AUTHOR=Wang Jia , Zhang Shenglong , Hu Xia TITLE=A Fault Diagnosis Method for Lithium-Ion Battery Packs Using Improved RBF Neural Network JOURNAL=Frontiers in Energy Research VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2021.702139 DOI=10.3389/fenrg.2021.702139 ISSN=2296-598X ABSTRACT=

With the increasing demand for electric vehicles, the high voltage safety of electric vehicles has attracted significant attention. More than 30% of electric vehicle accidents are caused by the battery system; hence, it is vital to investigate the fault diagnosis method of lithium-ion battery packs. The fault types of lithium-ion battery packs for electric vehicles are complex, and the treatment is cumbersome. This paper presents a fault diagnosis method for the electric vehicle power battery using the improved radial basis function (RBF) neural network. First, the fault information of lithium-ion battery packs was collected using battery test equipment, and the fault levels were then determined. Subsequently, the improved RBF neural networks were employed to identify the fault of the lithium-ion battery pack system using the experimental data. The diagnosis test results showed that the improved RBF neural networks could effectively identify the fault diagnosis information of the lithium-ion battery packs, and the diagnosis accuracy was about 100%.