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Solving the energy crisis and environmental pollution requires large-scale access to
distributed energy and the popularization of electric vehicles. However, distributed
energy sources and loads are characterized by randomness, intermittence and
difficulty in accurate prediction, which bring great challenges to the security, stability
and economic operation of power system. Therefore, this paper explores an integrated
energy system model that contains a large amount of new energy and combined cooling
heating and power (CCHP) from the perspective of automatic generation control (AGC).
Then, a gradient Q(σ,λ) [GQ (σ,λ)] algorithm for distributed multi-region interconnected
power system is proposed to solve it. The proposed algorithm integrates unified mixed
sampling parameter and linear function approximation on the basis of the Q(λ) algorithm
with characteristics of interactive collaboration and self-learning. The GQ (σ,λ) algorithm
avoids the disadvantages of large action spaces required by traditional reinforcement
learning, so as to obtain multi-region optimal cooperative control. Under such control, the
energy autonomy of each region can be achieved, and the strong stochastic disturbance
caused by the large-scale access of distributed energy to grid can be resolved. In this
paper, the improved IEEE two-area load frequency control (LFC) model and the integrated
energy system model incorporating a large amount of new energy and CCHP are used for
simulation analysis. Results show that compared with other algorithms, the proposed
algorithm has optimal cooperative control performance, fast convergence speed and good
robustness, which can solve the strong stochastic disturbance caused by the large-scale
grid connection of distributed energy.

Keywords: automatic generation control, distributed multi-region, integrated energy system, function
approximation, mixed sampling parameter

INTRODUCTION

To cope with the fossil energy crisis and environmental pollution, many countries around the world
are vigorously developing distributed energy, which can promote the transformation of low-carbon
and intelligent power system (Xu et al., 2020; Kumar et al., 2020; An et al., 2020; Suh et al., 2017).
However, the distributed energy and loads, such as wind power, photovoltaic and electric vehicles,
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are intermittent and stochastic (Solanki et al., 2017; Xi et al., 2015;
Zhang et al., 2021; Mukherjee and Gupta, 2016;Wang, 2020). The
rapid growth of their installed capacity poses a huge challenge to
power system. The traditional centralized automatic generation
control (AGC) cannot easily meet the development requirements
and operating conditions for smart grid (Jaleeli et al., 1992).
Therefore, solving the strong stochastic disturbance caused by
large-scale grid connections of distributed energy from the
perspective of AGC, has become an urgent challenge in the
field of power system.

Nowadays, the AGC control methods can be divided into two
categories: conventional analytic and machine learning. The
proportional-integral-derivative (PID) control, optimal control and
robust control are representations of conventional analytical control
methods (Yan et al., 2013). Based on a fuzzy logic approach, the
fractional-order PID controller uses a genetic algorithm to change the
controller parameters accurately and improve the dynamic response
of AGC for two-region interconnected power system significantly
(Ismayil et al., 2015). An optimal PI/PID method based on the social
learning adaptive bacterial foraging algorithm was proposed in (Xie
et al., 2016) to improve the convergence speed and merit-seeking
accuracy of the algorithm. To obtain the dynamic control
performance, the study adopted a PI-structured optimal controller
based on a full state feedback strategy in the application of optimal
control methods to AGC (Yamashita and Taniguchi, 2016). To
overcome system perturbations, the study introduced robust
control into complex power systems with large-scale access to
renewable energy (Sharma et al., 2017). Thus, the dynamic
performance and control stability of AGC can be improved. As
another aspect of AGC control methods, reinforcement learning
algorithms are representative of machine learning methods. The
Q-learning algorithm based on the Markov decision process relies
on a closed-loop feedback structure formed by the value function and
control action under the control performance standard (CPS). This
algorithm can improve the robustness and adaptability of the whole
AGC system significantly (Yu et al., 2011). Based on multi-step
backward Q (λ) learning, the optimal power allocation algorithm for
AGC commands introduces a multi-step foresight capability to solve
the delayed return problem caused by large time lag links in thermal
power units (Yu et al., 2011). Based on the average payoff model, the
full-process R (λ) learning controller can be directly introduced to the
practical power grid to learn to imitate the output of other controllers
online (Yu and Yuan, 2010). Hence, without building an accurate
simulation model for offline prelearning, the controller can also
improve the learning efficiency and applicability in practical
power system (Xi et al., 2020; Zhang et al., 2020).

However, with the increasing access to a high proportion of new
energy resources, grid patterns shift, thereby resulting in increased
stochastic disturbances (Hou et al., 2021; Fu et al., 2021; Dehnavi and
Ginn, 2019). The aforementioned methods cannot meet the optimal
frequency control requirements of smart grid. Hence, scholars have
proposed a series of distributed intelligent AGC methods. The
forecasting model control, hierarchical recursive, adaptive control,
reinforcement learning, and deep learning have been introduced into
the distributed AGC controller. In particular, the wolf pack hunting
(WPH) strategy based on the multi-agent systems-stochastic
consensus game framework, which considers the integrated

objectives of frequency deviation and short-term economic
dispatch, can achieve the optimal power dispatch of AGC so as to
solve coordinated control and power autonomy problems effectively
(Xi et al., 2016). In order to promote the intelligence of AGC systems
through the combination of reinforcement learning and artificial
emotion, an artificial emotion reinforcement learning controller for
AGC can generate different control strategies according to the
environment of power system (Yin et al., 2017). As for realizing
the optimal coordinated control of power systems, the DPDPN
algorithm combines the decision mechanism of reinforcement
learning with the prediction mechanism of a deep neural network
to allocate power order among the various generators (Xi et al., 2020).
Meanwhile, the distributed energy and loads, such as wind power,
photovoltaic, biomass power and electric vehicles, continue to
increase at a massive scale (Wang et al., 2015). This trend causes
strong stochastic disturbances in the power grid and leads to a
dramatic increase in the difficulty of a frequency control for the
power grid. Therefore, a new AGC method must be investigated to
address the problem of strong stochastic perturbations.

For the situation of low-dimensional state-action pairs, the
reinforcement learning method uses a table to record value
functions, with each state or state-action pair allocated storage
space to record function values (Zhang et al., 2018; Sun and
Yang, 2019; Xi et al., 2021). However, the increased access to
distributed energy and the expansion of the installed capacity of
generators cause the state-action pair storage space to expand
geometrically. This drawback limits the dynamic optimization
speed of reinforcement learning algorithms. Thus, the optimal
control efficiency of AGC is reduced greatly. To solve the
problem of storage space for state-action pairs, this study proposes
a gradient Q(σ,λ) [GQ (σ,λ)] algorithm for distributed multi-region
cooperative control. Linear function approximation with mixed
sampling parameter is adopted to combine the full sampling
algorithm with the pure expectation algorithm judiciously.
Through the GQ (σ,λ) algorithm, the power allocation commands
of each region for distributed AGC can be obtained. Thus, the
stochastic disturbances caused by large-scale new energy access to
the grid can be solved. The improved IEEE two-area load frequency
control (LFC) model and integrated energy system model
incorporating a large amount of new energy and combined
cooling heating and power (CCHP) are simulated, and the results
verify the effectiveness of the GQ (σ,λ) algorithm. Compared with
other reinforcement learning algorithms, GQ (σ,λ) has better learning
ability, better cooperative control performance, faster convergence
and better robustness.

GQ(σ,λ) ALGORITHM

Q(λ) Algorithm
As one of the classical reinforcement learning algorithms,
Q-learning is based on the discrete-time Markov decision
process, which is a value function iteration rooted in online
learning and dynamic optimization technology (Watkins and
Dayan, 1992). Based on Q-learning, the Q (λ) algorithm
integrates eligibility trace with the characteristics of multi-step
backtracking update to improve the convergence speed. The Q (λ)
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algorithm uses eligibility trace to obtain two types of heuristic
information, namely, frequency and gradual reliability of
controller behavior (Barto and Sutton, 1998). This information
can accurately and effectively reflect the influence of previous
multi-step state-action pairs on subsequent decisions. Eligibility
trace is mainly used to solve the problem of time reliability
allocation in delayed reinforcement learning. It is a temporary
record of previous state tracks and action information. For any
state-action pair, eligibility trace is attenuated with timeliness (Xi
et al., 2018). The iterative updating formula of eligibility trace is as
follows:

ek+1(s, a) � { cλek(s, a) + 1, (s, a) � (sk, ak)
cλek(s, a), otherwise

(1)

where ek (s,a) is the eligibility trace of the kth iteration under state
s and action a, c is the discount factor, and λ is the attenuation
factor of eligibility trace.

According to the reward value obtained by the agent through
the current exploration, the error of the Q value function and its
evaluation are calculated as follows:

ρk � Rk + cQk(sk+1, ag) − Qk(sk, ak) (2)

δk � Rk + cQk(sk+1, ag) − Qk(sk, ag) (3)

where Rk is the reward function of the kth iteration, ag is the
action of the greedy policy, ρk is the Q value function error of the
agent at the kth iteration, and δk is the evaluation of the
function error.

The iterative update process of the Q(λ) algorithm is as
follows:

Qk+1(s, a) � Qk(s, a) + αδkek(s, a) (4)

Qk+1(sk, ak) � Qk+1(sk, ak) + αρk (5)

where α is the value function learning factor. When the value of α
is large, it can accelerate the iterative updating and learning speed
of the Q value function. While the value of α is small, the stability
of the control system is improved.

Q(σ,λ) Algorithm
On the basis of the Q (λ) algorithm, this study proposes the Q
(σ,λ) algorithm, which combines on-policy learning and off-
policy learning. The mixed sampling parameter σ is
introduced to unify the Sarsa algorithm (full sampling) and
Expected-sarsa algorithm (pure expectation) (Long et al.,
2018). As one of the classic algorithms in on-policy learning,
the Sarsa algorithm uses a greedy policy to update the target
strategy synchronously while evaluating the Q value function
through the current target action strategy (Rummery and
Niranjan, 1994). The Expected-sarsa algorithm, as an off-
policy learning algorithm, uses the function expectation value
of the next state-action pair to evaluate the Q value function
(Seijen et al., 2009). Although the Expected-sarsa algorithm is
computationally more complex than Sarsa, it eliminates the
variance caused by the random selection of the next action.
Given the same exploration path, Expected-sarsa performs
significantly better than Sarsa.

Therefore, the mixed sampling parameter σ is introduced
to integrate the Expected-sarsa algorithm and Sarsa
algorithm and unify the advantages and disadvantages of
on-policy and off-policy learning. The range of the mixed
sampling parameter is (0,1). Although 0 < σ < 1, the control

FIGURE 1 | Control framework of AGC system based on GQ (σ,λ).
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performance of the algorithm is better than that at σ � 0 or 1.
The iterative update of the Q (σ,λ) algorithm is obtained by
linear weighting between the update of the full sampling
Sarsa algorithm (σ � 1) and the update of the pure
expectation Expected-sarsa algorithm (σ � 0).

δσk � Rk + c⎡⎣σQk(sk+1, ak+1) + (1 − σ)∑
a ∈ A

π(sk+1, a)Qk(sk+1, a)⎤⎦ − Qk(sk, ak)

(6)

Qk(sk, ak) � Qk(sk, ak) + αδσkek(s, a) (7)

where π (sk+1,a) is the value function of the decision-making
strategy under state sk+1 and action a and δk

σ is the evaluation of
the function error at the kth iteration.

The eligibility trace is also updated iteratively as follows:

ek+1(s, a) � { cλek(s, a)[σ + (1 − σ)π(ak|sk)] + 1, Qk(sk, ak) � max
a ∈ A

Qk(sk, a)
cλek(s, a)[σ + (1 − σ)π(ak|sk)], otherwise

(8)

GQ(σ,λ) Algorithm
In this paper, the linear function approximation and mixed
sampling parameter are combined to solve the problem of
insufficient storage space in traditional reinforcement learning
algorithms. The sampling problem is also solved using random
approximation under double time scales (Yang et al., 2019).
Moreover, the GQ (σ,λ) algorithm, which combines mixed
sampling with function approximation, is proposed. The
algorithm is oriented to a multi-agent system, which reduces
the time needed for an intelligent algorithm to explore the path of
multi-agent state-action pairs. Meanwhile, the optimal decision-
making strategy can be obtained quickly. This strategy can solve
the optimal cooperative control problem and promote the
stochastic complex dynamic characteristics of multi-agent
system (Sun et al., 2016).

The agent calculates the value function error of the decision-
making strategy through the reward value R obtained from the
current exploration, which is expressed as shown:

δσk � Rk + c[σQ(sk+1, ak+1)π(sk+1, ak+1) + (1 − σ)Vπ
k (sk+1)]

− Q(sk, ak)π(sk, ak) (9)

where Vk
π (sk+1) is the function expectation value of the decision-

making strategy under state sk+1.
The decision-making strategy of the GQ (σ,λ) algorithm is

updated iteratively as follows:

πk+1(sk, ak) � πk(sk, ak) + α
1
2
∇π(sk ,ak) (10)

where ∇π (sk,ak) is the gradient of the decision-making strategy
under state sk and action ak, that is, the optimal function
approximation value of the decision-making strategy at (sk,ak),
which can be calculated as follows:

∇π(sk ,ak) � 2[δσkek(s, a) − cυk(sk, ak)ωk(sk, ak)] (11)

where ek (s, a) is the eligibility trace of the kth iteration under
state s and action a, it can be calculated by Eq. 8. υk (sk,ak)
and ωk (sk,ak) are the Q value function error and evaluation
of the kth iteration under state sk and action ak, respectively.
The iterative updates of υk (sk,ak) and ωk (sk,ak) are as
follows:

υk+1(sk, ak) � σ(1 − λ)Q(sk, ak)ek(s, a) + (1 − σ)[Vπ
k (sk)

− λQ(sk, ak)]ek(s, a) (12)

ωk+1(sk, ak) � ωk(sk, ak) + β[δσkek(s, a) − Q(sk, ak)ωk(sk, ak)]
(13)

where β is the learning factor of the Q value function.
After several trial-error iterations, the decision-making

strategy π (s,a) converges to a relatively fixed optimal action
strategy, which speeds up the convergence of reinforcement
learning, so as to obtain the optimal cooperative control
strategy.

TABLE 1 | Parameters setting.

Parameters Value

α Learning factor of the decision-making strategy 0.1
β Learning factor of the value function 0.3
c Discount factor of the value function 0.9
λ Attenuation factor of the eligibility trace 0.95
σ Mixed sampling parameter 0.5

FIGURE 2 | Execution procedure of the GQ (σ,λ) algorithm.
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DESIGN OF AGC CONTROLLER

Control Framework of AGC System Based
on GQ (σ,λ)
The control framework of AGC system based on GQ (σ,λ) is
shown in Figure 1. The input of the GQ (σ,λ) controller of the ith
regional power grid is the state under the current environment
and the calculated reward value from the “real-time monitoring
system and long-term historical database”. The GQ (σ,λ)
controller can realize online learning and give control signals.
The control action is the general AGC regulation command
ΔPord-i of dispatching the terminal of ith regional power grid.

Construction of Reward Function
Considering the problem of environmental pollution, this paper
takes the linear weighting of ACE and carbon emission (CE) as
the comprehensive, objective function. The CE value of the
regional power grid is equal to the product of the unit output
power and unit CE intensity coefficient. The reward function of
each regional power grid is constructed as follows:

R � −η[ACE(t)]2 − (1 − η)⎛⎝∑m
k�1

Bk[ΔPk(t)]⎞⎠/1000,ΔPmin
k ≤ΔPk(t)≤ΔPmax

k (14)

where ACE (t) is the instantaneous value of ACE, ΔPk (t) is the
actual output power of the kth unit, and η and 1-η are the weights
of ACE and CE, respectively. The η value of each area is the same,
and thus, the η value is set to 0.5.

Parameter Setting
In the design of the AGC controller, five system parameters,
namely, α, β, c, λ and σ, are set. After numerous trial-error
iterations, the best control performance can be obtained when the
parameters shown in Table 1 are set.

1) The learning factor of the decision-making strategy α (0 < α <
1), measure the influence of action selection strategy on
iterative updating of decision-making strategy. The larger α
can accelerate the convergence speed of the decision-making
strategy, while the smaller α can ensure that the system can
fully search other actions in the space.

2) The learning factor of the value function β (0 < β < 1), weigh the
stability of GQ (σ,λ) algorithm. Larger β can accelerate the
iterative updating speed of the value function, and when β is
smaller, the stability of the system will be greatly improved. The
parameter setting of learning factor is to have fast learning speed
as much as possible under the condition of ensuring stability.

FIGURE 3 | Improved model of IEEE two-area LFC power system.
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3) The discount factor of the value function c (0 < c < 1), weigh
the importance of current and future reward. The closer the
value is to 1, the more emphasis is placed on long-term

rewards; otherwise, more emphasis is on immediate
rewards. Considering that the agent pursues long-term
returns, the value close to one should be adopted.

FIGURE 4 | Pre-learning of the GQ (σ,λ) algorithm in area A and B, 4 (A), 4 (B), 4 (C), 4 (D).
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4) The attenuation factor of the eligibility trace λ (0 < λ < 1),
reflect the degree of influence on convergence rate and non
Markov effect. The larger λ is, the slower the eligibility trace of
the previous historical state-action pair will decay, and the
more reputation will be allocated. The smaller λ is, the less
reputation will be allocated.

5) Themixed sampling parameter σ (0≤ σ ≤ 1), unify on-policy and
off-policy learning. With different values, the linear weighting
between full sampling algorithm and pure expectation algorithm
will be different. The smaller σ is, the more full sampling is
preferred in the process of strategy optimization, that is, the
iterative update is carried out through the value function.

GQ(σ,λ) Procedure
The execution procedure of the AGC system based on the GQ
(σ,λ) algorithm is shown in Figure 2. Before the controller runs
online, extensive prelearning is needed to achieve the optimal
action set and thereby obtain the optimal coordination control of
online system operations.

EXAMPLE ANALYSIS

Improved IEEE Two-Area LFC Power
System
Based on the IEEE standard two-area LFC model (Ray et al.,
1999), the improved model replaces one equivalent unit in area A
with three area power grids to analyze the control performance of
the GQ (σ,λ)algorithm. The frame structure is shown in Figure 3,
and the system parameters are selected from the model
parameters in reference (Xi et al., 2020). Area A has 20
generating units, including thermal power (TP), liquefied
natural gas (LNG) and large hydropower (LH). The specific
parameters of the units are taken from reference (Zhang and
Yu, 2015).

Before online operations, numerous offline trials and errors
are needed to explore the CPS state and to obtain the optimal
action strategy, optimize the Q function, and then introduce it
into the integrated energy system model for online optimization
operation.

FIGURE 5 | The model of integrated energy system.
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A continuous sinusoidal load disturbance with a period of
5,000 s and an amplitude of 1,000 MW is introduced into the
two-area LFC model. Figure 4 shows the prelearning process of
the two areas generated by the continuous sinusoidal load
disturbance. As shown in Figures 4A,B, the GQ (σ,λ)
algorithm can track the load disturbance quickly in two
areas, and the frequency deviation is far less than the
standard value and is relatively stable. The control
performance of AGC is evaluated by the average value of
CPS1 (CPS1AVE-10-min) and ACE (ACEAVE-10-min) every
10 min. As shown in Figures 4C,D, the index value of CPS1
in area A is kept in the qualified range of 180–200%, and the

value of ACE is kept in the range of -100-0 MW until a stable
value is reached. Meanwhile, the index value of CPS1 in area B is
kept in the qualified range of 165–200%, and the value of ACE is
kept in the range of −160-0 MW until a stable value is reached.

Integrated Energy System
This paper establishes a small-scale integrated energy system
model incorporating a large amount of new energy and CCHP,
including photovoltaic (PV), wind farm (WF), electric vehicle
(EV), small hydropower (SH), micro gas turbine (MT), fuel cell
(FC) units. Given the randomness and uncontrollability of PV,
WF, and EV, the output models of the three new energy are

FIGURE 6 | The structure of CCHP system.

FIGURE 7 | Controller outputs of different algorithms under impulsive disturbance.
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FIGURE 8 | Control performance of different algorithms under impulsive disturbance.

FIGURE 9 | Controller outputs of different algorithms under random white noise disturbance.

TABLE 2 | The data statistics under random white noise disturbance.

Region Algorithm |ACE|(kW) |Δf |(Hz) CPS1(%) CE (t/h)

Regional power grid 1 GQ (σ,λ) 16.49 0.0204 196.99 648.8416
Q (σ,λ) 18.51 0.0313 196.04 674.6462
Q(λ) 31.83 0.0525 195.28 691.1481
Q-learning 36.81 0.0819 195.01 703.3316

Regional power grid 2 GQ (σ,λ) 16.72 0.0198 198.73 639.9874
Q (σ,λ) 20.18 0.0320 197.59 667.6710
Q(λ) 29.95 0.0571 196.92 682.1672
Q-learning 39.28 0.0759 196.17 700.7562

Regional power grid 3 GQ (σ,λ) 18.17 0.0215 198.24 651.9782
Q (σ,λ) 19.94 0.0342 196.12 673.2178
Q(λ) 28.54 0.0507 195.97 689.7916
Q-learning 38.07 0.0794 194.18 705.9582
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simplified. That is, they are treated as a random disturbance of the
AGC system, and do not participate in system frequency
regulation. The model structure of the built integrated energy
system is shown in Figure 5, and the system parameters are
selected from the reference (Xi et al., 2020). The total regulated
power is 2,350 kW, and each adjustable unit (SH, MT, and FC) is
regarded as a different agent. The relevant parameters of each unit
in the integrated energy system model are taken from reference
(Saha et al., 2008).

The introduced CCHP system is shown in Figure 6. This
system can realize the complementary and collaborative optimal
operation of multiple energy sources (Fang et al., 2012). It uses the
waste heat of MT to produce electric energy andmeet heating and
cooling requirements. The structure of the CCHP system is
mainly composed of MT, centrifugal refrigerator device and
heat exchange equipment, which is a multi generation energy
system integrating heating, cooling and power generation. The
purpose is to reduce the emissions of carbides and harmful gases
and thereby greatly improve energy efficiency.

Periodic Impulse Load Disturbance
After adequate prelearning, a periodic impulse load disturbance is
introduced into the integrated energy system model to simulate the
random load disturbance (i.e., regular sudden increase and decrease)
in the random environment of power system, so as to analyze the
performance of the proposed algorithm. The period of periodic
impulse disturbance is 8,000 s, and the amplitude is 1,000 kW.

Under the given impulse load disturbance, the long-term control
performance of the GQ (σ,λ) algorithm is evaluated by statistical
experimental results within 24 h. At the same time, Q (σ,λ), Q(λ), and
Q-learning are introduced to test the control performance of the four
control algorithms. Figures 7, 8 respectively show the output power
curve and control performance of different algorithms under periodic
pulse load disturbance. Figure 7 shows that under the four control
algorithms, the actual output of the unit can effectively track the load
disturbance. Meanwhile, the GQ (σ,λ) algorithm has a relatively fast
convergence speed, and the output power curve is relatively smooth
and can thus suitably fit the load disturbance curve. As shown in
Figure 8, GQ (σ,λ), relative to other control algorithms, can reduce |
ACE| by 26.71–57.57% and |Δf| by 30.34–76.38%. The result further
proves that GQ (σ,λ) has optimal control performance, fast dynamic
optimization speed, and strong robustness under load disturbance.

AGCControl PerformanceUnder RandomWhite Noise
Disturbance
The random white noise load disturbance is applied to the
integrated energy system model to simulate the complex
condition in which the power system load changes randomly
at every moment in the large-scale grid-connected environment
of unknown new energy. The results are expected to verify the
application effect of the GQ (σ,λ) algorithm in the strong random
grid environment. Similarly, the long-term performance of GQ
(σ,λ), Q (σ,λ), Q(λ), and Q-learning algorithms are tested by
random white noise disturbance within 24 h.

The controller outputs of the different algorithms under
random white noise are shown in Figure 9. The GQ (σ,λ)
algorithm can follow the load disturbance faster and more

accurately than the other three algorithms. The statistical
results of the simulation experiments are shown in Table 2.
Relative to the other algorithms, GQ (σ,λ) can reduce |ACE| by
17.15–57.43%, and |Δf| by 38.13–73.91%, CPS1 by 1.14–2.56%,
and CE by 4.15–8.67% in regional power grid 2. Moreover, the
data analysis reveals that GQ (σ,λ) has the better adaptive ability,
better coordinated and optimized control performance, and less
carbon emission than the other algorithms.

CONCLUSION

A control framework of an integrated energy system
incorporating a large amount of distributed energy and CCHP
is built in this paper. A novel GQ (σ,λ) algorithm for a distributed
multi-region interconnected power system is also proposed to
find the equilibrium solution so as to obtain the optimal
cooperative control and solve the problem of strong random
disturbances caused by the large-scale grid connection of
distributed energy.

The proposed algorithm, which is based on the Q (λ)
algorithm and features interactive collaboration and self-
learning, adopts linear function approximation and mixed
sampling parameter to organically unify full sampling and
pure expectation. The GQ (σ,λ) algorithm can reduce the
storage space of state-action pairs required by the control
algorithm, so as to obtain the distributed multi-region optimal
cooperative control quickly.

The improved IEEE two-area LFC model and integrated
energy system model with CCHP are used for example
analysis. The results show that compared with other
algorithms, GQ (σ,λ) has better cooperative control
performance and less carbon emission. Moreover, it can solve
the random disturbance problem caused by the large-scale access
of distributed energy in integrated energy system.
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