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With the increasing demand for electric vehicles, the high voltage safety of electric vehicles
has attracted significant attention. More than 30% of electric vehicle accidents are caused
by the battery system; hence, it is vital to investigate the fault diagnosis method of lithium-
ion battery packs. The fault types of lithium-ion battery packs for electric vehicles are
complex, and the treatment is cumbersome. This paper presents a fault diagnosis method
for the electric vehicle power battery using the improved radial basis function (RBF) neural
network. First, the fault information of lithium-ion battery packs was collected using battery
test equipment, and the fault levels were then determined. Subsequently, the improved
RBF neural networks were employed to identify the fault of the lithium-ion battery pack
system using the experimental data. The diagnosis test results showed that the improved
RBF neural networks could effectively identify the fault diagnosis information of the lithium-
ion battery packs, and the diagnosis accuracy was about 100%.
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INTRODUCTION

With the increasing attractiveness of new energy vehicles, the safety of the electric vehicle battery is
crucial. A total of 124 electric vehicle combustion accidents were reported in 2020, including 23%
charging fire, 38% standing fire and 39% driving fire (Electric vehicle observer, 2020). These
accidents are related to the car battery pack. Therefore, the correct diagnosis of the battery can
effectively reduce the risks of battery thermal runaway and traffic accidents. To effective and accurate
identification of failures for the battery, Schmid et al. (2021) developed a fault diagnosis method by
using the fuzzy clustering algorithm. In this algorithm, the switches of reconfigurable battery system
were used to isolate the fault of the electric vehicles. Tian et al. (2020) developed a sensor fault
diagnosis algorithm using the equivalent models and particle filters. Then this diagnosis was
employed to test the battery pack using the recursive least square algorithm. The results show
that the algorithm proposed in this study can be used to identify the diagnosis of the battery pack.
Schmid et al. (2020) developed a new data-driven method to identify the single cell voltages. The
principal component analysis method was used first to estimate the fault information. Then a
developed cross-cell monitoring algorithm was used to carry out the fault diagnosis. Jiang et al.
(2021) proposed a new signal-based fault diagnosis model for lithium-ion batteries. Then this model
was used to verify the data from the thermal runaway of electric vehicles. The results show that the
method developed in their study can be used to diagnose the faults of the lithium-ion batteries.
Development of the machine learning theory dramatically provides an effectively algorithm to
diagnose and identify the fault information, like the neural network. The neural network method is a
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good algorithm to predict different data, since it can effectively
study and train the different mathematical models. Therefore, it
has been widely used to identify different engineering problems,
especially for the vehicle engineering. Ardeshiri et al. (2020)
summarized the main research methods for remaining service
life and fault diagnosis using the machine learning algorithms. Li
et al. (2020) used the Long Short-Term Memory (LSTM) neural
network to diagnose the fault of the battery. Zhang et al. (2021)
also used the LSTM neural network to diagnose the faults of the
photovoltaic array problem. The results show that the method
developed by Zhang et al. can be used to identify photovoltaic
array faults. Kara (2021) developed a fault diagnosis method
combing Convolutional Neural Networks (CNN), LSTM, and
PSO algorithms to accurately capture nonlinear characteristics
for lithium-ion battery prediction problem. Although the
prediction results for the LSTM neural network is good for
diagnosing the fault of the battery and photovoltaic array
problem, the structure of this method is very complex and it
has a low prediction efficiency. Yao et al. (2020) used the wavelet-
neural to identify the lithium-ion batteries of the electric vehicles.
To improve the safety and reliability of the vehicles, four
parameters were selected as the variables, influencing the
performance of the electric vehicles. The results show that
voltage difference value has great influence on the diagnosis of
the electric vehicles. Niri et al. (2020) used the Wavelet-Markov
Load Analysis method to predict the power state of the lithium
ion batteries for electric vehicles. Meng et al. (2017) used the BP
neural network to diagnose the lithium battery using nine
parameters. Yao et al. (2021) used the Support Vector
Machine (SVM) method to identify the Lithium-ion batteries.
For the SVM algorithm, the kernel function parameter and
penalty factor was optimized by using the grid search method.
The results show that the SVM-based fault diagnosis algorithm
can effectively identify the fault information of the batteries. The
training speed of BP, wavelet, and SVM neural network is slow
and easy to fall into local solution, therefore, these methods are
always optimized using the optimization algorithm (Cheng et al.,
2014; Gao et al., 2021; Shi et al., 2021).

With the increase of the electric vehicles, the lithium iron
phosphate battery pack has attracted significant attention since
it has high security and a significant market share. However, not
too much researches have been published to test and diagnose
the lithium iron phosphate battery pack. Therefore, the lithium
battery type was selected as the research objective in this study.
As can be seen from above, the neural network has become the
main method to identify and diagnose the battery. In the neural
network algorithms, the RBF neural network is a good
algorithm since it can accurately approximate any nonlinear
function with the fast convergence speed. Hence, this paper
presented a fault diagnosis method for lithium-ion battery
packs using improved RBF neural networks. The rest of the
paper can be summarized as follows. To obtain the sample
data, the test equipment of the lithium iron phosphate
battery pack is shown in details in Data Preparing for
Lithium-Ion Battery Packs, as well as the fault levels and
treatment methods. In the Neural Networks, the neural
networks used in this study are listed including the General

Regression Neural Network (GRNN) and the Probabilistic
Neural Network (PNN) algorithms. Following this, the
results of the fault diagnosis using the different methods are
shown and discussed in the Fault Diagnosis Results and
Discussions. Finally, the conclusions and the future work are
present in the Conclusions and Future Works.

DATA PREPARING FOR LITHIUM-ION
BATTERY PACKS

The acquisition module of the electric vehicle plays a critical role
in enhancing car safety because it can real-time display the data of
the battery system, such as voltage, current, and temperature. It is
widely known that the main failures of the electric vehicle are
influenced by voltage, current, and temperature for batteries.
Therefore, these three parameters were selected as the input data
to establish the fault diagnosis model.

If errors occur inside the batteries, the Controller Area
Network (CAN) bus of the battery management system
immediately sends the fault data (voltage, current, and
temperature) to the central control module. Subsequently, the
main control module divides the fault information from the CAN
bus into different fault levels according to the fault type and
severity. Based on the vehicle safety requirements, the battery
system fault information is always divided into four levels, as
shown in the Table 1.

In this study, a method of diagnosing the battery system of
electric vehicles was developed using the neural networks. A pure
electric passenger car was employed to collect the fault
information of a lithium iron phosphate battery pack. The
main parameters of the battery pack were 352 V/ 100 Ah
battery pack. Figure 1 shows the charging and discharging of
the battery test equipment. The main experimental equipment
consisted of the lithium iron phosphate battery pack, battery
charge and discharge tester, CAN data analyzer, and laptop.
Figure 2 shows the connection mode of the test equipment.
The functions of each experimental equipment are as follows:

1) The battery charging and discharging tester was a TECHPOW
intelligent charging and discharging tester, which could
analyze energy feedback during battery charging and
discharging and simulate different vehicle conditions for
evaluating the power battery performance. The direct-
current voltage of this tester ranged from 0 to 1500 V, and
its current ranged from 0 to 400 A.

2) The tested battery pack was a 352 V / 100 Ah battery pack
divided into two boxes and used in series.

TABLE 1 | The fault levels and management techniques for the electric vehicles.

Fault levels Management techniques

I Alarming
II Power reduction
III Stopping the car
IV Cutting off the high voltage
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3) A CAN data analyzer was used to collect the data from the
internal sensor of the battery.

4) A stabilized voltage of 12 V was used to power the battery
management system.

5) A laptop was used to collect and show the experimental data.

Six parameters of the battery were selected as the input data,
the fault levels were set as the output data for the neural network.
For discussing the voltage fault of battery pack, the voltage of
battery pack and single battery should be discussed respectively.
Due to the individual differences in the production and
application of batteries, the total voltage of battery pack may
be in a reasonable range, while the voltage of a single battery is
abnormal. Therefore, the system should monitor the voltage of
battery pack and single battery at the same time. The data
collection method can be summarized as follows:

1) Single-voltage (L1 and L2).

The range of the charging voltage for lithium iron phosphate
single-voltage is from 2.0 to 3.65 V. The charging voltage was set

from 2.4 to 3.25 V. For the upper-limit voltage, the voltage for
fault diagnosis was 3.7 V when the actual battery voltage collected
using the sensor was 3.3 V. The fault level for this condition is
denoted No. I. For the lower-limit voltage, the fault diagnosis
voltage was 2.05 V, as the actual battery voltage collected using
the sensor was 2.45 V. The fault level for this condition is denoted
No. II. Because the voltage for Level IV was very high, the fault
value was randomly selected to some extent.

2) Battery voltage (L3 and L4).

The battery pack voltage of lithium iron phosphate battery
packs ranges from 275 to 401.5 V. Considering the safety during
the experiments, a 315–361.5 V battery pack voltage was adopted.
For the upper-limit voltage of the battery pack, the fault diagnosis
voltage was 410 V when the actual voltage of the battery pack
recorded by the sensor was 450 V. The fault level for this
condition is denoted No. I. For the lower limit, the fault
diagnosis voltage was 203 V when the actual voltage of the
battery pack collected using the sensor was 243 V. The fault
level for this condition is denoted No. III. The fault value was also
selected randomly, as the voltage range for fault level III was
broad.

3) Discharge current of battery pack (L5).

The test battery is a battery pack with consideration to both
power and energy, so a discharge rate of up to 10 C (time less than
10 s) will not pose potential safety hazards. Values detected by the
current sensor are measured values. Due to the wide range of
current value in Grade IV faults, the fault value is randomly
selected according to the range.

4) Temperature of battery pack (L6).

The tests were performed under the temperature of 298.15 K
and the pressure of 101.325 kPa condition. The electric heating
system inside the battery pack is utilized to works, so that the
temperature sensor inside the battery pack detects the

FIGURE 1 | The test equipment of the lithium iron phosphate battery pack.

FIGURE 2 | The specific connection mode for the test equipment.
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TABLE 2 | The fault levels and corresponding range of the different parameters.

Levels Parameters I II III IV

L1 Maximum single-voltage (V) (3.65, 3.75] (3.75, 3.85] (3.86, 3.95] >3.95
L2 Minimum single-voltage (V) [2.1,2.5) [2.0, 2.1) [1.9, 2.0) <1.9
L3 Maximum voltage of battery pack (V) (401.5, 412.5] (412.6, 422.5] (422.6, 432.5] >432.5
L4 Minimum voltage of battery pack (V) [231,275) [215, 230) [200, 215) <200
L5 Discharge current of battery pack (A) (700, 800] (800, 900] (900, 1,000] >1,000
L6 Temperature of battery pack (°C) (55, 60] (60, 65] (65, 70] >70

FIGURE 3 | The samples for the Level I.
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temperature value reaching the fault levels. Because the
temperature value range of Grade IV faults is large, the fault
value is randomly selected according to the range.

Based on the design requirements of the electric vehicle and
the performance of the lithium iron phosphate battery pack, the
parameter ranges for all faults levels were determined, as shown
in the Table 2. The maximum and minimum single-voltage
values, L1 and L2, were used to control the charging and
discharging processes, respectively. The charging and
discharging processes were stopped when the voltage reached

the maximum and minimum values. The maximum voltage of
battery pack L3 was utilized to control battery pack charging, and
the minimum voltage of battery pack L4 was used to regulate
battery pack discharging. The discharge current of the battery
pack was used to control the discharging current of the battery
pack. The battery pack temperature was used to control the
temperature value of the battery pack during charging and
discharging. Fifty sample data were randomly selected at every
time in the experiment. Figures 3–6 show the test data obtained
using the above experimental equipment for different fault levels.

FIGURE 4 | The samples for the Level II.
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NEURAL NETWORKS

The RBF neural network is a three-layer typical feedforward neural
network developed by Powell in 1985. It is an effective algorithm to
predict different data in different fields.With the rapid development
of machine learning techniques, the improved RBF algorithm can
improve the data prediction accuracy, like the GRNN and the PNN
algorithms. In this study, these two algorithms were employed to
diagnose the fault information for the lithium-ion battery packs.

The GRNN is an improved model of the RBF method
developed by Specht (1991). It can obtain better solutions than

the RBF neural network especially in the non-linearity
mathematical problem using the less samples. The structure of
the GRNN model can be found in the Figure 7 with four layers.
The Gaussian function is used to obtain the output value from the
hidden layer (Zhang, 2019):

oi � exp( − (x − xi)T(x − xi)
2δ2

) (1)

where i � 1, 2, ..., m. x is the input value and xi is the center of the
ith neural. δ is the extended speed.

FIGURE 5 | The samples for the Level III.
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The PNN method used the density function estimation and
Bayesian theory to approximate the output data (Song, 2020). It
also includes an input, a pattern, a summation and an output
layer, like the structure of the GRNN neural network in the
Figure 7. The input and output in the pattern layer of the PNN
algorithm can be expressed as (Ni, 2014):

ϑij(p) � 1

(2π)0.5dσd e
−(p−pij)T(p−pij)

2σ2 (2)

where i � 1, 2, ..., n. d is the dimension of sample space. σ is the
smoothing factor.

FAULT DIAGNOSIS RESULTS AND
DISCUSSIONS

For verifying the accuracy of the neural networks, the last five
samples for each fault levels were selected as the test samples, and the
first 45 samples were used as the training data in the Figures 3–6 .

Parameter Setting for the Neural Networks
The parameters of the neural networks have great influence on
the output results. To obtain the best results, the selection of the
parameters becomes very important. For the GRNN and PNN
algorithms, the spread value is one of the most important

FIGURE 6 | The samples for the Level IV.
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parameters need to be determined. The results are too rough if the
spread value is very big, and the results are not smooth enough if
the spread value is very small (Wen et al., 2014). Therefore,
different spread values have been selected and discussed for
GRNN and PNN algorithms using the first 20 samples for
each fault level. To compare the calculation accuracy for the
improved RBFNN, a traditional RBF neural network is also
employed in this study to diagnose the fault of the battery.
The results can be found from the Tables 3–5. As can be seen
from the Tables 3–5. The number of errors for the traditional
RBF neural network is more than the other two algorithms. It can
be conclusion that the GRNN and PNN algorithms are suitable
for battery diagnosis problem. The diagnosis accuracy has been
changed with the change of the spread value. The diagnosis
accuracy is the best when the spread value is equal to 20 for
GRNN and PNN algorithms. In addition, the PNN algorithm is
superior to the GRNN algorithm for the identification of the fault
information of the battery.

The Selection of the Sample Size
The selection of the sample size also influences the output results
of the neural networks. Therefore, different sample size has been
used to diagnose the fault information of the lithium iron
phosphate battery pack with the spread value of 20, as shown
in the Tables 6, 7 As can be seen from the table, with the increase
of the sample size, the diagnosis accuracy is increased. When the
sample size is 45, the GRNN and PNN algorithms can both
identify fault information of the battery. The diagnosis accuracy is
about 100%. It can be inferred that the GRNN and PNN
algorithms can be used to identify the fault information of the
lithium iron phosphate battery pack with high accuracy. The
PNN algorithm can obtain the better results using the less
samples than the GRNN algorithm.

CONCLUSIONS AND FUTURE WORKS

This paper presented a fault diagnosis method for the electric
vehicle power battery using the improved RBF neural
networks. Six parameters of the lithium iron phosphate
battery pack were selected as the variables, and the fault
levels were selected as the target. The CAN bus was used to
collect all the experimental data. Then the GRNN and the PNN
algorithms were employed to identify the fault information
of the battery. At the same time, the parameter and the sample
size were also discussed and compared. The results show that
the parameter and the sample size influence the output results

FIGURE 7 | The structure of the GRNN neural network (Specht, 1991;
Ghritlahre and Prasad, 2018).

TABLE 3 | The fault diagnosis results for RBFNN algorithm using different
spread value.

Spread Diagnosis accuracy (%) Number of errors

10 75 5
15 80 4
20 60 8

TABLE 4 | The fault diagnosis results for GRNN algorithm using different
spread value.

Spread Diagnosis accuracy (%) Number of errors

10 85 3
15 85 3
20 90 2

TABLE 5 | The fault diagnosis results for PNN algorithm using different
spread value.

Spread Diagnosis accuracy (%) Number of errors

10 90 2
15 90 2
20 95 1

TABLE 6 | The fault diagnosis results for GRNN algorithm using different
sample size.

Sample numbers Diagnosis accuracy (%) Number of errors

20 90 2
30 95 1
40 95 1
45 100 0

TABLE 7 | The fault diagnosis results for PNN algorithm using different
sample size.

Sample numbers Diagnosis accuracy (%) Number of errors

20 95 1
30 100 0
40 100 0
45 100 0
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of the neural networks, and the GRNN and PNN algorithms
can be used to identify the fault information of the battery. To
protect the battery effectively and precisely, further studies will
introduce the state of health (SOH) parameter, and the new
fault diagnosis method will be employed to verify the accuracy
and feasibility.
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