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Online state of health (SOH) estimation is essential for lithium-ion batteries in a battery
management system. As the conventional SOH indicator, the capacity is challenging to be
estimated online. Apart from the capacity, various indicators related to the internal
resistance are proposed as indicators for the SOH estimation. However, research
gaps still exist in terms of optimal resistance-related indicators, online acquisition of
indicators, temperature disturbance elimination, and state of charge (SOC) disturbance
elimination. In this study, the equivalent circuit model parameters are identified based on
recursive least square method in dynamic working conditions in the life span. Statistical
analysis methods including multiple stepwise regression analysis and path analysis are
introduced to characterize the sensitivity of the parameters to SOH estimation. Based on
the above approach, the coupling relationship between the parameters is comprehensively
analyzed. Results indicate that the ohmic resistance R0 and the diffusion capacitance Cd

are the most suitable parameters for the SOH indication. Furthermore, R0 and Cd are
proved to be exponentially correlated to the ambient temperature, while SOC
demonstrates a quadratic trend on them. To eliminate the disturbance caused by the
ambient temperature and SOC, a compensating method is further proposed. Finally, a
mapping relationship between SOH and the indicators under normal operations is
established. SOH can be estimated with the maximum error of 2.301%, which proves
the reliability and feasibility of the proposed indicators and estimation method.
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INTRODUCTION

Lithium-ion batteries are widely used as the primary energy storage for electric vehicles (EVs), owing
to high energy density and low self-discharge rate (Chen et al., 2019; Liu et al., 2019). A reliable
battery management system (BMS) is significant in real applications. Among the BMS functions,
state of health (SOH) estimation is quite essential for timely maintenance and retirement. And online
acquisition of indicators is the premise of the SOH estimation function.

Currently, many studies are conducted for the online SOH estimation of lithium-ion batteries,
which involve battery aging mechanism confirmation (Broussely et al., 2005; Agubra and Fergus,
2013), battery life modeling (Ramadass et al., 2004; Gu et al., 2014a), accelerated life testing (Thomas
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et al., 2008; Gu et al., 2014b), and the conversion between real
applications and lab applications (Takei et al., 2011; Hua et al.,
2015; Sun and Xiong, 2015). In these research studies, the SOH
indicator is the first and the most important thing.

The capacity and internal resistance of the battery are widely
used SOH indicators (Jiang et al., 2019). Many data-driven SOH
estimation methods such as support-vector machine (Deng et al.,
2016), relevance vector machine (Zheng and Fang, 2015),
Gaussian process regression (Liu et al., 2020a; Liu et al.,
2020b), and extreme learning machine (Pan et al., 2018) are
proposed to estimate SOH based on the capacity. Sliding mode
observer (Kim, 2010), genetic algorithm (Chen et al., 2013), total
least squares (Chen et al., 2013), Kalman filter (Berecibar et al.,
2016), particle filter (Tang et al., 2019), and other improved state
estimation methods are also used to quantify SOH with capacity
and internal resistance as indicators. Apart from capacity and
resistance, other indicators are also proposed in the previous
studies. For instance, Bloom (Bloom et al., 2005) used the
expression dV/dQ to determine the life state. A similar
indicator is also widely suggested (Li et al., 2011; Wang et al.,
2011; Han et al., 2014). Moreover, falloff of the battery terminal
voltage (Zhou et al., 2016), curves of the terminal voltage during
charging (Liu and Chen, 2019; Park et al., 2020), and time spent
on a charging/discharging process (Yun and Qin, 2020) are also
investigated as the SOH indicators.

Battery capacity is a relatively intuitive SOH indicator.
However, the online estimation of the capacity is challenging
due to the complexity of the estimation algorithms and the
limited variety of inputs available from a cell under operation
(Basia et al., 2021; Li et al., 2021). Hence, the SOH estimation
methods based on capacity may be limited in EVs. To address this
issue, the internal resistance can be utilized as an SOH indicator.
At present, many studies have used internal resistance to
characterize the SOH. Chen et al. (2013) concluded that the
diffusion capacitance could be symbolized to characterize the
battery life. Remmlinger et al. (2011) used a sum of the ohmic
resistance and the gain of the first-order low-pass transfer-
function element representing the polarization effect as the
indicator of the battery performance. Wang et al. (2015) and
Zenati et al. (2012) employed the ohmic resistance to evaluate the
battery life. Furthermore, the charge transfer resistance is also
used to characterize the SOH (Wang et al., 2019). Since many
kinds of indicators related to the internal resistance are proposed,
applicability and sensitivity to the SOH estimation need to be
further analyzed for a specific application.

To obtain internal resistance, Zenati et al. (2012) adopted a
fuzzy logic system to compute coefficients applied to the ohmic
resistance measurements. This method possesses a higher
accuracy but requires a higher amount of computation. Chen
et al. (2013) used the genetic algorithm to identify the diffusion
capacitance. The algorithm is difficult to be implemented online
due to high computational complexity. Wang et al. (2019)
selected the charge transfer resistance as an SOH indicator
and obtained the resistance by fitting the impedance
spectroscopy. However, the measurement of the impedance
spectra requires supplementary devices (Basia et al., 2021). For
online SOH estimation, the indicators should be obtained online.

Besides, there are many uncertainties in actual vehicle
operating conditions. For the battery, the state including
temperature and state of charge (SOC) will always change; it
has a significant impact on the internal resistance (Wang et al.,
2019; Wang et al., 2021). Remmlinger et al. (2011), Wang et al.
(2015), and other researchers ignored the influence of SOC in
their work. Galeotti et al. (2015) studied the variation of internal
resistance with SOC and formed a map to consider the effect
during the SOH estimation with the internal resistance. However,
the influence of temperature on internal resistance was still
ignored. In reference (Stroe et al., 2014), the impact of
temperature was also not considered. To accurately describe
the battery SOH, these factors should be considered.

To fulfill the research gaps, 1) the equivalent circuit model (ECM)
parameters are identified based on the recursive least square method
(RLSM), facilitating the online implementation; 2) a novel SOH
indicator is determined after the applicability and sensitivity analysis
on the identified parameters; and 3) a compensating method is
proposed to eliminate the disturbance of temperature and SOC to
the indicator. Finally, a mapping relationship between the battery
SOH and the indicators is established and verified.

EXPERIMENTAL SETUP

Cycle Aging Test
As listed in Supplementary Table S1, Cells 1–3 (LFP (8Ah)) are
utilized to analyze and determine SOH indicators, and Cells 4–5
(LFP (40Ah) and NCA (2.9Ah)) are used for verification. Besides,
Cell 4 is also used to develop the temperature and SOC
compensation methods. The cycle aging tests are performed in
a climate chamber at 30°C (Cell 2 and Cell 4), 35°C (Cell 1), and
40°C (Cell 3 and Cell 5) for different battery cells. The aging cycle
is made up of a CC-CV charge process and a 2C-rate CC
discharge process. In the CC-CV charge process, the battery
cells are charged at a constant current of 1C-rate until the cutoff
voltage is reached, and a constant voltage charge maintains the
cutoff voltage until the current decayed to 1/10C-rate. The
detailed settings about the charge and discharge processes are
available in the Supplementary Material (Supplementary
Table S2).

Reference Performance Test
The test matrix for the reference performance test (RPT) is shown in
Table 1. To identify the ECM parameters, the New European Driving
Cycle (NEDC) and the Urban Dynamometer Driving Schedule
(UDDS) are used in the RPT. These two operational conditions
can excite the battery dynamic characteristic fully, facilitating
parameter identification. The battery SOC is set to 60 and 70% for
the parameter identification due to the following reasons:

(1) There exists a large current in the NEDC and UDDS
conditions, which may cause transient overpotential
phenomena. To avoid the testing failure caused by this
issue, a middle SOC range is chosen.

(2) The open-circuit voltage (OCV) is relatively stable in this SOC
range, reducing the error of parameter identification.
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Tests for Studying Disturbance of
Temperature and State of Charge
According to the operational temperature range of the battery
cell in a real application, 5, 15, 25, and 35°C are set in the test to
study the evolution of parameters at different temperatures. As
for the disturbance of SOC, different SOCs (20–80% SOC with
10% SOC interval) are taken into consideration. RPT, as
described above, is conducted on Cell 4 at different life
stages under these settings.

METHODOLOGY

Parameter Identification Based on an
Equivalent Circuit Model
ECM is widely used in the issues of parameter identification
since it achieves a trade-off between accuracy and
computational efficiency (Schmidt and Skarstad, 1997;
Gomez et al., 2011). In the study, parameters identified
from the ECM are utilized to construct the mapping
relationship between internal parameters and capacity
during the aging process. As shown in Figure 1, the
second-order ECM is adopted to describe the battery
dynamics. The specific definitions and explanations of the
seven parameters (R0, Rp, Cp, Rd, Cd, E0, and U) can refer to
our previous work (Dai et al., 2016). The difference equation
of the battery model is governed by Eq. 1 (Gomez et al.,
2011; Chang et al., 2014).

Et,k � (a + b)Et,k−1 − abEt,k−2 − R0Ik + [(a + b)R0 + (a − 1)Rp

+ (b − 1)Rd]Ik−1 − [abR0 + b(a − 1)Rp

+ a(b − 1)Rd]Ik−2 � θ1Et,k−1 + θ2Et,k−2 + θ3Ik + θ4Ik−1 + θ5Ik−2 .

(1)

where Et,k is the difference between the terminal voltageU and the
OCV at time k and Ik is the current at time k. The definitions of a,
b, θ1, θ2, θ3, θ4, and θ5 are as follows:

a � e
−ts

RpCp , (2)

b � e
−ts
RdCd , (3)

θ1 � a + b , (4)

θ2 � −ab , (5)

θ3 � −R0 , (6)

θ4 � [(a + b)R0 + (a − 1)Rp + (b − 1)Rd] , (7)

θ5 � −[abR0 + b(a − 1)Rp + a(b − 1)Rd] . (8)

In the study, the RLSM is used to identify the values of model
parameters, that is, θ1, θ2, θ3, θ4, and θ5 (Dai et al., 2016). Once θ1,
θ2, θ3, θ4, and θ5 are known, ECMparameters can be calculated by
Eqs. 9–14:

R0 � −θ3 , (9)

Rp � aθ4 + θ5 − a2R0

(a − 1)(a − b) , (10)

Rd � bθ4 + θ5 − b2R0

(b − 1)(b − a) , (11)

Cp � −ts
Rplna

, (12)

Cd � −ts
Rdlnb

, (13)

a, b � θ1 ±
�������
θ21 − 4θ2

√
2

. (14)

Statistical Analysis of Equivalent Circuit
Model Parameters
To find the most sensitive SOH indicators, typical multivariate
analysis methods including multiple stepwise regression analysis
(MSRA) and path analysis (PA) are used to analyze the coupling
relationship between the ECM parameters during the whole
life span.

Principle of Multiple Stepwise Regression Analysis
MSRA introduces the parameters into the characteristic equation
one by one and removes the low-priority parameters based on
some statistical indexes. The typical statistical indexes for judging
whether a statistical variable satisfies the significant requirements
include F-statistic, t-statistic, p-statistic, and R-squared. The
F-statistic represents the degree of similarity between the

TABLE 1 | Test matrix of RPT.

Test items Test protocol

Capacity calibration Full charge and full discharge
SOC-OCV Full charge, then discharge to specified SOC (5% SOC interval), and then rest 4 h
Internal parameter identification Internal parameters identified with NEDC and UDDS profiles at 60 and 70% SOC

FIGURE 1 | The second-order ECM.
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sample and the population. A bigger F-statistic value represents
the better effectiveness of sample data. The t-statistic can be used
to evaluate the significance of each variable contained in the final
regression equation. A bigger t-statistic value means that the
variable is more significant. The thresholds of the t-statistic value
at different significance levels are illustrated in Supplementary
Table S3. When the significance level is lower than 0.05, the
regression equation can be established. The p-statistic describes
the error probability of the regression equation. A smaller
p-statistic value means a smaller error. When the p-statistic
value is higher than 0.05, the regression equation cannot be
established. R-squared value reflects the fitting effect of the
model. The closer the R-squared value is to 1, the better the
fitting effect is.

Primary ECM parameters related to battery life span are
initially extracted through MSRA, and then the regression
equation between the selected parameters and SOH is
established. Furthermore, the p-statistic value and R-squared
value are used to evaluate the established model. The detailed
calculation process of MSRA can be found in the study by Nghiep
and Al (2001) and Stolzenberg (2004).

Principle of Path Analysis
Each ECM parameter has a particular mapping relationship with
battery capacity. For a specific parameter, this mapping
relationship is not only related to its direct impact but also
affected by the coupling relationship with the other
parameters. PA can be utilized to analyze the coupling
relationship between characteristic parameters (Stage et al.,
2004), which is beneficial to acquire the direct influence of
each parameter on the mapping relationship and mine the
indirect impact on the other parameters by a correlation
coefficient, direct path coefficient, and indirect path coefficient.
Furthermore, the direct or indirect influence can be quantified
through numerical models (Park et al., 2021).

The method is briefly described as follows. A multiple linear
regression equation is established as Eq. 15.

y � b0 + b1x1 + b2x2 +/ + bmxm , (15)

where {xi, i � 1, 2,/,m} are the independent variables and y is
the dependent variable. The following equation can be obtained
by averaging the independent variables and the dependent
variable.

y � b0 + b1x1 + b2x2 +/ + bmxm . (16)

Combining the above two equations, the following equation can
be acquired:

y − y
σy

� b1
(x1 − x1)

σy
+/ + bm

(xm − xm)
σy

� b1
σx1

σy

(x1 − x1)
σx1

+/ + bm
σxm

σy

(xm − xm)
σxm

, (17)

where {σxi, i � 1, 2,/,m} are the standard deviations of the

independent variables and {biσxiσy
, i � 1, 2,/,m} are the

standardized partial regression coefficients (the direct path
coefficients), which represent the direct influence of each

independent variable on the dependent variable. Then, a series
of complex calculations are conducted (Alwin and Hauser, 1975),
and the mathematical model of PA is described as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P1Y + r12P2Y + r13P3Y +/ + r1mPmY � r1Y
r21P1Y + P2Y + r23P3Y +/ + r2mPmY � r2Y

/
rm1P1Y + rm2P2Y + rm3P3Y +/ + PmY � rmY

, (18)

where rij is the correlation coefficient between variable xi and xj
and PiY is the direct path coefficient. rijPjY is the indirect path
coefficient, which means that xi affects y through
xj (xi → xj →Y). It can be observed that the correlation
coefficient riY is decomposed into the direct path coefficient
PiY and the sum of the indirect path coefficients ∑ rijPjY .

Definition of State of Health Considering
Disturbance of Temperature and State of
Charge
The ECM parameters generally fluctuate with temperature and
SOC even in the same battery aging state, which affects the
reliability of the SOH definition. Hence, additional tests are
conducted to reveal the disturbance of temperature and SOC.
The SOH definition is modified accordingly. Moreover, the
accuracy of the modified SOH definition will be verified by
further battery life tests. The approach for SOH indicator
determination proposed in this work is depicted in Figure 2.

RESULTS AND DISCUSSION

Verification of Parameter Identification
Method
The identification model for the ECM parameters is shown in
Figure 3. The process is carried out in Matlab/Simulink.
Coulomb counting is used to estimate SOC during the
experiments. The current can be precisely measured by the
battery tester, which leads to a tiny error during the Coulomb
counting. Therefore, SOC estimation is considered accurate
enough during the experiments.

Further, the real-time value of OCV can be calculated based on
the predefined SOC–OCV relationship, which originated from
RPT in Experimental Setup. The terminal voltage U minus OCV
of the ECM is the modeled voltage response Et required by the
identification algorithm. The ECM parameters are identified
based on the RLSM. To verify the accuracy of the
identification method, the values of ECM parameters are
preset, and the model is then tested with current profiles of
UDDS and NEDC.

The validation test is carried out four times. By comparing the
identified results with the preset values of ECM parameters, the
accuracy of the identification method can be validated. The
comparison results in different life stages under UDDS current
profile are shown in Supplementary Figure S1. The identification
values of R0, Rd, Rp, and Cd are approximately equal to their preset
values. However, there is a relative error of about 3% in
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identifying Cp (within the tolerance). A similar conclusion can be
drawn in the NEDC condition. R0, Rd, Rp, and Cd can be
accurately estimated, and for the polarization capacitance Cp,
the error is within 4%.

Degradation Tendency of Equivalent Circuit
Model Parameters
UDDS and NEDC current profiles are loaded to the battery on the
testing bench, and the actual values of response voltage and
current can be obtained and put into the identification algorithm.
Accordingly, the ECM parameters can be identified. The
convergence process of each parameter identification under
the UDDS current profile is shown in Figures 4A–E. The
convergence time of each parameter is similar: about 300 s.

In previous studies of battery model parameter identification,
the performance of the identification is generally validated by

comparing the modeled voltage and the actual voltage. The
modeled voltage is obtained by the following method. The
ECM parameters are set in the above parameter identification
model to the identification results obtained by the RLSM with the
input (the actual values of response voltage and current). The
modeled voltage response Et can be calculated by the ECM
module. As shown in Figure 4F, the modeled voltage matches
the actual voltage well. The absolute error and the relative error
are displayed in Figures 4G,H. The maximum absolute error is
0.0184 V, and the maximum relative error is just 0.57%. The
result under the NEDS current profile is similar. The maximum
absolute error is 0.0299 V, and the relative error is within 0.96%.
Therefore, the proposed identification method is reliable and
reasonable.

The ECM parameters during the whole lifetime are estimated
based on the aforementioned identification method. Accordingly,
the degradation tendency of each parameter can be obtained.

FIGURE 2 | Methodology for SOH indicator determination.

FIGURE 3 | Model of parameter identification.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6902665

Shi et al. State of Health Indicator Determination

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Subsequently, the results are statistically analyzed to explore the
relationships between the ECM parameters and the battery
capacity to extract the optimal SOH indicators. In the study,
the normalized values of ECM parameters are adopted for
eliminating the errors caused by the difference between
different physical units.

For the LFP battery with a nominal capacity of 8Ah
(Cell 1–Cell 3), the degradation tendencies of the ECM
parameters identified at 70% SOC during the whole lifetime
are depicted in Figure 5. With the battery aging, R0, RP, and Rd

increase, while CP and Cd decrease, which is similar to the
verification batteries (Cell 4 and Cell 5) drawn in

Supplementary Figure S2. Hence, these five parameters
can all be used as SOH indicators to characterize the battery
life. For batteries at 60% SOC, the same conclusion can be
obtained.

Determination of State of Health Indicators
Based on Statistical Analysis
As mentioned above, the five ECM parameters can be used to
characterize the battery SOH. However, their mapping
relationship with the capacity varies. The mapping relationship
between some parameters and the capacity is noticeable, while the

FIGURE 4 | (A) Convergence process of R0. (B) Convergence process of Rd. (C) Convergence process of Rp. (D) Convergence process of capacitance Cd. (E)
Convergence process of capacitance Cp. (F) Comparison between calculated voltage and actual voltage. (G) Absolute error of calculated voltage compared with actual
voltage. (H) Relative error of calculated voltage compared with actual voltage.
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other parameters cannot reflect the capacity evolution. In this
section, MSRA and PA are used to find indicators considerably
correlated with the capacity.

Multiple Stepwise Regression Analysis of Equivalent
Circuit Model Parameters
Parameters of Cell 1 identified at 70% SOC are taken as an
example for MSRA. The normalized values of the parameters at
different life stages are available in the Supplementary Material
(Supplementary Figure S3A). The indexes of MSR for each
parameter are listed in Table 2. Note that there are three
analysis results of MSR indexes in Table 2. Here is the first
analysis. As mentioned in the Principle of Multiple Stepwise
Regression Analysis, when the values of F-statistic, t-statistic,
and R-square are higher, the p-statistic is smaller, and the
parameter will be more significant. Hence, the relationship
between the ohmic resistance R0 and the battery capacity is
apparent.

After removing R0, MSRA is performed again for the
remaining ECM parameters. The second analysis in Table 2
gives out the indexes for the remaining four parameters, revealing
that Cd is another parameter in the regression equation.

In MSRA, when multiple parameters appear in the regression
equation due to the coupling relationship between these

FIGURE 5 | Degradation tendencies of ECM parameters under 70% SOC for Cells 1–3: (A) R0, (B) Rp, (C) Cp, (D) Rd, and (E) Cd.

TABLE 2 | Indexes of MSR for Cell 1.

Parameters F-value t-value p-value R-square

1st

R0 54.1477 −7.3585 0.0002 0.8855
Rp 52.3015 −7.2320 0.0002 0.8820
Cp 10.9145 3.3037 0.0131 0.6093
Rd 12.2831 −3.5047 0.0099 0.6370
Cd 35.2653 5.9385 0.0006 0.8344

2nd

Rp 24.4751 −0.5390 0.6093 0.8908
Cp 26.0875 −0.8122 0.4477 0.8969
Rd 24.7204 −0.5888 0.5775 0.8918
Cd 408.3480 9.3904 0.0001 0.9927

3rd
Rp 242.5520 −0.5859 0.5834 0.9932
Cp 283.4710 −1.1129 0.3164 0.9942
Rd 353.1780 1.6625 0.1573 0.9953
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parameters, it is necessary to analyze the significance of each parameter
to determine whether there are parameters that need to be removed
from the equation. The t-statistic value ofR0 is−11.4129 and that ofCd
is 9.3904. Furthermore, their p-statistic values are both close to 0.
Therefore, R0 and Cd are both essential parameters. These parameters
should be kept in the regression equation.

The MSR indexes of the remaining three parameters are
calculated again. The third analysis in Table 2 shows that the
most critical parameter is Rd. However, the t-statistic value is less
than 2.365 (sample size is 9), and the p-statistic value is more than
0.05, which cannot meet the lowest requirement for entry into the
regression equation described in Principle of Multiple Stepwise
Regression Analysis. Similarly, the other ECM parameters cannot
be introduced into the regression equation. So far, the MSRA is
finished. The ohmic resistance R0 and the capacitance Cd are the
most suitable indicators of the battery life for Cell 1 at 70% SOC.
The final linear equation characterizing SOH is expressed with

SOH � − 0.1343R0 + 0.2641Cd + 0.8685 . (19)

Moreover, MSRA is also performed on the same battery (Cell 1)
calibrated at 60% SOC, and Supplementary Figure S3B exhibits
the normalized values of ECM parameters. The critical
parameters include ohmic resistance R0, capacitance Cd, and
resistance Rp. And the linear regression equation is established
as Eq. 20.

SOH � −0.0844R0 − 0.1147Rp + 0.3924Cd + 0.8049 . (20)

From Eqs. 19 and 20, it is found that the SOH indicators are
different for the same battery at different SOCs. Therefore, it is
not easy to obtain the general SOH indicators only through
MSRA. The same conclusion can be obtained in the MSRA of
Cell 2. The most critical parameters are Rd and Cd for Cell 2 at
70% SOC. However, only Cd is selected as the indicator for Cell 2
at 60% SOC.

To summarize, SOH can be defined by MSRA, but for the
same battery at different SOCs or different batteries at the same
SOC, the SOH indicators are not the same. Therefore, pure
MSRA cannot obtain stable SOH indicators, and PA is
proposed to achieve this objective.

Path Analysis of Equivalent Circuit Model Parameters
(1) Analysis of Cell 1 at 70% SOC

Table 3 shows the correlation coefficients between ECM
parameters. The positive coefficient represents a positive
correlation, the negative coefficient means negatively

correlated, and the degree of correlation is determined by the
absolute value of the coefficient. The correlation coefficient
thresholds at different significance levels (P) are illustrated in
Supplementary Table S4. There is a significant relationship
between two variables when p < 0.05 and an extremely
significant relationship when p < 0.01. For Cell 1 at 70%
SOC, it can be observed that the correlation coefficient
thresholds of the significant level and the extremely
significant level are 0.666 and 0.798, respectively. From
Table 3, although there is no significant correlation between
Cp and Cd, the correlation coefficients between all other
parameter pairs have reached a high level. There are even
quite a few parameter pairs that have an extremely significant
relationship. Thus, there is a complicated coupling relationship
between the abovementioned parameters.

The direct path coefficients and the indirect path coefficients
of ECM parameters can be calculated as introduced in Principle
of path analysis, and the result is demonstrated in Table 4. The
bold numbers on the diagonal line in Table 4 are the direct
path coefficients between each ECM parameter and battery
capacity. The rightmost column of the table is the
correlation coefficients between each parameter and capacity,
as mentioned in Table 3. The remaining numbers are the
indirect path coefficients. Each parameter has four indirect
path coefficients since its mapping relationship with capacity
can be affected by the four coupling relationships between it and
the remaining four parameters. This coupling relationship is
considered an indirect influence. The positive and negative of
the path coefficient represent the positive and negative
influence, and the absolute value of the path coefficient
represents the degree of influence. Notably, the correlation
coefficient of each parameter is equal to the direct path
coefficient plus the sum of all indirect path coefficients.

The analysis for Table 4 is described as follows:

(a) The correlation coefficient indicates the significance of each
parameter’s mapping relationship with capacity. Accordingly,
the order of the ECM parameters’ relevance is R0 > Rp > Cd >
Rd > Cp. However, the order does not mean that R0 can be
used as an SOH indicator, andCp does not have this potential.
As elaborated above, the correlation coefficient is equal to the
direct path coefficient plus the sum of all indirect path
coefficients. Therefore, it can be concluded that the above
mapping relationship includes the direct influence and the
indirect influence from the other parameters.

(b) The correlation coefficient between Cd and the battery
capacity reaches a high level (0.9134), and the direct path
coefficient between them is the highest (0.4751). The indirect
path coefficient of Cd through R0 is larger, and that through
other parameters are relatively small, which indicates that the
significant mapping relationship between Cd and capacity is
mainly affected by itself and the indirect influences through
Cd and R0.

(c) The direct path coefficient and the correlation coefficient
between R0 and capacity are both considerable. Hence, R0 is
an essential factor. Cd plays a principal role in the indirect
influence by analyzing the indirect path coefficients of R0.

TABLE 3 | Correlation coefficient between parameters of Cell 1 (70% SOC).

Parameter R0 Rp Cp Rd Cd Capacity

R0 1
Rp 0.9844 1
Cp −0.8827 −0.9072 1
Rd 0.7974 0.7957 −0.7929 1
Cd −0.7347 −0.7419 0.5810 −0.7435 1
Capacity −0.9410 −0.9391 0.7805 −0.7981 0.9134 1
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(d) The correlation coefficient between Rp and capacity is also
relatively large, ranking the second among all five ECM
parameters. Noted that the indirect influences through R0
(−0.4510) and Cd (−0.3525) are higher than the direct
influence of Rp itself (−0.2777). Conversely, the indirect
influences through Cp and Rd have almost no contribution
to the mapping relationship of Rp with capacity. It can be
concluded that the mapping relationship between Rp and
capacity mainly results from the effects of R0 and Cd, and Rp
is not suitable as an SOH indicator.

(e) For Cp and Rd, although the correlation coefficients have
reached a significant level, the direct path coefficients
between them and the battery capacity are small. The
significant correlation coefficient is caused by the indirect
influences of R0 and Cd. Hence, Cp and Rd have no potential
as SOH indicators.

Based on the above analysis, the ohmic resistance R0 and the
capacitance Cd are considered to be the optimal SOH indicators
for Cell 1 at 70% SOC. The expression of SOH is shown in
Supplementary Table S5.

(2) Analysis of Cell 1 at 60% SOC

The PA process of Cell 1 at 60% SOC is the same as above.
There are also complicated coupling relationships between the
ECM parameters. The direct path coefficients and the indirect
path coefficients of ECM parameters are documented in Table 5.
The significance of the five parameters can be sorted as R0 > Cd >
Rp > Cp > Rd. There is a considerable mapping relationship
between R0 and the capacity caused by itself and the indirect

influence through Cd. The direct path coefficient of Cd and its
indirect path coefficient through R0 are also significant. The direct
influences of Rp, Cp, and Rd on their mapping relationships with
battery capacity are not apparent, but their indirect influences
through R0 and Cd are evident. Hence, the same conclusion can be
drawn as the above Cell 1 at 70% SOC. R0 and Cd are selected as
the SOH indicators. Moreover, its SOH expression is also
demonstrated in Supplementary Table S5.

(3) Analysis of Cells 2–5

The accelerated aging test temperature of Cell 2 (30°C) and Cell 3
(40°C) is different from that of Cell 1 (35°C). The same PA is carried
out on them. Combining the analysis results of the correlation
coefficient, direct path coefficient, and indirect path coefficient, the
ohmic resistance R0 and capacitance Cd can be determined as the
primary SOH indicators, which are consistent with the conclusion of
Cell 1. The nominal capacity of Cell 4 (40Ah) is varied from that of
Cells 1–3 (8Ah), and the type of Cell 5 (NCA) is different from that
of Cells 1–3 (LFP). PA is conducted on Cell 4 and Cell 5 at 60% SOC
and 70% SOC to investigate whether the above conclusions are
universal. Since the analysis process is the same as above, there is no
need to repeat it. The same as in Cells 1–3, the final SOH indicators
are R0 and Cd. Their SOH expressions are demonstrated in
Supplementary Table S5.

Verification of State of Health Definition
According to the above analysis, the SOH expressions of Cells 1–5
at different SOCs can be obtained, as shown in Supplementary
Table S5. The comparison of the actual SOH and calculated SOH
derived from the above SOH expressions is illustrated in Figure 6.

TABLE 4 | Direct path coefficient and indirect path coefficient of Cell 1 (70% SOC).

R0 Rp Cp Rd Cd Correlation coefficient
with capacity

R0 −0.4581 −0.2734 0.0942 0.0453 −0.3490 −0.9410
Rp −0.4510 −0.2777 0.0968 0.0452 −0.3525 −0.9391
Cp 0.4044 0.2519 −0.1067 −0.0450 0.2760 0.7805
Rd −0.3653 −0.2210 0.0846 0.0568 −0.3532 −0.7981
Cd 0.3366 0.2060 −0.0620 −0.0422 0.4751 0.9134

The bold values are the direct path coefficients between each ECM parameter and battery capacity.

TABLE 5 | Direct path coefficient and indirect path coefficient of Cell 1 (60% SOC).

R0 Rp Cp Rd Cd Correlation coefficient
with capacity

R0 −0.4654 −0.2026 0.0628 0.0159 −0.3623 −0.9515
Rp −0.4087 −0.2308 0.0555 0.0099 −0.3372 −0.9112
Cp 0.4095 0.1795 −0.0714 −0.0174 0.2418 0.7420
Rd −0.3178 −0.0980 0.0533 0.0234 −0.2377 −0.5769
Cd 0.3922 0.1810 −0.0402 −0.0129 0.4299 0.9500

The bold values are the direct path coefficients between each ECM parameter and battery capacity.
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FIGURE 6 | Comparison between the calculated SOH and actual SOH.

FIGURE 7 | (A) The disturbance of temperature to ohmic resistance R0 under different SOCs. (B) The disturbance of temperature to capacitance Cd under different
SOCs. (C) The disturbance of SOC to ohmic resistance R0 at different life stages. (D) The disturbance of SOC to capacitance Cd at different life stages.
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The calculated SOH at different SOCs of all the cells reproduces
the experimental results with a maximum error of 2.8%.
Therefore, as long as the real-time values of R0 and Cd are
identified online, SOH can be accurately estimated.

Modification of State of Health Considering
Ambient Temperature and State of Charge
Since the ECM parameters are easily affected by ambient
temperature and SOC, the definition of SOH in the previous
section needs to be revised.

Disturbance of Temperature to State of Health
Indicators
The ECM parameters of Cell 4 are identified at different
temperatures to investigate the evolutions of R0 and Cd. Figures

7A and B present the variations of SOH indicators at different
temperatures. It is apparent that R0 decreases and Cd increases as
the temperature increases. Furthermore, the variation laws are
similar for various SOC. 50% SOC is selected to investigate the
modified expression of SOH. The SOH definition based on the
method in Determination of State of Health Indicators Based on
Statistical Analysis is expressed as follows:

SOH � −0.1R0 + 0.4641Cd + 0.6255 . (21)

According to Figures 7A and B, temperature and the two SOH
indicators are both considered to be exponentially or linearly
correlated. Their expressions are as follows:

SOH � −0.1R0 × e
α(1

T − 1
Tref
) + 0.4641Cd × e

β(1
T − 1

Tref
) + 0.6255 + φ

,

(22)

FIGURE 8 | The comparison between the calculated SOH under different temperatures and the actual SOH of Cell four under 50% SOC. (A) Exponential
temperature factor. (B) Linear temperature factor; the comparison between the calculated SOH under different SOCs and the actual SOH of Cell 4 at 25°C. (C)
Exponential SOC factor. (D) Quadratic SOC factor.
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SOH � −0.1R0 × c
T
Tref

+ 0.4641Cd × ε
T
Tref

+ 0.6255 + θ , (23)

where T is the absolute temperature and Tref is the reference
temperature set to 25°C (298.15 K). α, β, φ, c, ε, and θ are the
calibration parameters determined by curve fitting. After fitting,
the modified SOH expressions are

SOH �−0.1R0 × e
−2433(1

T− 1
Tref
) +0.4641Cd × e

2334(1
T− 1

Tref
) +0.6413 ,

(24)

SOH � 1.3055
R0T
Tref

+ 0.4674
CdT
Tref

+ 1.3268 . (25)

The results of performing exponential and linear temperature factors
are shown in Figures 8A,B, respectively. Figure 9A reveals the error in
the above two SOH expressions to compare the accuracy of the
exponential trend and the linear trend. The maximum error of the
exponential trend is 2.74% at 25°C (298.15 K), while the maximum
error of the linear trend is 3.99% at 25°C (298.15 K). Moreover, the
overall error of the linear trend is more significant than that of the
exponential trend. Therefore, it can be concluded that the disturbance
of temperature to the SOH indicators is closer to the exponential trend.

Disturbance of State of Charge to State of Health
Indicators
Similarly, based on the experimental data of Cell 4, the evolution of
SOH indicators at different SOCs is also studied. As Figures 7A,B
reveal, the disturbances of different SOCs to the SOH indicators are
roughly the same at each temperature within the operational
temperature range of the battery (5–35°C). Thus, the experimental
data at 25°C can be used for analysis, and the results can be applied to
other temperatures. Figures 7C and D present the variations of the
SOH indicators at different SOCs at 25°C. Based on the variation

trends, the impacts of SOC on SOH indicators are both fitted with an
exponential or quadratic relationship. Their expressions are illustrated
as Eqs. 26, 27, respectively.

SOH � −0.1R0 × e−μSOC + 0.4641Cd × e−σSOC + 0.6255 + δ , (26)

SOH � −0.1R0 × (aSOC2 + bSOC) + 0.4641Cd

× (cSOC2 + dSOC) +∅, (27)

where μ, σ, δ, a, b, c, d, and ϕ are the model parameters, and the
fitting results are described as follows:

SOH � −0.1R0 × e0.2411SOC + 0.4641Cd × e−47.78SOC + 1.0837 .

(28)

SOH � −0.1R0 × (− 6.7SOC2 + 7.2SOC) + 0.46Cd

×(− 1.6SOC2 + 1.6SOC) + 1.01. (29)

The results of performing exponential and quadratic SOC factors
are shown in Figures 8C and D, respectively. The comparison of
errors is shown in Figure 9B, which reveals that the quadratic
relationship between SOC and SOH indicators is in better
agreement with the experimental data.

Final Definition of State of Health
Based on the above analysis, both temperature and the two SOH
indicators are proven to be exponentially correlated, while both
the SOC and the two SOH indicators are quadratically correlated.
Finally, the definition of SOH considering the disturbance of
temperature and SOC is established as Eq. 30.

SOH � −0.1R0 × (− 4.8521SOC2 + 5.5319SOC)e−1368.9(1
T − 1

Tref
)+

0.4641Cd × (− 1.2262SOC2 + 1.2506SOC)e4280.9(1
T − 1

Tref
) + 0.9945

.

(30)

FIGURE 9 | (A) Errors of SOH expressions with exponential temperature factor and linear temperature factor. (B) Errors of SOH expressions with exponential SOC
factor and quadratic SOC factor.
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The comparisons between the actual SOH and the estimated
SOH at different SOCs (40, 50, 60, and 70%) and temperatures
(5, 15, 25, and 35°C) are shown in Figure 10. Among them, the
actual SOH at 5, 15, and 35°C is 90.648%, and the maximum
error is 2.301% under a specific operational condition (40%
SOC, 15°C). Differently, the actual SOH at different SOCs
varies at 25°C to verify the applicability of the final SOH
definition in different life stages. The actual SOH at SOC of
40, 50, 60, and 70% is 100, 96.29, 92.66, and 90.648%,
respectively. In Figure 10C, it can be observed that the
SOH calculated by Eq. 30 is quite close to the actual SOH,
and the maximum error is 1.276% at 40% SOC. This result
indicates that the proposed indicators can be used for accurate
SOH estimation considering different ambient temperatures
and SOCs.

CONCLUSION

In most cases, SOH estimation is conducted based on the battery
capacity. However, the capacity estimation is difficult to be
implemented online in EVs. Measurable SOH indicators from

ECM based on statistical analysis are proposed in this study. The
main conclusions of this research are drawn as below:

(1) The RLSM is utilized to identify the ECM parameters in
UDDS and NEDC conditions. The identified values of R0, Rd,
Rp, Cd, and Cp are verified with the fitting of the battery
response voltage. The identification errors are within the
tolerance.

(2) With the battery aging, R0, RP, and Rd increase, while CP and Cd
decrease. However, there are complicated coupling relationships
between these ECM parameters. These coupling relationships are
analyzed by MSRA and PA. According to the analysis results, R0
and Cd are finally determined as SOH indicators. This conclusion
applies to NCA batteries and LFP batteries with different nominal
capacities.

(3) R0 and Cd fluctuate at ambient temperature and SOC. It is
proved that the two SOH indicators and ambient temperature
are both exponentially correlated, while the impacts of battery
SOC on both R0 and Cd present a quadratic trend. Accordingly,
the final SOH definition considering the disturbance of
temperature and SOC is established. The maximum error is
2.301% at 40% SOC and 15°C.

FIGURE 10 | The comparison between the calculated SOH under different SOCs at various temperatures and the actual SOH: (A) 5°C, (B) 15°C, (C) 25°C, and
(D) 35°C.
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GLOSSARY

SOH State of health

SOC State of charge

EVs Electric vehicles

ECM Equivalent circuit model

LFP Lithium iron phosphate

NCA Nickel–cobalt–aluminum

RPT Reference performance test

NEDC New European Driving Cycle

UDDS Urban Dynamometer Driving Schedule

OCV Open circuit voltage

RLSM Recursive least square method

PCA Principal component analysis

CA Correlation analysis

MSRA Multiple stepwise regression analysis

PA Path analysis

BMS Battery management system

R0 Ohmic resistance (Ω)

Rp Polarization resistance (Ω)

Rd Diffusion resistance (Ω)

Cp Polarization capacitance (F)

Cd Diffusion capacitance (F)

E0 OCV of the cell (V)

I Load current (A)

U Terminal voltage (V)

Et Response voltage (V)

ts The sampling time (s)

xi Independent variable

y Dependent variable

σxi Standard deviation

bi
σxi
σy

Standardized partial regression coefficient

rij Correlation coefficient between variables xi and xj

PiY Direct path coefficient

rijPjY Indirect path coefficient

T Absolute temperature (K)

Tref Reference temperature (298.15K).
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