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To better understand the flow features of the particle cluster in a particle bed, discharging
of the particle entangled cluster is simulated by the discrete element method (DEM). The
particle entangled cluster is composed of eight particles connected by rigid bonds, and the
simulated entangled cluster models are divided into two types: axisymmetric u-particles
and distorted z-particles. The simulation starts with the closed discharge outlet, and the
bonded clusters with different IDs are randomly added from the entrance section. The
particles fall freely and accumulate freely in the particle bed. The discharge hole opens after
all the particles are stationary for a period. Then, the particles are discharged from the
particle bed under gravity. The discharging process has time-dependent bulk-movement
behavior. There is not much mixing between layers on the boundary. The vertical end not
only makes the packing loose but also intensifies the interaction between particles due to
entanglement. Consequently, the discharge features of particle entangled clusters of
different included angles were quantified. The results show that the particle discharging
speeds depend on the entanglement angle (α of u-particles and η of z-particles) and
discharging outlet diameter. A large included angle may play the role of retarding or
inhibiting the discharging flow rate. Therefore, the entanglement of particle components
also always plays the key role of retarding the discharge.
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INTRODUCTION

The effects of geometric shape (elongation and symmetry) on the packing of granularmaterials, such as
the assembled rods and entangled materials, are important issues in non-spherical particle flow
dynamics, e.g., fibers (Rodey et al., 2005). The entangled particlesmay cause geometric interpenetration
and interlockings (Brown et al., 2012). Also, the entangled shape, e.g., Z-shape (Murphy et al., 2016),
may affect the packing and building of freestanding structures. The mostly and commonly studied
shapes are always tetrahedral (Gui et al., 2017; Gui et al., 2018) and superellipsoids (Liu et al., 2018).
More complex shapes, such as Mickey Mouse colloids (Wolters et al., 2015), 3D stars (Zhao et al.,
2016), pear-shapes (Smeets et al., 2014), and orthogonal rods (3DX) (Blaak and Mulder, 1998), have
also been studied to explore the effect of non-convexity on dense packing during the compression/
shaking process. Therefore, it is common interest of researchers in vast fields to explore the effects of
geometric shapes on flow dynamics of particle assemblies.

On the contrary, since the last century, nuclear power plants have made great progress in the
unremitting efforts of many experts and scholars. The United States, Germany, China, and South
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Africa have conducted a lot of related experimental and
theoretical studies on nuclear power plants (Caram and Hong,
1991; Particle Bed Modular Reactor Limited, 1999; Kadak and
Ballinger, 2004; Rycroft et al., 2006). Tsinghua University
developed the world’s first high-temperature gas-cooled reactor
(HTR-10) in 2003 and successfully generated electricity. HTR is
considered an advanced reactor type that can meet the
requirements of fourth-generation nuclear energy systems. The
particle flow of the reactor is a slow particle flow driven by gravity
and has the characteristics of macro discontinuity and micro
randomness. Therefore, many mechanical problems in the
motion of ball flow still need to be studied.

The discrete element method (DEM) was proposed by Cundall
(Cundall, 1971; Cundall and Strack, 1979). Themain idea is to use
simple mechanical models such as springs, dampers, and friction
pairs to simulate normal and tangential forces during contact and
collision between particles. In the DEM model, according to
Newton’s second law, the motion control equation of each
particle is divided into two parts: translation and rotation. The
discrete element method belongs to the deterministic model,
which contains all the kinematics information of the particles,
so it is widely used in many particle studies.

Because of the inherent safety of the fourth-generation reactor,
even if an accident occurs, the temperature inside the reactor will
not exceed the limit temperature of the particles (Jiang et al.,
2019). At present, the particle flow based on the DEM is mainly
concentrated on spherical particles (Gui et al., 2016; Wu et al.,
2016; Gui et al., 2017), and there is not much research on non-
spherical ones. This paper studies the motion of non-spherical
particles in a cone-shaped funnel. The research on non-spherical
particles is now focused on the separation and mixing of multiple
components in the drum (Alberto and Francesco, 2005; Mack
et al., 2011; Chen et al., 2016). Arbitrary convex bodies are easier
to implement in experiments (Mack et al., 2011), but in numerical
simulations, it is relatively simple to use the particle entangled
cluster to simulate non-spherical particles due to theoretical
limitations (Chen et al., 2016). This paper also uses this method.

NUMERICAL METHODS

Numerical Models
The equations for each element are expressed, respectively, as
follows:

mi
dVi
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where mi, Vi, Ii, and wi denote the mass, translational velocity,
moment of inertia, and rotational velocities of the element i. FC

ji

represents the contact force from the element j to i, and rij is the
vector pointing from the element j to i. On the contrary, n and t
denote the normal and tangential components, respectively. k and
β are the elastic constant and viscoelastic damping constant
coefficients, respectively, while Δχ and V denote the overlap
distance and relative velocity of two particles, respectively. µ is
the friction coefficient.

It should be noted that the tangential overlap is truncated to
fulfill Eq. 5. kn, kt, βn, and βt are calculated as follows (Alberto and
Francesco, 2005; Ai et al., 2011):
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where parameters Y*, R*, m*, and G* represent the equivalent
Young’s modulus, equivalent radius, equivalent mass, and
equivalent shear modulus, respectively, and they are
calculated from the material properties of elements i and j as
follows:
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where e in Eq. 13 represents the Poisson ratio.

TABLE 1 | Particle shape parameters used in simulation cases.

Parameters Values

Diameter of the particle bed Dbed (m) 1.8
Height of the bed H (m) 4
Base cone angle α (°) 30
Radius of the particle R (mm) 15
Equivalent particle diameter de, (mm) 60
Total number of particles Np 27,000
Restitution coefficient e 0.97
Young’s modulus E (Pa) 1 × 107

Poisson rate σ 0.35
Time step (s) 5 × 10−5

Total simulation time (s) 90
Coefficient of friction μ 0.3
Different aspect ratios δ 2:6, 3:4
Entangle angles θ of z-particles 0, π/4, π/2, 3π/4, π
Entangle angles β of u-particles π/3, π/2, 2π/3, 5π/6
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And for entangled particles, the equations are expressed as
follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
M

dV
dt

� ∑n
j�1

FC
j + Fg

I
dω
dt

� ∑n
j�1

RCj × FC
j

, (15)

where Rcj is the position vector from the centroid of the particle
entangled cluster to the jth element sphere. n is the element
ordinal of particle cluster. The DEMmodel used in this paper has
been verified by previous experiments and simulations (Ge and
Gui, 2019; Ge et al., 2020).

The parameters used in current simulation are listed in
Table 1.

Simulation Conditions
The geometry of the particle bed is based on the particle bed
experimental setup, and the material properties of particles are
also derived from the same test facility. The simulated particle bed
has a diameter of 1.8 m and a height of 4 m. A bonded multi-
particle model is composed of eight element spheres of radius
R � 15 mm. The bonded multi-particle model has the same total
volume as the real core particle with a diameter (de) of 60 mm in
the high-temperature gas-cooled reactor (HTGR). And two
different aspect ratios (δ�2:6 and 3:4) are simulated,
respectively. It means that the former consists of six element
spheres in the horizontal direction and two spheres at the vertical
end, while the latter consists of four spheres in the horizontal
direction and three spheres at the vertical end. To study the effect
of entanglement on particle discharging, the simulated particle
models are divided into two types: distorted z-particles and
axisymmetric u-particles.

For z-particles, five entangle angles θ � 0, π/4, π/2 (Figure 1),
3π/4, and π have been simulated. In contrast, four entangle angles
β � π/3 (Figure 2), π/2, 2π/3, and 5π/6 of u-particles are also
simulated.

SIMULATION RESULTS AND
DISCUSSIONS

Snapshots of particle discharge when aspect δ � 2:6, β � π/3 at t �
5 s are shown in Figure 3. As can be seen from the figure, the flow
of the particle entangled cluster, like the spherical particle flow,
has also the bulk-movement behavior.

FIGURE 1 | Shape of particles with entangle angle θ � π/2 of z-particles.

FIGURE 2 | Shape of particles with entangle angle β � π/3 of u-particles.

FIGURE 3 | Snapshots of particle discharge when aspect δ � 2:6,
β � π/3 at t � 5 s.
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Different from the spherical particle flow, the instantaneous
discharge of the particle entangled cluster is significantly less. It
shows that the entanglement effect can significantly reduce the
discharging velocity.

From the clouds in front, quantitative analysis of the particle
discharging speeds depends on the entanglement angle (β and θ)
and aspect ratio (δ), as shown below. The number of particles
staying in the particle bed at time t is calculated and shown in
Figure 4 and Figure 5 to quantitatively analyze the influence of
these parameters (Figure 6 and Figure 7). Firstly, the influence of
the included angle θ of z-particles on the number of resident
particles is shown in Figure 4 with dout � 0.8 m, respectively. On
the contrary, the influence of angle θ of u-particles on the number
of resident particles is shown in Figure 5 at fixed included angles of
β with dout � 0.9 m, respectively. It is clearly seen that the numbers

of resident particles are always decreasing with time, while the rate
of decrease is reduced as the included angle β becomes larger. In
other words, a large included anglemay play the role of retarding or
inhibiting the discharge flow rate. Therefore, the entanglement of
particle components also plays the role of retarding the discharge.

Obviously, the decline rate of δ � 3:4 is much faster than that of
δ � 2:6. The increase of vertical end enhances the entanglement
but also reduces the packing density. These two trends affect the
degree of mechanical entanglement of particles at the same time
(Gravish et al., 2012). It can be seen that compared with δ � 3:4,
when δ � 2:6, the particle clusters are more resistant to separation.

And when δ � 2:6, the differences between the included angles
θ are not great; on the contrary, when δ � 3:4, the differences
between the angles θ are great (Figure 6). This is because with the
increase of vertical end, the angle changes resulting in sharp

FIGURE 4 | Number of resident particles with different included angles θ
of z-particles when dout � 0.8 m.

FIGURE 5 | Number of resident particles with different included angles θ
of z-particles when dout � 0.9 m.

FIGURE 6 | Discharging velocity with different included angles θ of
z-particles when dout � 0.8 m.

FIGURE 7 | Number of resident particles with different included angles β
of u-particles when dout � 0.9 m.
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changes in the collision situation. When δ � 3:4, the simulation
has a very obvious velocity changing rule: as the angle θ increases,
the discharging velocity also increases.

As in Figure 4, the trends shown in Figure 5 are the same. Only
because of the increase of the discharging outlet, the value of the
discharge velocity increases. And when δ changes, the discharging
velocity difference among different angles θ also increases
significantly.

It is worth pointing out that, at β � π/3, multiple particles
become triangle and will not relate to each other; the particles will
be discharged soon (Figure 7).

CONCLUSION

This work used theDEM to obtain the discharging characteristics of
particle clusters with different entangle angles in particle bed–type
of HTGR. The effects of entanglement angle and aspect ratio on the
characteristics of particle flow are studied in this paper.

Overall, the results indicate the characteristics of the particle
entangled cluster flow as follows:

1) The entanglement of particle components plays the role of
retarding the discharge. And increasing the discharge outlet
will also increase the discharging velocity.

2) The entanglement and packing density affect the degree of
mechanical entanglement of particles at the same time. The
increase of vertical end may decrease or increase discharge
speed. In the research example in this paper, the increase of
vertical end is to improve the discharging velocity.

3) Once the particle entangled clusters form a closed loop, there
will be no entanglement between them, so the discharge
velocity will be greatly increased.
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