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In practice, faulty samples of wind turbine (WT) gearboxes are far smaller than normal
samples during operation, and most of the existing fault diagnosis methods for WT
gearboxes only focus on the improvement of classification accuracy and ignore the
decrease of missed alarms and the reduction of the average cost. To this end, a new
framework is proposed through combining the Spearman rank correlation feature
extraction and cost-sensitive LightGBM algorithm for WT gearbox’s fault detection. In
this article, features from wind turbine supervisory control and data acquisition (SCADA)
systems are firstly extracted. Then, the feature selection is employed by using the expert
experience and Spearman rank correlation coefficient to analyze the correlation between
the big data of WT gearboxes. Moreover, the cost-sensitive LightGBM fault detection
framework is established by optimizing the misclassification cost. The false alarm rate and
the missed detection rate of the WT gearbox under different working conditions are finally
obtained. Experiments have verified that the proposed method can significantly improve
the fault detection accuracy. Meanwhile, the proposed method can consistently
outperform traditional classifiers such as AdaCost, cost-sensitive GBDT, and cost-
sensitive XGBoost in terms of low false alarm rate and missed detection rate. Owing
to its high Matthews correlation coefficient scores and low average misclassification cost,
the cost-sensitive LightGBM (CS LightGBM) method is preferred for imbalanced WT
gearbox fault detection in practice.
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INTRODUCTION

With the increase in the capacity of wind turbine assembly machines, wind power generation brings
economic benefits and also raised important crucial challenges related to reliability (Qiao and Lu,
2015; Wang et al., 2019). On the one hand, wind power generation technology has been developed
rapidly, but wind turbine (WT) fault detection and condition monitoring technologies have not been
improved accordingly, which results in frequent WT faults that cannot be timely maintained; on the
other hand, WTs are often located in remote areas with rich wind resources and operated in harsh
working environments for a long time, which can easily cause frequent WT faults (Yang et al., 2021).
Gearboxes are often operating under tough circumstances, which will cause a high fault rate and
irreversible damage to WT. The wind turbine gearbox faults will inevitably affect the performance of
WT (Teng et al., 2016a). Therefore, fault detection ofWT gearbox is of great significance for reducing
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the operation and maintenance cost of WTs and improving the
power generation efficiency of the entire wind farm (Chen et al.,
2017).

WT is a typical complex system, and its operating status is
complex and changeable, which brings difficulties to the fault
detection and condition monitoring of WTs (Ra et al., 2021; Song
et al., 2021). The fault mechanism is complicated, and the
correlation characteristics between kinds of feature vectors
under various fault types will be different (Liang et al., 2018).
Data in the wind turbine SCADA system are usually high-
dimensional data, so it is necessary to reduce the
dimensionality of the big data in the SCADA system. For
instance, Amirat et al. (2018) proposed an ensemble empirical
mode decomposition fault diagnosis method. The Pearson
correlation analysis method was implemented to select the
closest intrinsic mode function and to analyse the data
correlation. Yang et al. (2019) adopted the convolution neural
network fault diagnosis method, in which the Spearman rank
correlation analysis is used to sort the relevant image layers of the
convolutional neural network and comprehensively extract data
features (Long et al., 2018; Long et al., 2021a). This method
effectively verifies the necessity of feature selection and improves
the fault detection rate. Since data in the SCADA system are
interrelated, feature selection and reducing the dimensionality of
the big data of WTs will increase the availability of data samples
and improve the accuracy of fault detection (Long et al., 2021b).

Many scholars and experts have carried out extensive and in-
depth research on WT fault detection and diagnosis methods,
including signal processing methods, multivariate statistical
methods, and classification algorithms (Jiang et al., 2015). For
example, Teng et al. (2016b) proposed a complex wavelet
transform for multifault detection of the WT fault detection
method. By analyzing the multiscale enveloping spectrogram,
the fault characteristics of weak bearings can be detected and fault
diagnosis of WTs can be realized. Due to the nonlinear and
nonstationary characteristics of the gearbox, Han et al. (2020)
considered the correlation between variables and used a
quantitative diagnosis method for gearbox faults based on
generalized canonical correlation analysis, which can
effectively identify the severity of gearbox faults under various
conditions. Gao et al. (2018) explained the drawbacks of the
current support vector machine (SVM) algorithm and proposed
theWT fault diagnosis method based on the least squares support
vector machine. Zheng and Peng (2019) used an improved
AdaBoost–SVM method for WT converter fault diagnosis, the
wavelet transform is employed to reduce signal noise, and fault
feature vectors are input into the improved AdaBoost–SVM
classifier to achieve fault diagnosis. Zhang et al. (2018)
proposed a wind turbine fault diagnosis method combining
Random Forest (RF) and extreme gradient boosting
(XGBoost) that were used to establish the data-driven WT
fault detection framework. RF is used to rank the features of
WTs by importance, and XGBoost trains the ensemble classifier
for each specific fault. This method is able to protect against
overfitting, and it achieves better wind turbine fault detection
results than SVM when processing multidimensional data. Tang
et al. (2020) adopted the WT gearbox fault detection method that

combines correlation analysis and improved LightGBM. The
maximum information coefficient analysis method is adopted
to select features for the big data of WTs. The improved
LightGBM is implemented by the Bayesian optimization for
classification so as to diagnose the fault of WT gearbox.
However, the fault diagnosis performance needs to be
improved when the data are imbalanced.

To this end, the current fault diagnosis methods for WTs are
generally based on machine learning (Stetco et al., 2019), that is,
dealing with the existing data to train a fault diagnosis model and
using this model to realize fault diagnosis. Machine learning
algorithms have been employed to solve the problem of WT fault
detection, in which samples are assumed based on a balanced
distribution. Most of the current data-driven machine learning
methods assume that the number of normal samples and fault
samples are close. However, normal samples are specifically much
greater than the number of fault samples in the real industrial
field. This means that many machine learning methods fail in
dealing with imbalanced data and the majority class has higher
recognition rate while the minority class fails. During the
operation of WTs, faults occur for a short period of time and
most of the condition are in normal conditions; therefore, the
fault sample is the minority class, and the normal sample is the
majority class. However, traditional machine learning methods
for WTs fault diagnosis do not consider the data imbalance
problems and the losses caused by fault alarms and missing
detection. The Gini coefficient and information gain rate are
considered as the optimization target, in which the
misclassification cost is not introduced in the base classifier
evaluation function and the fault detection performance is not
very well.

The contributions of this article are summarized as follows:

1) The fault diagnosis method takes misclassification costs into
account, and the optimization objective aims to minimize
average total cost, which will effectively improve the fault
detection rate. The efficiency of the base classifier has been
improved, especially in terms of their ability in WT fault
detection.

2) Since the fault sample is the minority class and the normal
sample is the majority class, a method based on cost-sensitive
LightGBM WT fault detection is proposed to deal with the
imbalance data distribution problem. Specifically, the cost
function is introduced in the weight formula of the
LightGBM algorithm to replace the information gain, so
that the algorithm pays attention to the minority class in
each iteration update, thereby improving the classification
effect of imbalanced data.

3) Spearman rank correlation method is used for WT feature
selection replacing the raw dataset studied with new attributes
ranked in order of correlation; thus, it can help to reduce both
the redundancy and the dimension between WT feature
datasets and ensure to remove redundant and irrelevant
information in the original feature space.

4) Experiment shows that the proposed method can quickly
perform fault diagnosis of WTs. Compared with other
cost-sensitive ensemble algorithms, the cost-sensitive
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LightGBM is more suitable for highly imbalanced data and
can achieve more accurate fault classification. The experiment
verifies the effectiveness and validity of the proposed method.

RELATED WORK

The cost-learning methods aim to minimize total
misclassification cost rather than total error. Cost-sensitive
learning has attracted significant attention from researchers
and scholars. Knoll et al. (1994) proposed misclassification
costs to improve the classification accuracy of the decision
tree. Domingos (1999) proposed MetaCost, which made use of
the bagging algorithm to making the classifier cost sensitive by
wrapping a cost-minimizingmethod. Many scholars attempted to
adjust the classifier to be cost-sensitive by adding the cost
function to train the algorithm. Among these works, Fan et al.
(1999) presented the AdaCost method to reduce the cumulative
misclassification cost more than AdaBoost. Fumera and Roli
(2002) proposed cost-sensitive SVM under the framework of
the structural risk minimization induction principle via
minimizing the associate risk. Tremendous cost-sensitive
learning has been conducted to improve the classifier
performance. It is noteworthy that how to train LightGBM
algorithm under an imbalanced fault diagnosis situation is still
a problem for real WT fault diagnosis.

BACKGROUND

Spearman Rank Correlation Method for
Feature Selection
Since data from WTs are big and the feature correlation between
data has some problems such as low correlation and redundant
features, it is necessary to use feature selection on the big data of
WTs. The commonly used correlation coefficients include the
Pearson linear correlation coefficient, Kendall rank correlation
coefficient, Spearman rank correlation coefficient, and tail
dependence coefficients (Bonett and Wright, 2000). Since the
correlation analysis of characteristics of WTs showed nonlinear
correlation between variables, while the Kendall rank correlation
coefficient and Spearman rank correlation coefficient have similar
properties, the Spearman rank correlation coefficient is used in
this work (Croux and Dehon, 2010).

The Spearman rank correlation coefficient is designed to
measure the linear or nonlinear relationship of variables.
Given two discrete features of x and y and M data samples,
the Spearman rank correlation coefficient can be calculated by the
following formula:

rs � ∑i(xi − x)(yi − y)���������∑i(xi − x)2
√ ���������∑i(yi − y)2√ . (1)

Here, x � 1
M ∑M

i�1
xi and y � 1

M ∑M
i�1

yi, which can also be rewritten
as follows:

rs � cov(x, y)
σxσy

. (2)

Here, cov represents the standard deviation, and σ is the
covariance.

Spearman rank correlation coefficient rs ranges from −1 to 1.
When rs � 1, it means that x and y are relatively positively
correlated, rs � −1, it means that x and y are strictly
negatively correlated, and rs � 0, it means that the two
features are independent of each other.

The Spearman rank correlation coefficient is designed to
measure the correlation between features. If the index with a
higher correlation coefficient is directly deleted, some features
may be missing. To ensure that the redundancy between fault
features is reduced and the information of different features is
retained, the feature with the highest Spearman rank correlation
coefficient in the raw dataset is selected, while the other fault
features and features with high linear correlation are classified
into a set of feature sets according to the threshold, until fault
features in the original data set are eliminated or selected. The
feature selection method is shown in Figure 1.

Cost-Sensitive Learning
Since traditional classification algorithms are not suitable for
imbalanced data, a cost-sensitive method was developed (Turney,
1994), that is, by introducing a misclassification cost in attribute
splitting instead of information gain, Gini coefficient, and other
indicators, which aims to minimize the average total cost and
improve the prediction of the minority samples (Tang et al.,
2019).

The misclassification costs are usually described as a cost
matrix, as shown in Table 1.

In Table 1, CF is the fault class, CN is the normal class,
F(CF ,CF) represents the cost of the fault class being correctly
classified as the fault class, F(CF ,CN ) represents the cost of the
fault category being wrongly classified as the normal
category, F(CN ,CF) represents the cost of the normal class
being wrongly classified into the fault class, and F(CN ,CN )
represents the cost of the normal class being correctly
classified into the normal class.

Given the misclassification cost matrix C, if the actual class is j
and the predicted category class is i, if i � j, the prediction is
correct. The best prediction result of the sample x should be the
class that minimizes the expected total sample:

R(CI |x) � ∑P(Cj|x)F(Cj,Ci). (3)

Here, P(Cj|x) is the posterior probability of classifying sample
x into Cj.

A training set S of N samples is given, where
S � {(xi, yi)}, i � 1, . . . ,N , xi(xi ∈ X) represents x in the
k-dimensional vector space X � {x1, x2, . . . , xk}, yi ∈ Y � {0, 1}
is the class label of xi, and yi � 1 indicates a small number of
samples, namely, fault samples. Generally, F(CF ,CN) > F(CF ,CF)
and F(CN ,CF) > F(CN ,CN ). The essence of cost-sensitive
classification is that even if the sample x is more likely to be
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assigned to a certain category, x needs to be classified into the
class that minimizes the cost.

LightGBM Classifier
LightGBM is an improved variant gradient boosting decision tree
(GBDT) framework based on the decision tree algorithm (Ke
et al., 2017). Given the supervised learning dataset X �
{(xi, yi)}Ni�1, where x represents the samples data and y
represents the class labels, the aims of LightGBM algorithm is
to find a mapping relationship F̂(x) to approximate the function
F(x), so as to minimize the loss function Ψ (y, F(x)),

F̂ � argminFEy,xΨ(y, F(x)), (4)

and the objective function Obj(t) can be expressed as follows:

Obj(t) � ∑n
i�1

Ψ(yi, Ft−1(xi) + ft(xi)) +∑
k

Ω(fk). (5)

Here, Ω(fk) represents the regular term.
In LightGBM, Newton’s method is used to quickly

approximate the objective function.

Obj(t) � ∑n
i�1
[gift(xi) + 1

2
hif

2
t (xi)] +∑

k

Ω(fk), (6)

where gi and hi represent a first-order loss function and a second-
order loss function, respectively.

gi � zFt−1(xi)Ψ(yi, Ft−1(xi), (7)

hi � z2Ft−1(xi)Ψ(yi, Ft−1(xi). (8)

The information gain in LightGBM is defined as follows:

G � 1
2
⎡⎢⎢⎢⎣(∑i ∈ IL

gi)2∑i∈ILhi + λ
+ (∑i ∈ IR

gi)2∑i∈IRhi + λ
− (∑i ∈ Igi)2∑i∈Ihi + λ

⎤⎥⎥⎥⎦. (9)

Compared to the GBM algorithm, the LightGBM algorithm is
more efficient in processing high-dimensional big data. This is
because of exclusive feature bundling (EFB) algorithm and
gradient-based one-side sampling (GOSS) algorithm in
LightGBM. The GOSS method introduces a data instance with
a constant multiplier and a small gradient, which can sample the
data from the big dataset that has the same distribution and
characteristics as the raw data and ensuring the classification
accuracy while improving the classification speed. In the high-
dimensional space, the data are sparsely coded, while in the sparse
feature space, nonzero values rarely appear at the same time. The
EFBmethod is used for feature sampling to bundle two features to
form a new feature which can decrease the data sample. Besides,
the traditional gradient boosting method uses an exhaustive
attack method to find segmentation features and thresholds,
while LightGBM uses a histogram-based method to find
suboptimal solution segmentation features and thresholds and
reducing calculation time. Specifically, a certain feature of the
data is discretized into a histogram algorithm and the discretized
value is used as an index to accumulate statistics in the histogram.
After data traversal, the histogram accumulates the required
statistics and then according to the discrete value of the
histogram, traverses to find the optimal split point. The tree of
XGBoost is grown by the level-wise tree growth method (Mitchell
and Frank, 2017; Chen and Guestrin 2016) and leaf-wise tree

FIGURE 1 | Feature selection based on the Spearman rank correlation coefficient.

TABLE 1 | Cost matrix.

Type CF CN

CF F (CF ,CF ) F (CF ,CN )
CN F (CN ,CF ) F (CN ,CN )
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growth in LightGBM; however, leaf-wise splits lead to an increase
in complexity and may lead to overfitting, and a tree grown with
leaf-wise growth will be deeper when the number of leaves is the
same. Figure 2 is a schematic presentation of two tree growth
methods.

Because the minority fault samples and majority normal
samples of WTs and the LightGBM algorithm are more
focusing on the classification of the majority sample, the cost
function is introduced to replace the information gain in the weight
formula of the algorithm to form the cost-sensitive LightGBM
algorithm (Elkan 2001). In each iteration update processing, the
algorithm will pay much attention to the minority class which
improves identification of the minority class.

Cost-Sensitive LightGBM Algorithm
For binary classification problems, the commonly used logistic
loss function of LightGBM is the logistic loss function, and the
expression is as follows:

logloss(xi, yi) � − 1
N

∑N
i�1

[yilogP(xi) + (1 − yi)log(1 − P(xi)]
(10)

where P represents the posterior probability. In the log loss
function of the cost-sensitive LightGBM algorithm (Zheng and
Peng, 2019), we replace P(xi)with the following:

P(xi) � 1
1 + e−2δ(xi)−2η

, (11)

where δ � F(CF ,CN )+F(CN ,CF )
2 ,η � 1

2 log
F(CN ,CF )
F(CF ,CN ), and the cost-sensitive

logic loss function can be simplified asb follows:

CSlogloss(xi, yi) � 1
F(CF ,CN ) + F(CN ,CF)

log
P(c � F|xi)F(CN ,CF)
P(c � N|xi)F(CF ,CN),

(12)

where P(c � F|xi) represents the posterior probability of dividing
the sample xi into the fault class and P(c � N|xi) represents the
posterior probability of dividing the sample xi into the normal
class (Mitchell and Frank, 2017). Obviously, there is
P(c � F|xi) � 1 − P(c � N|xi).

According to Eq. 5, the objective function of CS LightGBM
can be written as follows:

Obj(t) � ∑n
i�1

Ψ(yi, Ft−1(xi) + ft(xi)) +∑
k

Ω(fk), (13)

where Ψ is the loss function and Ω is the regular term. According
to the second-order Taylor expansion, the objective function can
be rewritten as

Obj(t) � ∑n
i�1
[Ψ(yi, Ft−1(xi)) + gift(xi) + 1

2
hif

2
t (xi)] +∑

k

Ω(fk).
(14)

The first-order loss function gi and the second-order loss
function hi of xi are as follows:

gi(xi) � 2δ[y − P(xi)], (15)

hi(xi) � −4δ2P(xi)[1 − P(xi)]. (16)

Given the structure of the tree, the optimal weight wp
j of each

leaf node is obtained as follows:

wp
j � − ∑i∈Ijgi∑i∈Ijhi + λ

. (17)

The algorithm of cost-sensitive LightGBM (CS LightGBM) is
given as follows.

COST-SENSITIVE LIGHTGBM FAULT
DETECTION MODEL

In order to minimize the loss caused by fault alarm and
missed detection due to the imbalanced data of WTs, the CS
LightGBM fault detection model is established. The WT
fault detection process can be divided into two parts:
offline modeling and online detection, as shown in

FIGURE 2 | Comparison of level-wise tree growth and leaf-wise tree
growth.
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Figure 3. The main steps of offline modeling are given as
follows.

The main steps of online fault detection are given as
follows:

Figure 3 gives out the basic framework of cost-sensitive LightGBM
algorithm. The complete fault detection procedure including offline
training and online detection is shown in Figure 3. Specifically, the
procedure has gone through five phases, namely, data extraction, data
preprocessing (normalization), feature selection (Spearman rank
correlation), model optimization, and decision making.

EXPERIMENTAL CASE

The main structure of WT is shown in Figure 4. The main
components of WT include a wind wheel, gearbox, generator,
converter, yaw system, pitch system, and hydraulic system. Among
these subsystems, the gearbox failure will cause a high fault rate and
irreversible damage toWT. In order to verify the effectiveness of CS
LightGBM compared with other cost-sensitive ensemble learning
methods in the detection of WT gearbox faults, a comparative
experiment was set up. The experimental steps are given as follows:

1) Collect raw data from the SCADA system and perform data
preprocessing:

xi � x − xmin

xmax − xmin
(18)

2) Use Spearman rank correlation analysis methods to perform
feature selection on the extracted features

3) Divide the training set, test set, and validation set into the
existing dataset and establish the CS LightGBM offline model

4) Perform online detection based on the established CS
LightGBM model

5) Evaluate the fault detection method of CS LightGBM and
calculate the false alarm rate, missing detection rate, and
Matthews correlation coefficient

Feature Extraction
In order to verify the performance of the gearbox fault detection
model, the 1.5 MW WT in a wind farm was used as the research

object. A 3-year gearbox dataset is extracted from the SCADA
data. The sampling interval is 2 s. Through the analysis of theWT
gearbox mechanism and expert experience, the data within the
period time from 30 min before the start of the fault to 30 min
after the fault were selected as the experimental data. A part of the
raw data is shown in Table 2.

We select the datasets containing gearbox oil temperature
overrun fault, gearbox oil filter pressure fault, and gearbox
lubrication oil level fault from the SCADA normal operating
condition data and record them as Dataset 1, Dataset 2, and
Dataset 3, as shown in Table 3.

Feature Selection
Dataset 1–Dataset 3 contain 3 types of gearbox faults, including
the error gearbox oil temperature overrun, error gearbox oil filter
pressure, and error gearbox lubrication oil level. To deal with the
feature selection of WT, the fault mechanism and the correlated
parameters of each fault are analyzed as shown in Table 4.

The gearbox bearing temperature information is used to
evaluate the health of the gearbox. When selecting the state
parameters, parameters that have a greater impact on
parameters are mainly selected. According to the Spearman
rank correlation coefficient analysis method, the correlation

FIGURE 3 | Wind turbine fault detection procedure of cost-sensitive
LightGBM algorithm.
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strength between each state parameter and the gearbox bearing
temperature is calculated, as shown in Table 5.

From the correlation analysis results in Table 5, it can be seen
that there is a large difference between features and the gearbox

bearing temperature. In order to avoid the influence of irrelevant
and weakly related features on the gearbox fault detection, the
correlation coefficient is selected between ± 0.50 to ± 0.95, which
are shown in bold in Table 5.

FIGURE 4 | Main structure of doubly fed WT.

TABLE 2 | Part of the raw data of wind turbines on February 27, 2018.

Feature Time

11:03:22 11:03:24 11:03:26 – 12:59:44 12:59:46 12:59:48

30 s average wind speed 5.44 5.44 5.44 – 9.11 9.11 9.11
Gearbox shaft 1 temperature 84.2 84.2 84.3 – 87.7 87.7 87.7
Gearbox shaft 2 temperature 76.5 76.5 76.5 – 77.4 77.4 77.4
Gearbox inlet oil temperature 77.1 77.1 77.1 – 79.7 79.7 79.7
Gearbox oil temperature 69 69 68.9 – 77 77 77
Generator winding temperature U 69.1 69.1 69.1 – 77.1 77.1 77.1
– – – – – – – –

Generator winding temperature V 69.4 69.4 69.3 – 77.1 77.1 77.1
Generator winding temperature W 57 57 57 – 56.5 56.5 56.5
Generator bearing temperature A 62.1 62.1 62.1 – 61.5 61.5 61.5
Generator bearing temperature B 45.7 45.7 45.7 – 45 45 45
Nacelle outdoor temperature 35.1 35.1 35.1 – 35.3 35.3 35.3
Main bearing rotor side temperature 38.9 38.9 38.9 – 38.9 38.9 38.9
Main bearing gearbox side temperature 50.1 50.1 50.1 – 50.3 50.3 50.3
Pitch position target 0 0 0 0.02 0.02 0.02
Converter motor speed 1,324.8 1,324.8 1,287.3 – 1735.7 1735.7 1735.7

TABLE 3 | Dataset description.

Dataset Total
number of samples

Total
number of features

Fault-free Faulty

Dataset 1 3,586 216 3,118 468
Dataset 2 5,172 216 3,670 1,502
Dataset 3 3,590 216 3,199 390
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Fault Detection Performance Evaluation
Criteria
The four states including the normal state, gearbox oil
temperature overrun fault, gearbox oil filter pressure fault,
and gearbox oil level fault are, respectively, marked as Q �
[0,1,2,3], and the dataset is divided into four parts. By
combining the three types of faults with the normal state in
turn, we perform WT fault detection through the CS LightGBM
algorithm to obtain four sets of classification indicators. In order
to measure the classification of imbalanced data, the Matthews
correlation coefficient (MCC) is introduced to evaluate the fault
detection model. At the same time, the false alarm rate (FAR)
and missed detection rate (MDR) are used as fault detection
evaluation indicators. The mixed matrix of two classification
problems is shown in Table 6.

In this study, true positive (TP) is the number of samples
correctly identified as faulty; false positive (FP) is the number of
samples wrongly identified as fault free; true negative (TN) is the
number of samples correctly identified as fault free; and false
negative (FN) is the number of samples wrongly identified as
faulty. The indicators under the binary classification are as
follows:

FAR � FP
FP + TN ,

(19)

MDR � FN
TP + FN ,

(20)

MCC � TPpTN − FPpFN�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ . (21)

Results and Discussion
The experimental data are extracted from a 3-year SCADA
dataset of a wind farm. The experiment verifies the
effectiveness of the proposed cost-sensitive LightGBM for fault
detection of WT gearboxes. In order to further verify the

TABLE 4 | WT gearbox fault type and correlated parameters.

Fault type Fault mechanism Correlated parameters

Error gearbox oil temperature
overrun

Oil temperature over 80°C and lasts 5 s Gearbox oil temperature; bearing temperature; main bearing gearbox side temperature;
gearbox shaft temperature; and 30 s average wind speed

Error gearbox oil filter pressure Oil temperature over 55°C and lasts 12 s Gearbox oil temperature; converter motor speed; converter power; andmain loop rotor speed
Error gearbox lubrication oil
level

No input high level (green light is off) and
lasts 12 s

Gearbox oil temperature; bearing temperature; converter motor speed; and converter power

TABLE 5 | Gearbox features correlation analysis results.

Feature Spearman rank coefficient correlation analysis

Dataset Tag 1 2 3

30 s average wind speed W −0.389262 0.014553 0.800212
Gearbox shaft 1 temperature AL 1.000000 1.000000 1.000000
Gearbox shaft 2 temperature AM 0.749613 0.911267 0.990621
Gearbox inlet oil temperature AN 0.593799 0.911752 0.947370
Gearbox oil temperature AO 0.703876 0.923477 0.964006
Generator winding temperature U AT 0.707279 0.532421 0.610418
Generator winding temperature V AV 0.680785 0.627169 0.615225
Generator winding temperature W AX 0.692507 0.642950 0.622792
Generator bearing temperature A AZ 0.753099 0.184554 0.717485
Generator bearing temperature B BA 0.775826 0.541165 0.798545
Nacelle outdoor temperature BD 0.617450 0.599896 0.908760
Nacelle temperature BE 0.871901 0.826202 0.671356
Main bearing rotor side temperature BS 0.702117 -0.036307 0.649327
Main bearing gearbox side temperature BT 0.780589 0.214435 0.745818
Pitch position target BU −0.543102 −0.250650 0.735036
Converter motor speed FD −0.491465 −0.143006 0.261584
Converter power FF −0.472841 −0.251429 0.287380
Main loop rotor speed FJ −0.449845 −0.232728 0.323973

The bold values represents the correlation coefficient between ± 0.50 and ± 0.95.

TABLE 6 | Confusion matrix.

Actual class Predictive class

Faulty Fault free

Faulty TP FN
Fault free FP TN
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superiority of the method, three advanced fault diagnosis
methods were compared, including cost-sensitive AdaBoost
(AdaCost), cost-sensitive GBDT (GBDTcost), and cost-
sensitive XGBoost (XGBcost). By using different evaluation
criteria in three different datasets, Figures 5, 6 show FAR and
MDR under different algorithms, respectively. In order to avoid
overfitting in the model, a five-fold cross-validation method is
used to evaluate the model. The smaller FAR and MDR mean
better performance.

The comparison results of the proposed method and the
AdaCost algorithm, GBDTcost algorithm, and XGBcost

algorithm under different fault conditions are shown in
Figures 5, 6, respectively. It can be seen that the cost-sensitive
LightGBM method is lower than the other three algorithms in
terms of FAR and MDR, and the XGBcost criteria are generally
better than the AdaCost and GBDTcost methods. When
analyzing failure dataset 2, the FAR index of the CS
LightGBM method is only 1.43% and the MDR index is
only 1.01%. This method has good fault detection
performance. The traditional cost-sensitive Boost method
has high false positives and high false positives in the fault
detection process, while the false negative and false positive

FIGURE 5 | False alarm rate of four algorithms for fault detection of wind turbines gearboxes.

FIGURE 6 | Missing detection rate of four algorithms for fault detection of wind turbines gearboxes.
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rates of the CS LightGBM method are lower than those of the
other three methods.

Figure 7 shows the MCC of three different fault datasets. The
MCC can also be used in the case of imbalanced samples. The
closer the MCC is to 1, the better the performance of the method.
It can be seen from Figure 6 that the MCC of the cost-sensitive
lightGBM method in dataset 2 is as high as 99.61% and the MCC
of the remaining datasets is higher than that of the AdaCost,
GBDTcost, and XGBcost.

CONCLUSION AND FUTURE WORK

WT gearboxes are operated in harsh conditions for a long time,
the fault rate will increase, and it is extremely prone to faults. The
accuracy of its diagnosis is often affected by many factors such as
harsh environments and extreme weather. In order to improve
the accuracy of fault diagnosis, the shortcomings of traditional
algorithms are analyzed and compared, and a fault detection
method based on CS LightGBM is proposed. The innovation is
mainly reflected in the following two aspects:

1) The fault characteristics of the WT gearbox are analyzed, the
fault features are extracted, and its fault feature indexes are
obtained, by using the correlation between the feature
correlation to improve the fault diagnosis performance

2) A method based on CS LightGBM is proposed and applied to
the actual fault diagnosis of WTs and compared with the
traditional cost-sensitive Boost methods

The experimental study demonstrated that existing algorithms
had a low ability of wind turbine’s fault detection. Two points that
should be noticed are that the existing algorithm did not perform
well just because it is not specially designed for wind turbine fault

detection and it still has distinguished competences in industrial
fault diagnosis and other fields. The cost-sensitive LightGBM is
mainly suitable for imbalanced data, but its ability for other fault
diagnosis remains unknown.

A single algorithm cannot detect all the faults in theWT, so the
combined algorithm will become the research topic in the future.
The comprehensive simulation of WT fault conditions will also
be our research topic in the future. That is for all units of WT that
are interconnected, and their features are strongly coupled. The
occurrence of a fault in a particular component affects all the
remaining units. Therefore, it is necessary to establish more
compound fault models to conduct a comprehensive analysis
of the WT system (Iranmehr et al., 2019).
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