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Accurate solar cell modeling is essential for reliable performance evaluation and prediction,
real-time control, and maximum power harvest of photovoltaic (PV) systems. Nevertheless,
such a model cannot always achieve satisfactory performance based on conventional
optimization strategies caused by its high-nonlinear characteristics. Moreover, inadequate
measured output current-voltage (I-V) data make it difficult for conventional meta-heuristic
algorithms to obtain a high-quality optimum for solar cell modeling without a reliable fitness
function. To address these problems, a novel genetic neural network (GNN)-based parameter
estimation strategy for solar cells is proposed. Based on measured I-V data, the GNN firstly
accomplishes the training of the neural network via a genetic algorithm. Then it can predict
more virtual I-V data, thus a reliable fitness function can be constructed using extended I-V
data. Therefore, meta-heuristic algorithms can implement an efficient search based on the
reliable fitness function. Finally, two different cell models, e.g., a single diode model (SDM) and
double diode model (DDM) are employed to validate the feasibility of the GNN. Case studies
verify that GNN-basedmeta-heuristic algorithms can efficiently improvemodeling reliability and
convergence rate compared against meta-heuristic algorithms using only original measured
I-V data.
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INTRODUCTION

In recent years, due to rapid fossil fuel depletion (Peng et al., 2020), booming global energy demand
(Shangguan et al., 2020a), and a series of severe eco-environmental problems (Yang et al., 2015),
concepts of sustainable development and an environmentally friendly society are receiving
increasingly widespread attention (Shangguan et al., 2020b). Hence, environmental protection
(Sun et al., 2019) and energy structure transition (Sun and Yang, 2020) are becoming global
development strategies via the application of renewable energies, e.g., solar (Zhang et al., 2019a;
Murty and Kumar, 2020) and wind (Liu et al., 2020). Note that solar energy is one of the most
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Abbreviations: Iph , photocurrent, A; Id , Id1, Id2, diode’s currents, A; Isd , Isd1, Isd2, Isd3, diode’s reverse saturation currents, A; Rs,
series resistor, Ω; Rsh , shunt resistor, Ω; a, a1, a2, a3, diode’s ideality factors. ABC, artificial bee colony; ANN, artificial neural
network; BFA, bacterial foraging algorithm; BSA, backtracking search algorithm; DDM, double diode model; DE, differential
evolution; GA, genetic algorithm; GNN, genetic neural network; GWO, gray wolf optimization; I-V, current-voltage; MFO,
month flame optimizer; PSO, particle swarm optimization; P-V, power-voltage; SDM, single diode model; STC, standard test
condition; SSA, salp swarm algorithm.
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efficient alternatives among various available candidates due to its
remarkable superiorities of photovoltaic (PV) systems (Gao et al.,
2021; Liu et al., 2021), e.g., wide distribution, abundance, and lack
of pollution (He et al., 2020; Huang et al., 2020).

In order to carry out precise performance analysis (Jordehi,
2016), optimal design (Zhang et al., 2019b), and power
generation efficiency enhancement (Song et al., 2021; Yang
et al., 2021) of PV systems, many solar cell modeling
approaches have been devised to investigate their dynamic
physical behaviors and output characteristics under various
operation conditions (Jordehi, 2016). Generally speaking, two
PV cell models have the most widely used applications, i.e., the
single diode model (SDM) (Rodriguez et al., 2017) and double
diode model (DDM) (Abbassi et al., 2018; Qais et al., 2019a). In
particular, precise and reliable estimation of their unknown
parameters is the first and foremost step for PV cell
mathematical modeling. However, the parameters cannot
sustain constant and are tested under standard test
conditions (STC) (Xiong et al., 2018). In addition, the value
of these parameters also changes with degradation and faults
over time.

Over the decades, numerous methods developed to solve
such obstacles can be generally categorized into three types,
i.e., analytical methods (Wolf and Benda, 2013; Torabi et al.,
2017), deterministic approaches, and meta-heuristic
algorithms. Analytical methods utilize the data sheet
information provided by manufacturers to undertake
mathematical calculations, which have the merits of easy
implementation but lack stable accuracy as they mainly
depend on a group of selected points on a current-voltage
(I-V) curve. Meanwhile, deterministic techniques, including
Lambert W-functions (Gao et al., 2016) and iterative curve
fitting (Villalva et al., 2009) can obtain more accurate results
but easily fall into local optimum when solving high multi-
modality problems. Thus, limitations of the two
aforementioned methods prevent them from maintaining a
stable and satisfactory performance on PV cell parameter
extraction. Nevertheless, meta-heuristic algorithms can
powerfully compensate for the shortcomings, they display
high applicability (Nesmachnow, 2014), strong reliability
(Roeva and Fidanova, 2018), and a high computation rate
(Pillai and Rajasekar, 2018; Figueroa et al., 2020), etc.

Up to now, numerous meta-heuristic algorithms have been
utilized for the parameter estimation of PV cells (Yu et al., 2018;
Guchhait and Banerjee, 2020; Yang et al., 2020), e.g., genetic
algorithm (GA) (Jervase et al., 2001), differential evolution (DE)
(Ishaque and Salam, 2011), particle swarm optimization (PSO) (Ye
et al., 2009), artificial bee colony (ABC) (Oliva et al., 2014), water
cycle algorithm (WCA) (Kler et al., 2017), bacterial foraging
algorithm (BFA) (Awadallah, 2016), and imperialist competitive
algorithm (ICA) (Fathy and Rezk, 2017), together with many
hybrids (Chin et al., 2015; Allam et al., 2016; Nayak et al., 2019).

Besides, as all modeling heavily depends on volume and accuracy
of measured data from a data sheet, it is of great significance to
undertake reasonable optimization on data samples rather than only
focusing on algorithm improvement. Note that the measuring I-V
data offered by the manufacturer are always insufficient, which

might result in the loss of sample information that can finally
decrease simulation accuracy. Hence, it is critical to adopt
effective data processing methods to enrich data samples before
parameter estimation. In the past few decades, the artificial neural
network (ANN) (Mittal et al., 2018) has shown its great effectiveness
in data analysis and prediction. To obtain optimal parameters of the
ANN, various methods are employed to train networks, such as the
Newton-Raphson method (Soloway and Haley, 1996) and gradient
descent method (Noriega and Wang, 1998). However, these
methods essentially belong to gradient-based optimization, which
easily result in a low-quality optimum or a complex computation
(Song et al., 2007) as their performance highly depends on neural
network structure, complexity of cost function, and so on. Compared
with gradient-based optimization, evolutionary algorithms, e.g.,
genetic algorithms (GAs) which have a superior global searching
ability and high application flexibility are more appropriate to train
an ANN. Therefore, this paper develops novel genetic neural
network (GNN)-based meta-heuristic algorithms for solar cell
accurate modeling, which have the following contributions:

• The GNN is utilized to generate more virtual I-V data based
on inadequate measured I-V data, such that it can provide a
more reliable fitness function with adequate I-V data to
meta-heuristic algorithms;

• GNN-based meta-heuristic algorithms can implement an
efficient search for PV cell parameter estimation, which can
acquire a higher-quality optimum than conventional meta-
heuristic algorithms with only inadequate measured I-V data;

• Practical performance is effectively verified via an SDM and
DDM, respectively. Experiment results illustrate that the
proposed optimization strategy displays higher
optimization accuracy and convergence stability on PV
cell modeling.

The rest of this paper is organized as follows: PV cell modeling
and objective function are presented in Photovoltaic Cell
Modeling and Problem Formulation. The proposed GNN-based
meta-heuristic algorithms are elaborated on in Methodologies.
Case studies and detailed experimental results are shown in Case
Studies. Lastly, conclusions are provided in Conclusion.

PHOTOVOLTAIC CELL MODELING AND
PROBLEM FORMULATION

In general, the most commonly utilized equivalent circuit models
are SDMs and DDMs. Their mathematical models and
corresponding objective functions are introduced in this section.

Mathematical Modeling
The first step for studying the characteristics of PV cells, or to
develop a more accurate prediction of PV systems operation is
appropriate PV cell modeling (Guchhait and Banerjee, 2020).
Then, PV cell parameters can be reliably extracted to depict the
output characteristics more accurately for better performance
analysis. The most commonly applied equivalent circuit models
are SDM and DDM (Ram et al., 2018).
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Single Diode Model
The structure of an SDM is shown in Figure 1, which contains an
ideal constant current source Iph, a series resistance Rs, a shunt
resistance Rsh, and a diode D (Ye et al., 2009; Murty and Kumar,
2020). An SDM is characterized by high simplicity and decent
accuracy (Humada et al., 2016).

The output current of an SDM defined as IL can be described
by (Nayak et al., 2019; Guchhait and Banerjee, 2020)

IL � Iph − Id − Ish (1)

where Ish denotes shunt resistance current Rph; and Id represents
diode current which is able to be further calculated by Jordehi
(2016)

Id � Isd[exp(VL + ILRs/aVt) − 1] (2)

where Isd represents the diode’s reverse saturation current;VL denotes
the output voltage; ameans the diode’s ideality factor; whileVt means
junction thermal voltage, as follows Ishaque et al. (2011):

Vt � KT
q

(3)

where T denotes the temperature of the PV cell; and
K� 1.38 × 10− 23 J/K means the Boltzmann constant; and q �
1.6 × 10− 19 C represents electron charge.

Combining Eqs. 1–3, the output I-V relationship of the SDM
is described by

IL � Iph − Isd[exp(VL + ILRs

aVt
) − 1] − VL + ILRs

Rsh
(4)

Hence, five parameters need to be identified for the SDM, e.g.,
Iph, Isd, Rs, Rsh, and a.

Double Diode Model
As demonstrated in Figure 2, the only difference between
an SDM and DDM is that a DDM has one more diode in
parallel, upon which recombination losses in the depletion
layer are considered in the DDM (Zhang et al., 2019b).

Under such a circumstance, the DDM displays higher
accuracy than the SDM, while the increase of unknown
parameters also brings an extra computation burden
(Ishaque et al., 2011).

Note that the output current of the DDM is described by

IL � Iph − Id1 − Id2 − Ish (5)

where currents Id1 and Id2 flowing through diodes D1 andD2 are
written as

Id1 � Isd1[exp(VL + ILRs

a1Vt
) − 1] (6)

Id2 � Isd2[exp(VL + ILRs

a2Vt
) − 1] (7)

Hence, the output I-V relationship of the DDM can be
calculated by

IL � Iph − Isd1[exp(q(VL + ILRs)
a1Vt

) − 1]
− Isd2[exp(q(VL + ILRs)

a2Vt
) − 1] − VL + ILRs

Rsh
(8)

Note that the variables in Eq. 8 are demonstrated in the
nomenclature.

Thus, seven parameters need to be identified for the DDM,
e.g., Iph, Isd1, Isd2, Rs, Rsh, a1, and a2

Objective Function
Root mean square error (RMSE) is chosen as the objective
function as follows Khanna et al. (2015)

RMSE(x) �

																
1
N

∑N
k�1

(f (VL, IL, x))2√√
(9)

where x denotes the solution vector and N means the amount of
experimental data.

FIGURE 1 | Equivalent circuit of SDM.
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Error function f (VL, IL, x) for the SDM can be calculated by
Qais et al. (2019b)⎧⎪⎪⎨⎪⎪⎩ fSDM(VL, IL, x) � Iph − Isd[exp(VL + ILRs

aVt
) − 1] − VL + ILRs

Rsh
− IL

x � {Iph, I0, Rs, Rsh, a}
(10)

For the DDM, it gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
fDDM(VL, IL, x) � Iph − Isd1[exp(q(VL + ILRs)

a1Vt
) − 1]

−Isd2[exp(q(VL + ILRs)
a2Vt

) − 1] − VL + ILRs

Rsh
− IL

x � {Iph, I01, I02, Rs, Rsh, a1, a2}
(11)

METHODOLOGIES

In this section, the developed GNN and its combination with
meta-heuristic algorithms are illustrated.

Genetic Neural Network
The detailed network structure of the GNN is elaborated in this
section.

Principle of Artificial Neural Network
ANNs have achieved widespread attention and applications due
to their high accuracy and shorter computational time in
predictions (Zhou et al., 2020). Particularly, the jth neuron is
connected with k inputs (x1, x2, x3,. . ., xk) and one bias input bj,
while its output yi can be calculated by Chang (2011)

yi � F⎛⎝∑k
i�1

wijxi − bj⎞⎠ (12)

where wij denotes the ith weight of the jth neuron; xi means the
neuron input layer; bj denotes the bias of the jth neuron; k

represents the number of inputs; and F(.) represents the transfer
function, which can be defined by

F(z) � 1
1 + e−z

(13)

where z denotes the function variable, which can be described

by z � ∑k
i�1

wijxi − bj corresponding to Eq. 12.

Weights and biases among each layer can be expressed as

Wl � ⎡⎢⎢⎢⎢⎢⎢⎣ ωl
11 / ωl

1n

« 1 «
ωl
1m / ωl

mn

⎤⎥⎥⎥⎥⎥⎥⎦
m×n

(14)

Bl � [bl11/bl1n] (15)

where Wl and Bl denote weights and biases between neurons in
layer l and layer (l+1); while m and n represent the number of
neurons in layer l and layer (l+1), respectively.

To generate more virtual I-V data of the PV cell, an ANN
should accomplish a training process on the basis of training data.
In general, it attempts to minimize cost function via optimizing
network parameters (i.e., weights and biases) as follows:

min ftrain(W,B) � ∑
h ∈ H

(IhL − Î
h

L
)2

(16)

s.t. {Wlb ≤W ≤Wub

Blb ≤B≤ Bub
(17)

whereW denotes weight vector; B represents bias vector; IhL is the
measured output current of the PV cell of the hth training sample;
Î
h
L is the output current of the PV cell generated by the ANN for
the hth training sample;Wlb andWub denote the lower and upper
bounds of weights, respectively; and Blb and Bub mean the lower
and upper bounds of bias, respectively.

Artificial Neural Network Training by Genetic
Algorithms
GA mainly contains three critical operators, i.e., selection,
crossover, and mutation (Khani et al., 2019). To find optimal

FIGURE 2 | Equivalent circuit of DDM.
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parameters for an ANN, a GA can be directly used to handle the
training model in Eqs. 16, 17, in which detailed steps are given in
Figure 3.

Genetic Neural Network-Based
Meta-Heuristic Algorithms
The detailed optimization structure of GNN-based meta-
heuristic algorithms for PV cell parameter extraction is
illustrated in this section.

Genetic Neural Network-Based Modified Fitness
Function
Based on the trained GNN, more virtual I-V data of the PV cell
can be generated to modify fitness function for meta-heuristic
algorithms. Since all optimization variables show lower and upper
bounds during optimization, RMSE can be regarded as the fitness
function by taking prediction data into account, as follows:

RMSE (x) �

																						
1

N + Np
∑N+Np

k�1
(f (VL, IL, x))2

√√
(18)

where Np denotes the amount of prediction data.

General Execution Procedure
Overall operation framework of GNN-based meta-heuristic
algorithms for solar cell modeling mainly consists of three parts, as
illustrated in Figure 4. The main differences between various

algorithms are individual roles and searching mechanisms of
exploration and exploitation. Firstly, measured output I-V data of
various PV cells are utilized for GNN training. Secondly, more virtual
I-V data are generated by the GNN, thus a more reliable fitness
function can be established to guide algorithm searching. Finally,
meta-heuristic algorithms implement exploration and exploitation at
different stages to find optimal PV cell parameters.

Parameter Setting of the Genetic Neural Network
Main structure of the GNN is designed to be a five-layer network,
including one input layer, three hidden layers with 11 neurons
(i.e., five neurons in the first hidden layer and three neurons in
each of the other two layers), and one output layer with one
neuron for one output. Figure 5 shows the convergence of the
GA for the cost function of the GNN under different training
datasets and framework design of the GNN, which indicates that
cost function obtained by the GA is very small. In the case of a
50% training dataset, weights and biases of the GNN are as
follows:

W1 � [ 0.6537 −7.1844 −1.7803 −0.2099 1.6838 ] (19)

B1 � [ 0.4259 3.2080 3.149841 −2.0999 −3.8189 ] (20)

W2 � ⎡⎢⎢⎢⎢⎢⎣−2.9396 −4.1996 −3.09572 5.0775 1.1991
1.8545 −5.9097 −5.2801 −0.5460 8.8733
5.9810 8.4175 −4.7475 2.5929 −5.722

⎤⎥⎥⎥⎥⎥⎦
(21)

B2 � [ 2.0807 5.8701 −2.8972 ] (22)

FIGURE 3 | Detailed steps of ANN training by a GA.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6962045

Wang et al. GNN Based Solar Cell Modelling

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


CASE STUDIES

Seven meta-heuristic algorithms are adopted to achieve the
accurate modeling of three PV cell models. In particular, 26
sets of measured I-V data are collected from a 57 mm
diameter R.T.C. France solar cell under the
environmental condition (G � 1000 W/m2 and T � 33°C)
(T � 33°C is the cell temperature). Due to the benchmark,
I-V datasets used for case studies are only determined
under conditions of G � 1000 W/m2 and T � 33°C, thus
there is only one single fitted I-V curve. To validate the
practical applicability of meta-heuristic algorithms based
on inadequate data, six datasets are randomly chosen from
26 pairs of measured data that are 50, 60, 70, 80, 90, and
100% of measured data. To provide a reliable fitness
function to the meta-heuristic algorithms, the total
number of each dataset and prediction data are set at 50,
e.g., 37 pieces of prediction data for a 50% dataset. In
addition, each meta-heuristic algorithm is evaluated
under two circumstances, that is, without data prediction
(i.e., with only selected measured data) and with data
prediction.

Note that the maximum iteration number and population size
of all meta-heuristic algorithms under each PV model are
designed to be the same. Particularly, their maximum iteration
number is designed to be identical, i.e., 300, and all methods are
independently operated in 80 runs. Besides, population size of
each algorithm is designed to be 30 and 50 for the SDM and
DDM, respectively.

Results of the Single Diode Model
Table 1 shows the simulation results of the average RMSE
acquired via seven methods under various measured datasets,
which demonstrates that the average RMSE obtained by each
GNN-based meta-heuristic algorithm is significantly smaller than
that with only measured data, especially under 50% inadequate
measured data. For instance, the average RMSE obtained by
GNN-PSO is 56.25% smaller than original PSO without data
prediction under 50% measured data, which validates that GNN-
based I-V data prediction can effectively improve optimization
accuracy and stability.

Besides, Figure 6 shows the convergence of seven approaches
without the GNN and with GNN under various datasets. It can be
seen that WOA is prone to a low-quality optimum and GWO
easily falls into a local optimum at the initial stage under 100%
data without the GNN, while GNN-based training can help both
of them achieve a more stable convergence and a higher quality
optimum. Besides, most algorithms can hardly achieve stable and
efficient convergence due to inadequate data. In contrast, an
increase of training data helps them to gradually find high-quality
solutions in a more stable way.

Moreover, boxplots of RMSE for the SDM under 50% data are
depicted in Figure 7, which explicitly shows the resulting
distribution of the seven different algorithms in 80 runs.
Figure 6 clearly indicates that the distribution range and
upper/lower bounds of GNN-based meta-heuristic algorithms
are smaller than that without a GNN. It can effectively verify that
the increase of data based on the GNN can simultaneously
enhance convergence stability and searching ability. Besides,

FIGURE 4 | Framework of GNN-based data-driven optimization procedure for PV cell parameter estimation.
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FIGURE 5 | Parameter setting of the GNN. (A) Convergence of cost function of the GNN under different training datasets; (B) framework design of the GNN.

TABLE 1 | Statistical results of average RMSE for SDM.

Algorithm Amount of measured data (%)

50 60% 70% 80% 90% 100%

ABC 3.14 × 10− 3 2.47 × 10− 3 2.41 × 10− 3 2.48 × 10− 3 2.21 × 10− 3 2.26 × 10− 3

GNN-ABC 2.27 × 10− 3 2.18 × 10− 3 2.23 × 10− 3 2.38 × 10− 3 2.10 × 10− 3 2.49 × 10− 3

BSA 1.35 × 10− 2 1.53 × 10− 2 1.43 × 10− 2 2.06 × 10− 2 1.22 × 10− 2 1.27 × 10− 2

GNN-BSA 1.31 × 10− 2 1.31 × 10− 2 1.01 × 10− 2 8.18 × 10− 3 1.38 × 10− 2 8.21 × 10− 3

GWO 2.12 × 10− 2 1.48 × 10− 2 1.34 × 10− 2 1.32 × 10− 2 1.73 × 10− 2 1.35 × 10− 2

GNN-GWO 1.69 × 10− 2 1.29 × 10− 2 1.54 × 10− 2 1.46 × 10− 2 1.25 × 10− 2 1.51 × 10− 2

MFO 5.37 × 10− 3 4.42 × 10− 3 3.72 × 10− 3 4.47 × 10− 4 3.06 × 10− 3 4.88 × 10− 3

GNN-MFO 2.12 × 10− 3 3.02 × 10− 3 3.04 × 10− 3 3.13 × 10− 3 2.58 × 10− 3 3.77 × 10− 3

PSO 1.71 × 10− 2 7.52 × 10− 3 4.89 × 10− 3 5.08 × 10− 3 4.77 × 10− 3 7.55 × 10− 3

GNN-PSO 7.48 × 10− 3 7.33 × 10− 3 1.24 × 10− 2 7.53 × 10− 3 2.19 × 10− 3 4.95 × 10− 3

WCA 2.20 × 10− 3 1.63 × 10− 3 1.65 × 10− 3 1.61 × 10− 3 1.63 × 10− 3 1.59 × 10− 3

GNN-WCA 1.91 × 10− 3 1.64 × 10− 3 1.65 × 10− 3 1.76 × 10− 3 1.53 × 10− 3 1.58 × 10− 3

WOA 3.13 × 10− 2 3.08 × 10− 2 2.70 × 10− 2 2.66 × 10− 2 2.35 × 10− 2 2.94 × 10− 2

GNN-WOA 3.16 × 10− 2 2.60 × 10− 2 1.87 × 10− 2 2.33 × 10− 2 1.96 × 10− 2 2.50 × 10− 2
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outliers of average RMSE of some algorithms can also be
efficiently reduced by GNN-based data prediction, such as
WCA and ABC. It indicates that each algorithm can find the
global optimum more easily via GNN-based experimental
data prediction, upon which optimal values of these unknown
parameters can be determined in a more accurate and
stable way.

Figure 8 depicts the I-V and P-V curves acquired via the best
algorithm (i.e., the algorithm that can obtain minimum RMSE)
under 50% training data and 100% training data, respectively. It
can be observed that the output curves acquired by data
prediction-based GNN-WCA are extremely consistent with
actual data, which proves its strong performance for PV
modeling.

FIGURE 6 | Convergence of various algorithms for the SDM. (A) With the GNN under 50% data; (B) without the GNN under 50% data; (A) with the GNN under
100% data; (B) without the GNN under 100% data.

FIGURE 7 | Boxplot of RMSE under different data for the SDM under 50% data.
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Results of the Double Diode Model
For the DDM, the average RMSE achieved via seven different
algorithms with different measured datasets in 80 runs is
illustrated in Table 2, which indicates that increased
prediction data generated by the GNN can effectively improve
calculation accuracy and stability. For example, average RMSE
obtained by GNN-BSA is 52.37% lower than the BSA without

GNN-based data prediction under 50% measured data. This
illustrates that a GNN-based meta-algorithm can
simultaneously realize high estimation precision and strong
stability, thus it can output desirable results when both
accuracy and reliability are considered in the DDM.

Moreover, Figure 9 shows the convergence of all algorithms
under different training data without a GNN and with a GNN,

FIGURE 8 |Output curves obtained by the best algorithm (GNN-WCA) for the SDM. (A) I-V curve under 50% training data; (B) P-V curve under 50% training data;
(C) I-V curve under 100% training data; (D) P-V curve under 100% training data.

TABLE 2 | Statistical results of average RMSE for the DDM.

Algorithm Average RMSE (%)

Number of measured data (%)

50 60% 70% 80% 90% 100%

ABC 3.28 × 10− 3 2.73 × 10− 3 2.58 × 10− 3 2.90 × 10− 3 2.54 × 10− 3 2.50 × 10− 3

GNN-ABC 2.51 × 10− 3 2.44 × 10− 3 2.52 × 10− 3 2.63 × 10− 3 2.34 × 10− 3 2.78 × 10− 3

BSA 8.21 × 10− 3 4.61 × 10− 3 6.00 × 10− 3 5.07 × 10− 3 4.07 × 10− 3 6.80 × 10− 3

GNN-BSA 3.91 × 10− 3 4.09 × 10− 3 5.67 × 10− 3 4.95 × 10− 3 7.37 × 10− 3 4.56 × 10− 3

GWO 1.55 × 10− 2 1.20 × 10− 2 9.74 × 10− 3 1.10 × 10− 2 1.31 × 10− 2 1.36 × 10− 2

GNN-GWO 1.32 × 10− 2 1.23 × 10− 2 7.53 × 10− 3 1.35 × 10− 2 1.17 × 10− 2 9.80 × 10− 3

MFO 4.29 × 10− 3 2.39 × 10− 3 2.88 × 10− 3 4.17 × 10− 3 2.93 × 10− 3 2.72 × 10− 3

GNN-MFO 3.31 × 10− 3 2.33 × 10− 3 2.44 × 10− 3 2.43 × 10− 3 2.20 × 10− 3 2.91 × 10− 3

PSO 5.70 × 10− 3 2.61 × 10− 3 2.45 × 10− 3 7.82 × 10− 3 2.54 × 10− 3 2.37 × 10− 3

GNN-PSO 2.39 × 10− 3 2.57 × 10− 3 2.59 × 10− 3 5.00 × 10− 3 2.44 × 10− 3 4.09 × 10− 3

WCA 2.09 × 10− 3 1.51 × 10− 3 1.50 × 10− 3 1.66 × 10− 3 1.45 × 10− 3 1.39 × 10− 3

GNN-WCA 1.64 × 10− 3 1.55 × 10− 3 1.40 × 10− 3 1.58 × 10− 3 1.33 × 10− 3 1.49 × 10− 3

WOA 2.06 × 10− 2 2.06 × 10− 2 1.88 × 10− 2 1.88 × 10− 2 1.57 × 10− 2 1.60 × 10− 2

GNN-WOA 1.81 × 10− 2 1.57 × 10− 2 1.39 × 10− 2 1.68 × 10− 2 1.68 × 10− 2 1.70 × 10− 2
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which illustrates that convergence speed of GWO is low and the ABC
is prone to a local optimum under 50% training data without a GNN.
In contrast, the GNN can effectively increase its optimum searching
efficiency and quality with a higher convergence stability. Besides, a
large amount of extending data samples can effectively improve the
searching efficiency of global optimum.

Boxplots of different algorithms under 50% data are depicted
in Figure 10, upon which one can easily find that all GNN-based

meta-heuristic algorithms have a smaller distribution range and upper/
lower bounds in comparison to that without the GNN. Obviously, each
algorithm can search for the highest quality solution more easily when
experimental data are expanded by GNN-based data prediction, upon
which optimal values of these unknown parameters can be determined
in amore accurate and stableway. This indicates that the increase of data
is able to effectively improve optimization quality and stabilize global
searching ability in PV cell parameter estimation.

FIGURE 9 | Convergence of various algorithms for the DDM. (A) With the GNN under 50% data; (B) without the GNN under 50% data; (A) with the GNN under
100% data; (B) without the GNN under 100% data.

FIGURE 10 | Boxplot of RMSE under different data for the DDM under 50% data.
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Figure 11 depicts the output curves of the best data
prediction-based meta-heuristic algorithm (GNN-WCA)
and actual data under 50% and 100% training data,

respectively. Apparently, the WCA shows the high fitting
accuracy with actual data under both different training
datasets.

FIGURE 11 |Output curves obtained by the best algorithm (GNN-WCA) for the DDM. (A) I-V curve under 50% training data; (B) P-V curve under 50% training data;
(C) I-V curve under 100% training data; (D) P-V curve under 100% training data.

FIGURE 12 | Radars of average RMSE achieved by different algorithms for the SDM.
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Statistical Results and Analysis
Radars of average RMSE achieved via each meta-heuristic algorithm
with six groups of data at different scales are provided inFigures 12, 13,
which show that averageRMSE acquired via all algorithmswithGNN-
based data prediction are smaller compared with that obtained
without data prediction at different scales of data, especially under
50% data. In particular, the ranking basis of various methods is based
on a comprehensive and systematic comparison of their performance
in PV cell parameter extraction, e.g., extraction accuracy, convergence
speed, and convergence stability. This effectively verifies the
outstanding reliability of GNN-based meta-heuristic algorithms for
accurate PV cell modeling.

CONCLUSION

This paper develops a novel hybrid of a GNN and advancedmeta-
heuristic algorithms for accurate modeling of different solar cells,
and its main contributions are as follows:

• AGNN is applied to generate more virtual I-V data based on
inadequate measured data, in which a GA is adopted to find
optimal network parameters of an ANN, which can improve
the accuracy of generated virtual I-V data. As a result, the
GNN can significantly enrich the dataset, and provide a
more reliable fitness function to the meta-heuristic
algorithms for PV cell modeling;

• Two widely used PV cell models, i.e., the SDM and DDM, are
adopted to verify the practical performance of the proposed
strategy. For instance, the average RMSE obtained by the ABC,
BSA, GWO, MFO, PSO, WCA, and WOA based on GNN
prediction for the SDM is 72.29, 97.04, 79.72, 39.48, 43.74,
86.82, 100.96% to that of without GNN data prediction under
50% measured data, respectively;

• Case studies show that GNN-based meta-heuristic algorithms
can comprehensively enhance optimization precision and

convergence stability compared with original meta-heuristic
algorithms utilizing untrained measured I-V data.

Future studies should focus on the improvement and
optimization of the structure of the proposed GNN, e.g., data
training process and relevant network parameters tuning can be
further simplified to reduce the optimization burden. Besides, as all
the experiments were carried out in a simulation environment
which is different from real operation conditions, experiments
combined with hardware platforms under practical working
scenarios are imperative for future engineering applications.
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