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Based on the provincial panel data of China from 2001 to 2016, this study uses the social
network analysis approach to empirically investigate the characteristics and driving factors
of the spatial association network of China’s interprovincial renewable energy technology
innovation. The findings are as following. 1) The spatial association of China’s
interprovincial renewable energy technology innovation exhibits a typical network
structure. Moreover, its network density, network hierarchy and network efficiency are
0.3696, 0.6667 and 0.7833 in 2001 and 0.4084, 0.4764 and 0.7044 in 2016, respectively,
implying the spatial association network became more and more complex and the
interprovincial association strengthened during the sample period. 2) This spatial
association network presents a “core-edge” distribution pattern. The positions and
roles of various provinces vary greatly in the spatial association network. Specifically,
the developed coastal regions such as Shanghai, Beijing and Tianjin have a degree
centrality, closeness centrality and betweenness centrality of above 75, 80 and 10,
respectively, indicating that they always play a central role in the network. However,
the northeastern regions and the relatively backward central and western regions such as
Heilongjiang, Jilin, Xinjiang, Hainan and Hebei only have a degree centrality, closeness
centrality and betweenness centrality of below 20, 55 and 0.1, respectively, indicating that
they are at a relatively marginal position. 3) The geographical proximity and the expansion
of the differences in economic development level and R&D inputs are conducive to the
enhancement of the spatial association of China’s renewable energy technology
innovation.

Keywords: renewable energy technology innovation, spatial association, driving factor, social network analysis,
China

INTRODUCTION

As an important production factor for building a modern economic system, energy is closely linked
to national economy, people’s livelihood and economic security. With the rapid development of
economy, China has become the largest energy consumer and the largest CO2 emitter in the world
(Dong et al., 2018; Bai et al., 2019; Ma et al., 2019). However, due to the limitation of energy
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endowments, China’s energy consumption has been dominated
by coals for a long time, which causes serious environmental
pollution problems and brings major challenges to energy
security (Wang et al., 2016; Long et al., 2017; Liang et al.,
2019). Numerous studies have found that the development of
renewable energies can contribute to reducing carbon emissions
(Jaforullah and King, 2015; Dong K. et al., 2017; Lin and Zhu,
2017; Lin and Zhu, 2019; Wang et al., 2021), optimizing energy
structure (Dong K.-Y. et al., 2017; Chen and Lei, 2018; Liang et al.,
2019) and ensuring energy security (Irandoust, 2016; Hamed and
Bressler, 2019; Tareq and Lindsey, 2019). China is fully aware of
the importance of developing renewable energies. Therefore, in
the 2014–2020 Strategic Action Plan for Energy Development, the
Chinese government makes a promise to reduce the annual coal
consumption below 4.2 billion tons and the share of coal below
62% by 2020. Meanwhile, China will actively develop renewable
energies to increase the share of non-fossil fuels in the total
primary energy mix from 9.8% in 2013 to 15% by 2020 (National
Energy Administration of the People’s Republic of China, 2014).

Renewable energy technologies play a positive role in saving
energies and reducing carbon emissions, which has been
confirmed by a large number of studies (Muis et al., 2010;
Anandarajah and Gambhir, 2014; Jaforullah and King, 2015;
Long et al., 2015; Lin and Zhu, 2017; Lin and Zhu, 2019).
Promoting renewable energy technology innovation and large-
scale applications has become an important strategy for building
a modern energy system. However, due to unbalanced regional
development, China’s technological innovation endowments vary
greatly in different regions. Typically, the eastern provinces play
technological leaders to promote the progress in technology
frontier and provide with the most advanced technologies,
while the central and western provinces are learners and
chasers. More to the point, the overall technological progress
in China needs not only innovations from the leaders, but also
sustaining R&D inputs and innovations from the laggards to
absorb and localize technologies. Therefore, the spatially
dispersed regions form an innovation community, playing
different but associated roles in the overall development of
renewable energy technology. Whether the scarce innovation
resources are distributed across regions in a coordinated and
efficient way endogenously affects the performance of themodern
energy system in China. In this sense, it is necessary to
systematically investigate the spatial association of
interprovincial renewable energy technologies in China.

At present, researches on renewable energy technology
innovation are mainly focused on exploring their driving
factors. They have studied the impacts of R&D inputs
(Johnstone et al., 2010; Popp et al., 2011; Li and Lin, 2016;
Joëlle and Shestalova, 2017), energy price (Johnstone et al.,
2010; Nicolli and Vona, 2016; Grafström and Lindman, 2017;
He et al., 2018; Lin and Chen, 2018), financial development
(Brunnschweiler, 2010; Li and Wang, 2011; Kim and Park,
2016), economic growth (Li and Lin, 2016; He et al., 2018; Xu
and Lin, 2018), and other factors on renewable energy technology
innovation. As pointed out by the new economic geography, the
economic behaviors of economic entities have the spatial
dependence on each other, and the economic linkages and

knowledge spillovers between regional economic entities can
promote the rapid development of the whole region through
interregional spatial associations (Krugman P., 1991a; Krugman
P., 1991b). As the subsystem under the national renewable energy
technology innovation system, the regional renewable energy
technology innovation systems generally interrelate with each
other. However, the above always use the traditional econometric
methods to investigate the impacts of the internal factors of each
subsystem on renewable energy technology innovation activities,
without considering the impacts of the inter-association between
subsystems. With the development of spatial econometrics, the
academic community has begun to pay attention to the issue of
innovation spillovers between different geographical regions.
Currently, a considerable number of researches has concerned
the spatial association of technological innovation activities,
reaching a relatively consistent conclusion. To be specific,
there is a significant spatial correlation between technological
innovation activities. In other words, the innovation performance
in a certain region is affected by the innovation activities in
surrounding regions (Keller, 2002; Bottazzi and Peri, 2003;
Moreno et al., 2005; Cabrer-Borrás and Serrano-Domingo,
2007; Shang et al., 2012).

In general, there are still some shortcomings in existing
literature as follows. First, in terms of research objects, most
studies focus on general technology innovation activities but
don’t discuss the specific technology innovation activities such
as the renewable energy technology innovation (RETI).
Meanwhile RETI is of great significance to conserve energies,
reduce emissions and prevent pollution. Second, in terms of
research methods, except the spatial weight matrix data, the
other data used in the above studies is attribute data1, having
no concern with the spatial association relationship between
samples. The traditional spatial econometric methods used in
the existing studies only consider the geographical proximity
effect, which is difficult to grasp the spatial association
characteristics of innovation activities on the whole. In fact,
with the improvement of transportation infrastructure and the
advancement of marketization, the association of innovation
activities has exceeded the proximity relationship in the
traditional spatial econometric analysis, but exhibits a multi-
threaded complex network. The social network analysis (SNA)
approach using the relational data2 can break through the
limitations of attribute data, and better describe the
characteristics of the overall spatial association network and
the nodes in the network. So, it is gradually used for spatial
association analysis of innovation activities. For instance,
Maggioni and Uberti (2009) and Wanzenböck et al. (2014) use
this approach to analyze the innovation activities across the
Europe and explore their spatial association network
characteristics; Li et al. (2015) employ it to study the spatial
and temporal evolution of urban innovation network in China;
Shao et al. (2018) adopt it to study the spatial network structure
and driving factors of regional innovation development in China.

1Data that relates to an individual’s attitudes, opinions, and behaviors, such as the
characteristic data of certain individuals collected through surveys (Scott, 2007).
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Third, in terms of the research contents, most are focused on the
characteristics of the spatial association network of technology
innovation activities, but the driving factors of its formation are
rarely discussed.

The academic contributions of this paper are as follows. First,
this paper enriches the existing literature on renewable energy
technology innovation research, especially the empirical analysis
from a spatial perspective, and provides Chinese evidence that
renewable energy technology innovation is spatially associated.
The social network analysis is innovatively introduced into the
field of energy research, providing a new perspective for the
research on the spatial association of renewable energy
technology innovation. Our method breaks through the
limitations of traditional econometric methods, no longer
limited to the geographical proximity. Additionally, the social
network analysis method abandons the traditional attribute data,
and directly uses matrix data to examine the spatial association
relationship and describe the structure and characteristics of the
spatial association network, making the entire analysis process
easier and more reliable. Second, taking China’s 30 provinces and
municipalities as spatially associated subsystems, we describe the
characteristics of the overall spatial association network by using
the Social Network Analysis (SNA) approach, and visualize the
status of each province in the spatial association network by using
GIS (geographic information system) technology. This not only
enables us to better understand the role of each province in the
complex interprovincial association network but also depict the
“core-edge” pattern of China’s renewable energy technology
innovation from a spatial perspective. Meanwhile, the reasons
for the gap of renewable energy technology innovation in
different regions are analyzed in detail. Third, this paper takes
China as an example to empirically analyze the factors
influencing the spatial association network of renewable
energy technology innovation. These factors may also affect
the international and regional renewable energy technology
cooperation, helping us to find a breakthrough for
international and regional cooperation in renewable energy
technology. Moreover, the driving factors are empirically
analyzed by the Quadratic Assignment Procedure (QAP)
analysis. This is a non-parametric estimation method based on
matrix data, no need to consider the common colinearity problem
of the traditional OLS regression method, thus greatly facilitating
the research of the influencing factors of association relationship
from the perspective of renewable-energy-related policy.

METHODOLOGY AND DATA

Determination of the Spatial Association of
Renewable Energy Technology Innovation
The SNA approach takes “association” as the basic analysis unit,
used for analyzing relational data (Liu, 2009). Thus, the
determination of the spatial association of renewable energy
technology innovation is the key to this study. Gravity model
and VAR Granger Causality test method are frequently used to
determine such an association in existing researches. For this
study, the Gravity model outperforms the VAR model as the

former can construct the corresponding renewable energy
technology innovation association matrix based on the data of
each year. Hence, it can analyze the overall network structure of
every year and therefore describe the dynamic evolution trend of
the spatial association network while the VAR model cannot.
Additionally, the lag order is required when using the VAR
model, and the results may be biased due to the subjective
selection of the lag order. But the Gravity model can avoid the
sensitivity and errors caused by subjective selection. Therefore,
following Maggioni and Uberti (2009) and Broekel et al. (2014),
we select the gravity model to determine the spatial association of
renewable energy technology innovation. The basic gravity model
is as follows (Hoekman et al., 2009; Broekel et al., 2014; Kuik et al.,
2019):

Fij � k
MiMj

Db
ij

(1)

where Fij is the gravitational size between regions i and j;Mi and
Mj represent the mass of regions i and j, respectively; Dij denotes
the distance between regions i and j; b is the distance attenuation
coefficient; k is the empirical constant.

In this study, the gravity model is modified to enhance its
applicability. The primary task is to determine the measurement
indicators of renewable energy technology innovation “mass”.
The number of renewable energy technology patent grants is
selected to indicate the development level of renewable energy
technology innovation since it is a widely used indicator of the
output of energy-related R&D activities (Lam et al., 2017; Kim
et al., 2017). Additionally, considering that an economically
developed region often has good infrastructure and a strong
ability to attract the resources and factors for renewable
energy technology innovation, the economic development level
indicator is used. Given that R&D personnel are the main
promoters and implementers of renewable energy technology
innovation activities, the number of R&D personnel is included.
To sum up, the geometric means of the number of renewable
energy technology patent grants, the regional real GDP and the
number of R&D personnel are used to represent the regional
renewable energy technology innovation “mass” (Mi and Mj) in
accordance with the existing studies (Wang et al., 2018; Su and
Yu, 2019).

Based on the study of Shao et al. (2018), the distance
attenuation coefficient b is assigned a value of 2; the ratio of
the number of the renewable energy technology patent grants of
region i to the sum of regions i and j is selected as the empirical
constant. Furthermore, in order to simultaneously consider the
impacts of the spatial and economic distances on the spatial
association of renewable energy technology innovation, we
divide the straight-line distance of regions i and j (Dij,
i.e., the distance between the provincial capitals) by their
differences in per capita GDP (i.e., gi–gj). The specific model
is as follows:

Fij � kij

������
TiGiRi

3
√ ������

TjGjRj
3
√

( Dij

gi−gj)
2 , kij � Ei

Ei + Ej
(2)
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where Fij denotes the spatial association intensity of renewable
energy technology innovation between regions i and j; Ti and Tj

are the numbers of renewable energy technology patent grants of
regions i and j, respectively; Gi and Gj are the real GDP of regions
i and j, respectively; Ri and Rj are the numbers of R&D personnel
of regions i and j, respectively. The modified Gravity model (2)
outperforms standard Gravity model (1) because the former
considers not only the regional renewable energy technology
innovation in measuring the “mass”, but also the economic
and geographical distances, which makes it more accurate
when estimating the spatial association network of regional
renewable energy technology innovation.

A gravitational matrix is obtained according to the above
equation, and the average of each row is taken as the critical value.
If the gravity value of a matrix element is higher than the critical
value of the row, then the element is defined as 1, indicating that
there is an association in renewable energy technology innovation
between the two regions; otherwise, the element is defined as 0,
indicating that there is no association between them (Liu et al.,
2015; Su and Yu, 2019).

Network Characteristic Indicators
Overall Network Characteristics

(1) Network density. It represents the density of associations
and the degree of closeness between nodes in a network,
namely a measure of network completeness (Kim et al.,
2020). A greater network density means an increased
number of associations, and a closer spatial association
between the regions in a network (Su and Yu, 2019). The
network density is measured by the ratio of the actual
number of associations to the maximum possible number
of associations in a network. The network density is
defined as Eq. 3 as follows, where Dn is the network
density, L is the actual number of associations, N is the
number of nodes, andN(N − 1) is the maximum possible
number of associations.

Dn � L/[N(N − 1)] (3)

(2) Network hierarchy. It measures the asymmetrical
reachability between nodes in a network, reflecting the
hierarchical structure and dominance of each node. A
lower network hierarchy means a decreased number of
asymmetric associations and a less strict hierarchical
structure (Liu et al., 2015). The network hierarchy is
defined as Eq. 4 as follows, where H is the network
hierarchy, K is the number of symmetrically reachable
node pairs, max(K) is the maximum possible number of
symmetrically reachable node pairs.

H � 1 − [K/max(K)] (4)

(3) Network connectedness. It measures the accessibility
between nodes in a network (Kim et al., 2020). If there is
an association between any two nodes in a network, then
the network structure is relatively stable and the network
connectedness is 1. If there are more isolated nodes in the

network, that is to say, these nodes cannot associate with
other nodes directly or indirectly, then the network
connectedness is smaller. The network connectedness
is defined as Eq. 5 as follows, where C and V is the
network connectedness and the number of mutually
unreachable node pairs, respectively.

C � 1 − {V/[N(N − 1)/2]} (5)

(4) Network efficiency. It represents the degree of redundant
associations in a network (Shao et al., 2018). A lower
network efficiency means an increased number of spatial
association channels between nodes, a more obvious
multiple superpositions of spatial associations and a
more stable network structure. The network efficiency
is defined as Eq. 6 as follows, where E is the network
efficiency, M is the number of redundant associations,
and max(M) is the maximum possible number of
redundant associations.

E � 1 − (M/max(M)) (6)

Node Network Characteristics
In this study, the node network characteristics are described by
using degree centrality, closeness centrality and betweenness
centrality.

(1) Degree centrality. It measures the ability of a node to
control other nodes (Liu et al., 2015). If a node has a
higher degree centrality, then the node has more
associations with other nodes in the network with a
stronger ability to control other nodes (Huallacháin
and Lee, 2014). The degree is the ratio of the number
of nodes directly associated with a certain node (n) to the
maximum possible number of directly associated nodes
(N). It is defined as follows:

CRD � n/(N − 1) (7)

(2) Closeness centrality. It measures the ability of a node to
be out of the control of other nodes (Song et al., 2019). If a
node has a higher closeness centrality, then the node is
less susceptible to other nodes, and closer to the center of
the network. Its specific definition is shown in Eq. 8 as
follows, where dij denotes the shortest distance from
nodes i to j.

CAPi � n − 1

∑n
j�1

dij
× 100 (8)

(3) Betweenness centrality. It measures the ability of a node
to act as a “bridge” connecting other nodes (Shao et al.,
2018). If a node has a high betweenness centrality, then
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the node has a stronger ability to control the association
behaviors of other nodes. It can play a greater “bridge”
and “intermediary” role, and is closer to the center of the
network. It is defined as follows:

CRB �
2∑N

j
∑N
k
bjk(i)

N2 − 3N + 2
(9)

where j≠ k≠ i, and j < k; gjk denotes the number of shortcuts
between nodes j and k; bjk(i) denotes the probability that node i is
on the shortcut between nodes j and k, namely bjk(i) � gjk(i)

gjk
.

Overall, degree centrality, closeness centrality and
betweenness centrality all reflect the position and role of each
node in the network from different aspects. If a node is closer to
the center in the network, then it is more capable of affecting
other nodes, or other nodes have greater dependence on it. This
means it have a higher centrality. By calculating the centrality of
each node in the network, the position and role of each node can
be described in the network, thus showing the distribution
pattern of the network.

The Factors Influencing the Spatial
Association Network
Based on the above analysis, the influential factors of the spatial
association network are investigated by using the non-parametric
QAP (quadratic assignment procedure) method. It does not
assume the independence of explanatory variables. Compared
with the traditional OLS method, it can effectively eliminate the
estimation bias due to multicollinearity among independent
variables by permuting the matrix data and is therefore more
suitable for the parameter estimation of the matrix data (Bai et al.,
2020a). Additionally, compared with the parametric method, its
estimation results are generally more robust (Su and Yu, 2019).

According to the studies (Wang et al., 2018; Su and Yu, 2019),
the QAP correlation analysis and QAP regressions analysis are
employed to explore the driving factors of the spatial association
network of China’s renewable energy technology innovation.

The steps of the QAP correlation analysis are as follows. The
first step is to convert all matrixes into long vectors, and calculate
the correlation coefficients. Then the correlation coefficients are
re-calculated for many times through simultaneous and random
permutation in rows and columns of the matrixes. Therefore, the
distribution of the correlation coefficients is obtained. Finally the
significance levels of correlation coefficients are calculated
according to the proportion of the correlation coefficients
greater or equal to the correlation coefficient calculated for the
first time.

Before regression analysis, the driving factors that are
significantly related to the spatial association matrix of
renewable energy technology innovation are selected through
QAP correlation analysis. Then they are used as the explanatory
variables for QAP regression analysis. The steps of QAP
regression analysis resemble to that of the QAP correlation

analysis. The difference is that the former calculates the
regression coefficients instead of correlation coefficients so that
the explanatory variables that are insignificant in QAP correlation
analysis are excluded.

When investigating the driving factors of the spatial association
network, we first focus on the geographical proximity relationship.
Relevant researches show that there may be a strong spatial
association of renewable energy technology innovation between
geographically adjacent regions (Keller, 2002; Bottazzi and Peri,
2003; Hoekman et al., 2009; Shang et al., 2012). Thus, we use the
indicator of geographical proximity and test if its impact exists.
Additionally, the proximity of economic characteristics is also
considered as suggested by related studies (Boschma, 2005). Its
effect can be ambiguous, depending on various economic
indicators. For instance, two regions that are similar in terms
of knowledge stock are likely to cooperate and share knowledge.
But two regions with large divergence in energy resource
endowments always entail flow of energy-related knowledge,
since the eastern provinces in China are relatively rich in
technology and poor in energy resource endowments
compared with western provinces. Thus, following the existing
researches (Joëlle and Shestalova, 2017; He et al., 2018; Lin and
Chen, 2018), we divide the difference in economic characteristics
into three aspects. First is the difference in economic development
mode that is the core element of economic characteristics.
Specifically, the difference in economic development level, the
difference in industrial structure and the difference in the
opening-up degree are selected. Second is the difference in
energy consumption status. Specifically, the differences in
energy consumption intensity and energy price are used,
considering they affect the development of renewable energy
technologies from the demand side. Third is the difference in
science, technology, and education. It may lead to the flow of
innovation resources among regions. Specifically, the differences
in intensity of R&D inputs and scale of higher education are used.

Based on the above theoretical analysis, the following model is
constructed:

ret � f (geo, gdp, ind, open, eni, enp, rd, edu) (10)

The specific measures of driving factor variables are illustrated
in Table 1. To obtain the differences in the above economic
characteristic indicators between regions, we first calculate the
average of the above indicators from 2001 to 2016, and then
construct the difference matrices of the corresponding indicators
by the absolute values of the differences between the
corresponding indicators of each province. Since the
measurement units of these difference matrices are different,
they are normalized by the Z-value normalization method, so
that the average of each driving factor difference matrix is 0, and
its standard deviation is 1.

Data Sources
In this study, 30 provinces and municipalities in China are
selected (excluding the Tibet, Hong Kong, Macao, and Taiwan
due to the unavailability of data). The research period is from
2001 to 2016. The data of the regional GDP, the per capita GDP,
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the GDP deflator, the tertiary industry’s output value, the export
trade, the population and the number of R&D personnel is
derived from the China Statistical Yearbook (National Bureau
of Statistics of the People’s Republic of China, 2002–2017a) and
China Statistical Yearbook on Science and Technology (National
Bureau of Statistics of the People’s Republic of China and
Ministry of Science and Technology of the People’s Republic
of China, 2002–2017). The total energy consumption and the fuel
power purchase price index are derived from the China Energy
Statistical Yearbook (National Bureau of Statistics of the People’s
Republic of China, 2002–2017b). And the number of renewable
energy technology patent grants is derived from China’s official
patent search system, i.e., the Patent Search and Analysis (PSA)
system of the China’s National Intellectual Property
Administration (CNIPA)3 which has been used by Lin and
Zhu (2019) and Bai et al. (2020). The price-related variables
are deflated by the constant price of 2001 to reduce the impact of
the price factor. The geographical distance between provinces is
expressed by the straight-line distance, which calculated by the
latitude and longitude coordinates of the provincial capitals. And
the R&D capital stock data is calculated using the method of Wu
(2006).

NETWORK STRUCTURE
CHARACTERISTICS
Structure Characteristics and Evolution
Trend of the Overall Network
Based on the modified gravity model, the spatial association of
China’s interprovincial renewable energy technology innovation
is determined and a spatial association matrix is established.
Then, Netdraw, a visualization tool in UCINET (University of
California at Irvine NETwork) software (Liu, 2009), is used to
draw the spatial association network in 2001 and 2016 (see
Figure 1 for details). It can be seen that the spatial association
of China’s interprovincial renewable energy technology
innovation exhibits a typical network structure. Meanwhile,
compared with that in 2001, the spatial association network in
2016 is more complex and more closely associated in space.

To better carry out quantitative analysis, the UCINET
software is further used to measure the overall network
characteristics of China’s renewable energy technology
innovation from the aspects of network density, network
connectedness, network hierarchy, and network efficiency, etc.
See Figures 2, 3.

First, the results show that the network connectedness was one
from 2001 to 2016, except for 2004 (only 0.9333), indicating the
spatial association of China’s interprovincial renewable energy
technology innovation was very close. Second, the number of
spatial associations was increasing year by year. Specifically, it
rose from 142 in 2001 to 184 in 2016. The network density was
always rising, while the network efficiency was always declining,
indicating that the spatial association of China’s interprovincial
renewable energy technology innovation continuously
strengthened, and the network stability was rising. Third, the
network hierarchy was declining on the whole from 2001 to 2016,
indicating that the relatively rigid spatial association system for
China’s renewable energy technology innovation has been
gradually broken, and the collaborative innovation capability
of renewable energy technologies between regions has enhanced.

Based on the above results, it can be found that the spatial
association of China’s interprovincial renewable energy
technology innovation exhibits a typical network structure.
Moreover, the spatial association network became more and
more complex, and the spatial association between regions
continuously strengthened during the sample period. The
reasons are as follows. On the one hand, the Chinese
government has enacted a series of policies aimed at
promoting the development of renewable energies. For
instance, the Chinese government promulgated the Renewable
Energy Law of the People’s Republic of China in 2005, which
supports the development of renewable energy in legislation and
fosters the development of renewable energy in China (Wang
et al., 2010; Schuman and Lin, 2012). Additionally, the Chinese
government issued the Medium- and Long-Term Development
Plan for Renewable Energy in China in 2007, pointing out that the
share of renewable energy in total primary energy consumption
will increase to 16% by 2020. This creates a favorable
environment for the development of renewable energies

TABLE 1 | Measure of driving factor variables.

Driving factor group Driving factor variable Symbol Measure

Geographical proximity relationship Geographical proximity geo If the two provinces are adjacent, its value is taken 1; otherwise, taken 0
Difference in economic development
mode

Difference in economic
development level

gdp Absolute value of the difference of per capita GDP between provinces

Difference in industrial structure ind Absolute value of the difference of the proportion of the tertiary industry’s output value
to GDP between provinces

Difference in opening-up degree open Absolute value of the difference of the per capita import and export trade volume
between provinces

Difference in energy consumption
status

Difference in energy
consumption intensity

eni Absolute value of the difference of the proportion of the total energy consumption to
GDP between provinces

Difference in energy price enp Absolute value of the difference of the fuel power purchase price index deflated by the
price of 2001 between provinces

Difference in science, technology and
education

Difference in R&D intensity rd Absolute value of the difference of the internal R&D expenditure between provinces
Difference in scale of higher
education

edu Absolute value of the difference of the number of students in colleges and universities
per 100,000 people between provinces
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(Wang et al., 2011; Hua et al., 2016). Overall, the above measures
play a positive role in fostering the development of the renewable
energy industry, and increase demand for renewable energy
technology innovation, therefore strengthening the spatial
association of China’s renewable energy technology innovation.
On the other hand, China’s transportation infrastructure has
been continuously improving (Zhang, 2013; Tan et al., 2018),
which has played a positive role in expanding the interregional
exchange of people and commodities (Cantos et al., 2005; Bronzini
and Piselli, 2009), thus promoting the interregional communication
of renewable energy knowledge and technologies. Meanwhile,
China’s communication technology has also achieved continuous
progress, reducing the costs of interregional factor flows and
enhancing the accessibility of innovative entities to exchange with

long-distance partners (Salazar et al., 2003; Torre and Rallet, 2005),
thus strengthening the cooperation of renewable energy technology
innovation between regions in China.

Analysis of Node Network Characteristics
The position and role of each province in the spatial association
network of China’s renewable energy technology innovation is
analyzed by the following steps: 1) calculate the average of the
original data from 2001 to 2016; 2) use the average data to
measure the degree, closeness, and betweenness of each province;
3) make use of the above measurement results to analyze the
centrality of each province. The measurement results are
displayed on a map through the ArcGIS software, as shown in
Figure 4.

FIGURE 1 | Spatial association network of interprovincial renewable energy technology innovation in (A) Year 2001 and (B) Year 2016. Notes: The blue cycles
denote “nodes,” representing “provinces,” and black lines with arrows denote the spatial association of interprovincial renewable energy technology innovation.
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The measurement results show that the spatial association
network of China’s interprovincial renewable energy
technology innovation exhibits a significant “core-edge”
distribution pattern. To be specific, i) the provinces with
the three centrality indicators ranking in the first gradient
(i.e., the darkest area in Figure 4) are Shanghai, Beijing,
Tianjin, Jiangsu, Zhejiang, and Guangdong. All of them are
located in the eastern coastal region. Furthermore, Shanghai
has the highest degree, closeness and betweenness. It indicates
that some of the eastern coastal developed provinces, led by
Shanghai, are at the core of the spatial association network,
playing a central role in the network, and having a strong
ability to attract the innovative resources and factors needed
for the development of renewable energy technologies; ii) the

provinces with the three centrality indicators ranking in the
fourth gradient (i.e., the lightest area in Figure 4) are
Heilongjiang, Jilin, Liaoning, Xinjiang, Ningxia, etc. Most of
them are located in the northeastern, central and northwestern
regions. They play a marginal role in the network. The main
reasons are as follows: first, the eastern coastal regions such as
Shanghai have a highly developed economy and a large energy
demand. But, subject to energy endowments, they have the
poor ability in energy self-sufficiency, without sufficient
conventional energy supplies. Therefore, they have a large
demand for renewable energies. Statistics show that in 2016
Shanghai’s energy consumption was 117.12 million tons of
standard coal, while its fossil energy yield was only 38.2752
million tons of standard coal (National Bureau of Statistics of

FIGURE 2 | Number of associations and network density. Note: A greater network density means a closer spatial association between the regions in a network.

FIGURE 3 | Network efficiency and network hierarchy. Note: A lower network efficiency means a more stable network structure, and a lower network hierarchy
means a less strict hierarchical structure.
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the People’s Republic of China, 2017a). The huge demand for
renewable energies inevitably promotes the development of
renewable energy technology innovation and strengthens its
central position in the spatial association network. The central
and western regions, such as Xinjiang and the northeastern
region are rich in fossil energy, but compared with energy
production, their energy consumption is relatively smaller. For
example, in 2016, Xinjiang’s energy consumption was 162.02
million tons of standard coal, but its fossil energy yield was
250.2749 million tons of standard coal (National Bureau of
Statistics of the People’s Republic of China, 2017b). The
abundance of fossil energy supplies has led to a smaller demand
for renewable energies in these regions, making it difficult for them
to occupy a central position in the spatial association network;
second, the eastern coastal developed regions such as Shanghai are
relatively economically developed with complete infrastructure and
good innovation conditions to attract R&D personnel and
technologies (Liu, 2013; Yang et al., 2018), thus enhancing their
central position in the spatial association network.While the central
and western regions, such as Xinjiang and the northeastern region
are economically backward, with relatively poor infrastructure and
innovation environment, as well as relatively backward renewable
energy technologies, thus making it difficult for them to occupy a
central position in the spatial association network.

ANALYSIS OF THE FACTORS
INFLUENCING THE SPATIAL
ASSOCIATION NETWORK
Following Su and Yu (2019), we apply the QAP regression
analysis to further investigate the impacts of various driving
factors on the spatial association of renewable energy
technology innovation. Before regression analysis, the driving
factors that are significantly related to the spatial association
matrix of renewable energy technology innovation are selected
through the QAP correlation analysis. Then they are used as the
explanatory variables for QAP regression analysis. The QAP
correlation results are obtained through randomly permuting
for 5,000 times. Table 2 reports the QAP correlation results. We
can see that the actual correlation coefficient between the spatial
association matrix and the geographical proximity matrix is
0.136, and significant at the 1% level. This indicates that the two
matrices are significantly positively correlated, that is,
geographically adjacent regions tend to have stronger
relevance in terms of renewable energy technology
innovation activities. The actual correlation coefficients
between the per-capita GDP difference matrix, the industrial
structure difference matrix, the openness degree difference
matrix, the R&D capital stock difference matrix, the higher
education scale difference matrix and the spatial association
matrix are 0.472, 0.328, 0.462, 0.312 and 0.259 respectively, and
all are significant at the 1% level. This implies that the
differences in economic development mode, science,
technology and education are significantly positively

FIGURE 4 | Spatial distribution of the centrality: (A) Degree centrality, (B)
Closeness centrality and (C) Betweenness centrality. Notes: As the legend at
the lower left shows, darker areas indicate a higher centrality and lighter areas
indicate a lower centrality.
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correlated with the spatial association of renewable energy
technology innovation. The correlation coefficients between the
energy consumption intensity difference matrix, the energy price
difference matrix and the spatial association matrix are −0.033 and
−0.029, respectively, and not significant. This means that there is no
significant correlation between the spatial association of renewable
energy technology innovation and the difference in energy
consumption. These results indicate that the geographical
proximity matrix, the per-capita GDP difference matrix, the
industrial structure difference matrix, the openness degree
difference matrix, the R&D capital stock difference matrix and
the higher education scale difference matrix should be included
in the QAP regression analysis framework of this study.

We randomly permute the data for 2000 times using the
UCINET software. Table 3 reports the QAP regression results.
It should be noted that the normal standard errors cannot be
obtained as the estimation results of QAP regression analysis are
based on the matrix permutation (Peoples and Sutton, 2015). It
can be seen from Table 3 that the coefficient of the geographical
proximity matrix (i.e., geo) is significantly positive, indicating that
the spatial association of renewable energy technology innovation
between adjacent regions is stronger than others. This is because
the geographical proximity is conducive to the flow of innovative
factors (Hoekman et al., 2009; Shang et al., 2012; Abramo et al.,
2020), thus establishing a stronger spatial association in
renewable energy technology innovation. The coefficient of the

difference in economic development level (i.e., gdp) is
significantly positive, indicating that such a difference can
promote the spatial association of interregional renewable
energy technology innovation. The reasons are that those
regions with a large difference in economic development level
often have a large difference in factor endowment structure,
making it more likely to establish trade contacts (Heckscher,
1919; Samuelson, 1948). Furthermore, the development of
interregional trade is conducive to exchanges of innovative
resources (Coe and Helpman, 1995; Eaton and Kortum, 1996),
ultimately strengthening the spatial association of renewable
energy technology innovation. Additionally, the widening of
the difference in economic development level also enlarges the
difference in the income of R&D personnel, which may attract
renewable energy technology talents to migrate from
underdeveloped regions to developed regions. Finally, the
spatial association of renewable energy technology innovation
is enhanced. The coefficient of the difference in R&D input
intensity (i.e., rd) is significantly positive at the level of 1%,
indicating that such a difference can promote the spatial
association of interregional renewable energy technology
innovation. This is because the growth of technology and
knowledge is from R&D activities (Romer, 1990; Aghion and
Howitt, 1992; Grossman andHelpman, 1993; Furman et al., 2002;
Hall and Lerner, 2010), while technological advancement and
innovation drive economic growth and social welfare

TABLE 2 | Results of QAP correlation analysis.

Variable Actual
correlation
coefficient

Significance Average
correlation
coefficient

Std.
Dev

Min Max P>= 0 P<= 0

geo 0.136 0.001 0.000 0.037 −0.122 0.160 0.001 1.000
gdp 0.472 0.000 −0.002 0.069 −0.139 0.334 0.000 1.000
ind 0.328 0.000 0.000 0.075 −0.146 0.343 0.000 1.000
open 0.462 0.000 −0.001 0.073 −0.139 0.349 0.000 1.000
eni −0.033 0.366 −0.001 0.067 −0.150 0.293 0.634 0.366
enp −0.029 0.320 0.001 0.055 −0.163 0.237 0.681 0.320
rd 0.312 0.000 −0.001 0.067 −0.156 0.287 0.000 1.000
edu 0.259 0.002 −0.002 0.069 −0.150 0.334 0.002 0.998

Notes: The actual correlation coefficient is the correlation coefficient actually obtained between any two matrices; the average correlation coefficient is the average of the set of correlation
coefficients after random permutation; the max. and the min respectively represent the maximum value and the minimum value in the set of correlation coefficients after random
permutation; P ≥ 0 and P ≤ 0 respectively indicate the probability that the set of correlation coefficients obtained after random permutation is not less than and not greater than the actual
correlation coefficient.

TABLE 3 | Results of QAP regression analysis.

Variable Unstandardized
Coefficient

Standardized
Coefficient

Significance Proportion
as

Large

Proportion
as

Small

Intercept 0.164 0.000
geo 0.252 0.224 0.000 0.000 1.000
gdp 0.146 0.365 0.000 0.000 1.000
ind −0.006 −0.015 0.406 0.594 0.406
open 0.052 0.130 0.110 0.110 0.890
rd 0.040 0.099 0.010 0.010 0.990
edu 0.001 0.002 0.488 0.488 0.512

Note: Since the QAP regression is based on matrix permutation to perform the test, normal standard errors cannot be obtained (Peoples and Sutton, 2015).
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improvement (Aghion and Howitt, 1992; Acemoglu and Akcigit,
2012). Therefore, those regions with a large difference in R&D
inputs also have great differences in economic development,
technical level, and social welfare, resulting in innovation
elements such as R&D personnel migrating from the regions
with low R&D inputs to the regions with high R&D inputs. As
such, the spatial association network of interprovincial renewable
energy technology innovation is enhanced.

CONCLUSIONS AND POLICY
IMPLICATIONS

Conclusions
Based on the provincial panel data of 30 provinces and
municipalities in China from 2001 to 2016, this study uses the
SNA approach to explore the spatial association network
characteristics of China’s interprovincial renewable energy
technology innovation. Furthermore, the driving factors of
such a spatial association network are empirically investigated
through the QAP regression analysis. The main findings are as
follows:

(1) Regarding the overall network characteristics, the spatial
association of China’s interprovincial renewable energy
technology innovation exhibits a typical network
structure. Moreover, this spatial association network
became more and more complex, and the interprovincial
association strengthened during the sample period.
Specifically, from 2001 to 2016, i) the number of
associations and the network density of the spatial
association network were always rising, while its network
efficiency was always declining, indicating that the spatial
association continuously strengthened and the network
stability was rising; ii) the network hierarchy was
declining on the whole, indicating that the relatively rigid
spatial association system for China’s renewable energy
technology innovation has been gradually broken, and the
collaborative innovation capability of renewable energy
technologies between regions has enhanced; iii) in most
years, the network connectedness was one, indicating that
the association in renewable energy technology innovations
between regions was very close, and the spatial association
network was relatively stable.

(2) Regarding the node network characteristics, the positions
and roles of the provinces vary greatly in the spatial
association network. The centrality indicators of the
developed eastern coastal regions such as Shanghai,
Tianjin, Beijing, Jiangsu, Zhejiang, Guangdong, etc.
rank in the forefront, and they play a central actor
role in the association network; while the centrality
indicators of the relatively backward regions such as
Heilongjiang, Jilin, Liaoning, Ningxia and Xinjiang
rank behind, and they are on the edge of the network.

(3) From the results of QAP analysis, the geographical
proximity, the difference in economic development level
and the difference in R&D input intensity have a

significant role in promoting the spatial association of
China’s interprovincial renewable energy technology
innovation.

Policy Implications
(1) The overall network characteristics show that China’s

interprovincial renewable energy technology innovation
exhibits an obvious spatial association network structure.
Therefore, when formulating relevant renewable energy
technology policies, the Chinese government shall focus
on integrating renewable energy technology innovation
factors and resources in various regions, especially in
regions that are insufficiently associated with others.
First, for the central government, its governmental
R&D budget in renewable energy technologies should
be directed to the regions with abundant energy
endowments in an appropriate way. Second, the
technology transformation of national fossil energy
bases (Inner Mongolia, Shaanxi, Shanxi, and Xinjiang)
is the key to China’s clean energy transition. The
headquarters of several powerful energy firms are
located in these provinces, together with abundant
talents and physical capital in the field of energy.
Although our results indicate that renewable energy
innovations of those provinces are increasingly
associated with other provinces comparing 2016 to
2001, such kinds of network characteristics are
insufficient given the roles of these provinces in
China’s energy system. To contribute to the overall
goals of China’s energy transition, local governments
of these provinces should alleviate the subsidies to
their traditional fossil energy sectors, initiate and fund
interprovincial joint research programs in renewable
energy technologies, and initial “talent-funds” to
encourage inflows of excellent researchers in the field
of renewable energy technologies.

(2) The node network characteristics show that the spatial
association network of China’s interprovincial renewable
energy technology innovation presents a significant
“core-edge” distribution pattern, and the positions and
roles of various provinces and municipalities in the
spatial association network are quite different.
Therefore, different provinces and municipalities shall
formulate differentiated renewable energy technology
development policies according to their specific
positions and roles in the network. To be specific, the
developed eastern coastal regions such as Shanghai,
Beijing, and Tianjin are at the core of the network and
play a central actor. They have strong control over the
innovative resources and factors needed for the
development of renewable energy technologies. Hence,
the provincial governments shall adopt corresponding
policies to promote the advancement of technology
frontier, focus on improving their capacities for
indigenous innovation, and take advantage of the
“central actor” in the spatial association network to
achieve original breakthroughs in the field of
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renewable energy technologies. The relatively backward
regions such as Heilongjiang, Jilin, and Liaoning are
relatively marginalized in the network. These provinces
should seek technological progress step by step. That is,
they should first enhance their absorptive capacities
through exchanging knowledge and researchers with
technologically leading provinces, and then build their
indigenous innovative capabilities through continuous
funding R&D activities of renewable energy technologies.

(3) China’s ambitious goal of a clean energy transition
needs efforts from almost every province. Furthermore,
technological innovation of renewable energies is the
key for this goal. The results of QAP regression show
that the geographical proximity, the difference in
economic development level and the difference in
R&D inputs can promote the spatial association of
renewable energy technology innovation. Thus, the
uneven distributions of income and R&D resources in
China are sort of opportunities for the technologically
lagged provinces to chase the frontier. Specifically, for
the technological laggards, the first priority of their
policy regarding the association network of renewable
energy technology innovation is to learn from and
cooperate with geographically neighboring provinces
ranking high in the given technology field. Taking
advantage of the time efficiency and cost effectiveness
brought about by the short distance, frequent exchange
of R&D personnel and joint research programs with the
neighboring and leading provinces will speed up the
learning process of the laggards. The second priority

should be cooperation with other neighboring provinces
or learning from the technologically leading but not
adjacent provinces. As such, China can create a regional
renewable energy technology innovation community
and enhance the level of local renewable energy
technology innovation.
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