the earth. If the DC de-icing device is
required to melt the ice, all grounding switches are open to propagate the current (Feng et al., 2016;
Gao et al., 2020; Zasypkin and Shchurov, 2020; Chen et al., 2021; Wu et al., 2021).

The fault location for ground wires can be divided into two kinds: the traveling wave based
method and the impedance based method (Zhi and Fangzong, 2011; Shukr et al., 2012; Kai et al.,
2013; Lei et al., 2015; Yuansheng et al., 2015; Wangsheng et al., 2016; Yunke et al., 2017; Bin and Lin,
2020; Guang et al., 2020). Literature (Yunke et al., 2017) analyzes the fault characteristics of abnormal
grounding points, then a fault location method based on the Bergeron model is proposed for DC de-
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icing devices. The traveling wave in the ground wire, a fault
location based on the different distributed traveling waves, has
also been presented in past studies (Lei et al., 2015; Wangsheng
et al., 2016). The DC filter is usually the boundary of DC
transmission lines, and the time-domain equation of the fault
induced initial wave has been discussed in other studies
(Yuansheng et al., 2015; Bin and Lin, 2020) for the accurate
detection of traveling waves. In other works (Zhi and Fangzong,
2011; Shukr et al., 2012), transient impedance is calculated by the
transient voltage and transient current to extract the capacitance
for the fault location. To reduce the difficulty of the identification
of the traveling wave, the spectrum of fault induced transients has
also been analyzed (Kai et al., 2013) to obtain the natural
frequency, which represents the distance between the fault
point to the substation. In other literature (Guang et al.,
2020), the time difference of the initial wave and the reflected
wave was utilized to locate the fault point in transmission lines,
which is a kind of single-ended fault location method.

Although the abnormal grounding point is a kind of fault for the
ground wire, the abnormal grounding point always occurs before de-
icing, which is different from faults in transmission lines. After
starting the de-icing devices, the output current requires a long
time to reach a steady state, hence transverse protection may be
triggered if the voltage of both poles is extremely different due to the
abnormal grounding point. Based on the operation characteristics of
the DC de-icing device, this paper proposes an abnormal grounding

point location method that utilizes the output power of the positive
and negative poles. Furthermore, a large number of simulations is
required to verify the robustness of the proposed location method.

OPERATION CHARACTERISTICS OF THE
DC DE-ICING DEVICE

Structure of DC De-Icing Device
The schematic diagram of a classic DC de-icing device installed at the
substation for the large-scale wind farm is demonstrated in Figure 1.

The top half of the schematic diagram shows the high voltage
transmission of the large-scale wind farm. T4 and T5 are the
transformers part of the high voltage transmission. The second
part includes the DC de-icing device and the station power load
of T2, such as the cooling pump of the converter valve. The power for
the de-icing device is supplied by the wind turbine and step-down
transformer T3. An alter current filter (ACF) and the transformer T1
for the station load is connected to the bus which supplies power to
the de-icing device. T1 is the three-winding converter transformer of
the DC de-icing device, which follows a twelve-pulse converter and
smoothing reactors L1 and L2.

Current Rising Process of the DC De-Icing
Device
Comparing with the substation load, the DC de-icing device has
an enormous capacity load, which may even exceed the total
power consumption of other loads at the substation. To reduce
the adverse impact of starting the DC de-icing device, the DC de-
icing device with large capacity has a current rising process time t
after starting. This duration is related to the size of the rated
current and the increasing speed of the control system which
ranges from a few seconds to a few minutes. As shown in
Figure 2, the current reaches the rated value i0 and enters the
steady-state operation process after a certain time t2. If there is an
abnormal grounding point on the insulated overhead ground
wire, the transverse differential protection or overcurrent
protection may detect the fault and block the converter valve
during the power rising of the DC de-icing device.

FIGURE 1 | DC de-icing diagram.

FIGURE 2 | The rising current.
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FAULT CHARACTERISTICS IN THE
ISOLATED GROUND WIRE

To maintain the lightning protection of grounding wires for
the isolated grounding wires, there is a large number of
grounding switches on the towers of the transmission lines
that need de-icing. If grounding wires require de-icing, all
grounding switches are open, breaking the connection
between the earth and ground wires. Grounding switches
are closed if no de-icing is required, to equal the potential
of ground wires to the earth. The abnormal grounding point
may appear in the isolated ground wire if any grounding
switches are not open. Furthermore, the abnormal grounding
points of the isolated ground wires of EHV transmission lines
during the de-icing can be divided into:

1) an abnormal grounding point in the single insulated
ground wire.

2) Abnormal grounding points in both insulated ground wires
on the same tower.

3) Abnormal grounding points in both insulated ground wires
on the different towers.

Although the fault characteristics induced by abnormal
grounding points are varied in different cases, all abnormal
grounding points can cause de-icing devices to fail to connect
to a part of ground wires, meaning the de-icing device is not
able to melt the whole ground wire. The current of the DC de-
icing device is under the control of the constant current
control of the de-icing device, so the magnitude of the
output current of both poles is very similar. The voltage
magnitude of both poles may be different if the equivalent
resistance of poles is various. Furthermore, the output power
of each pole is proportional to the resistance of ground wires,
which is the load of each pole. In other words, the abnormal
grounding points on the isolated ground line may cause varied
output power in different poles. Therefore, the distance from

abnormal grounding points to the rectifier can be calculated
by the different output energy by poles.

Unlike faults in normal transmission lines, the abnormal
grounding point in the ground wires usually occurs before the
operation of the DC de-icing device. Thus, fault characteristics
can be detected during the rising of the output current.

FIGURE 3 | An abnormal grounding point in the single insulated
ground wire.

FIGURE 4 | Abnormal grounding of bipolar in the same position.

FIGURE 5 | Abnormal grounding at different bipolar positions.

TABLE 1 | Component parameters of ice melting model.

Element Parameter

Ice melting power 35 kV
AC filter 20 MVar
Converter transformer 35/16.5/16.5 kV
Rated current of rectifier 4.5 kA
Smoothing reactor 0.025 H
Length of overhead ground wires 200 km
Resistivity of overhead ground wires 0.284 Ω/km
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An Abnormal Grounding Point in the Single
Insulated Ground Wire
An abnormal grounding point occurs in the isolated ground
wire which is connected to the positive pole as shown in
Figure 3.

The equivalent resistance of the grounding switch is quite
small, so the current of the positive pole transmits to the earth
without propagating to the terminal of the grounding wire. There
is only one abnormal grounding point in the positive isolated
ground wire before the de-icing device works, hence the bipolar
resistance can be written as

R+ � ρx (1)

R− � ρl (2)

where R+ and R− are the resistance of positive and negative poles; l
stands for the length of the ground wire; x denotes the distance

from the abnormal grounding point to the rectifier; ρ refers to the
resistivity of the ice melting line.

The power of the de-icing device poles can be calculated by

{ p+ � i2+Rx

p− � i2−Rl
(3)

where p+ and p− represents the output power of positive and
negative poles, respectively; i+ and i− mean.n the direct current of
the positive and negative poles, respectively.

Due to the influence of the current control of the DC de-icing
device, the current of positive and negative poles keeps the same
absolute value even though the loads of these two poles are different.
As a result, the positive pole output voltage is less than the negative
pole output voltage in Figure 3. The transverse differential protection
can be triggered by detecting the voltage imbalance between two poles
before the output power reaches a steady state.

The distance from the abnormal ground point in a single line
to the de-icing device can be expressed by

Wj1 � ∫t2

t0

pjdt (4)

x � Wj1

W0
l (5)

where Wj1 represents the energy consumption of one pole (j � positive
pole or negative pole); t0 means the time of the de-icing device starting; t2
means the timeof transversedifferential protection triggered; pj denotes the
outpower of the faulty pole;W0 represents the rated power consumption.
Due to the fixed length of the line, the current rising rate is also basically
constant when the line is thawed.W0 can be calculated according to the
protection action time and starting time of the de-icing device.

Abnormal Grounding Points in Both
Insulated Ground Wires on the Same
Position
The schematic diagram of the fault circuit is shown in Figure 4,
which indicates the situation of the abnormal grounding points of
both poles in the same position.

FIGURE 6 | Single-pole abnormal grounding instantaneous power.

TABLE 2 | Single-pole abnormal grounding distance measurement.

Power (MW) Fault distance (km) Energy ratio Fault location distance (km)

164 50 0.2522 50.44
80 0.4019 80.38
100 0.5023 100.46
150 0.7542 150.84
180 0.8968 179.36

95 50 0.2513 50.65
80 0.4032 80.64
100 0.5044 100.88
150 0.7530 150.60
180 0.9022 180.44

24 50 0.2537 50.74
80 0.4028 80.56
100 0.5021 100.42
150 0.7492 149.84
180 0.8962 179.24
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As shown in Figure 4, the voltage amplitude and output power
of the positive and negative poles are similar when the abnormal
grounding points of both poles occur in the same position. The
protection of the DC de-icing device cannot determine whether it
has an abnormal grounding point on the ground wire since the
output voltage of both poles is identical.

It is necessary to measure the rated value of the output power of
the DC de-icing device to compare it with the actual output power of
the DC de-icing device. The instantaneous power during the
operation of the DC de-icing device can be expressed as follows:

{ p+ � i2+Rx

p− � i2−Rx
(6)

The power of the two poles is the same in this case, so the transverse
differential protectionwill not operate from the start of theDCde-icing
device until the current reaches the set value. To identify whether
abnormal grounding points occur, the output power of one pole can be
selected and compared with the rated energy consumption of startup
under normal conditions. The distance between the substation and
abnormal grounding points can be calculated as

Wj2 � ∫t2

t0

pjdt (7)

x � Wj2

W0
l

(8)

whereWj2 means start-up power consumption of any bipolar pole; t2
denotes the time that the de-icing device reaches the steady state.

Abnormal Grounding Points in Both
Insulated Ground Wires on the Different
Position
The schematic diagram of abnormal grounding points in two
insulated overhead ground wires with different positions is shown
in Figure 5.

In Figure 5, although the output current amplitudes of the
bipolar are the same, the voltage amplitudes and output power of
the positive poles are both smaller than the negative pole, due to
the smaller effective load of the positive pole than that of the
negative pole. Furthermore, the output power of both poles is less
than the normal state. The instantaneous output power of the DC
de-icing device can be expressed as Eq. 9.

{ p+ � i2+Rx

p− � i2−Rx1
(9)

The distance between abnormal grounding points is calculated
by utilizing the ratio of the rated output power from the starting
to the protection action and the actual output power.

Wj3 � ∫t2

t0

pjdt (10)

xj � Wj3

W0
l (11)

where Wj3 represents the start-up power consumption of the
ground fault pole; xj stands for the distance between the abnormal
grounding point of the positive and negative poles and the outlet
of the rectifier.

SIMULATION ANALYSIS

Simulation Modeling
The simulation model is built in PSCAD/EMTDC according to
the structure diagram shown in Figure 1. The parameters are
taken from the DC de-icing device of the converter station, as
shown in Table 1.

FIGURE 7 | Instantaneous power of abnormal grounding in the bipolar
identical position.
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An Abnormal Grounding Point in the Single
Insulated Ground Wire
An abnormal grounding point is placed in the insulated overhead
ground wire and connected, 150 km from the DC de-icing device.
The output power of the positive and negative poles after the DC
de-icing device is started, are shown in Figure 6.

Under the control of de-icing devices, the output current of
both poles keeps rising with a constant speed, which also induces
an improvement in the output power. Meanwhile, the equivalent
resistance of the positive pole is smaller than the negative pole,
since the isolated ground wire connected to the positive pole with
an abnormal grounding point is shorter than the normal isolated
grounding point connected to the negative pole. Furthermore, the
output power is proportional to resistance due to the constant
current of the de-icing devices, so the output power of the positive

pole is smaller than that of the negative pole. The waveform in
Figure 6 presents the different rising speeds of the output power
of both poles with an abnormal grounding point in the single
insulated overhead ground wire.

Due to the imbalance of the output power of the two poles, the
transverse differential protection of de-icing devices can be
triggered to lock the converter and switch off the current. The
distance between the abnormal grounding point and the deicing
device is 150.84 km.

Table 2was obtained by simulating abnormal grounding points in
different positions to verify the accuracy of the proposed location
method. It can be concluded that the location method is feasible for
the abnormal grounding point in the single insulated ground wire
since the location error is really small.

Abnormal Grounding Points in Both
Insulated Ground Wires on the Same Tower
Both insulated ground wires are assumed to be abnormally
grounded on the same tower, which is 150 km from the DC
de-icing device. After the DC de-icing device is started, the power
of the positive and negative poles is shown in Figure 7A,B.
Combining Eq 7 and Eq 8, can calculate the location of the
abnormal grounding point, which is 149.74 km. Two abnormal
grounding points on the same tower are not able to cause
different output power of the poles of the DC de-icing device.
Thus, the output power of the two poles is approximately the
same after a long period of power rising, which cannot trigger the
transverse differential protection.

Therefore, after reaching the constant power state, the
comparation of the rated power should be applied to estimate
the actual length of the two poles to prevent the incomplete de-
icing of the ground wires due to abnormal grounding.

A large number of simulations were carried out to test the
robustness of the proposed location method. Due to the page
limit, some of them are illustrated in Table 3. The location
method is suitable for the abnormal grounding point in the
insulated ground wire due to the small number of errors of
the location method.

TABLE 3 | Bipolar same position abnormal grounding distance measurement.

Power (MW) Fault distance (km) Energy ratio Fault location distance (km)

164 50 0.2531 50.62
80 0.4028 80.56
100 0.5024 100.48
150 0.7487 149.74
180 0.8951 179.02

95 50 0.2536 50.72
80 0.4019 80.38
100 0.5027 100.54
150 0.7535 150.70
180 0.9013 180.26

24 50 0.2536 50.72
80 0.4030 80.60
100 0.5025 100.50
150 0.7490 149.80
180 0.8982 179.64

FIGURE 8 | Instantaneous power of abnormal grounding at different
positions of bipolar.
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Abnormal Grounding Points in Both
Insulated Ground Wires on the Different
Tower
Both insulated ground wires are assumed to be abnormally
grounded on the different towers, which are 100 and 180 km
away from the DC de-icing device, respectively. The power of
the positive and negative poles after the DC de-icing device is
started, is shown in Figure 8.

Two abnormal grounding points on various towers cause different
equivalent resistance of the poles of the DC de-icing device, which
further leads to the imbalance output power of poles. Therefore, the
output power of the two poles is significantly different while the
power is rising. The location of abnormal grounding points acquired
by Eq. 10 and Eq. 11 are 120.38 and 179.60 km, respectively.

Table 4 is acquired by simulating abnormal grounding points
in the different positions of two poles to verify the accuracy of the
proposed location method. This location method is feasible for
the abnormal grounding points in both insulated ground wires on
the different towers. In Table 4, x1.

CONCLUSION

1) There is a long period of current rising for the reduction of the
adverse impact of the DC de-icing device with large capacity,

hence the abnormal grounding point may trigger the
transverse protection of the de-icing device.

2) The resistance of transmission lines is fairly distributed, so the
energy consumption of the positive and negative poles during
the current rising can be applied to locate the abnormal
grounding point.
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