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Biomass plays a crucial role in mitigating the concerns associated with increasing fossil fuel
combustion. Among various types of biomass, forest biomass has attracted considerable
attention given its abundance and variations. In this work, an overview is presented on
different pathways available to convert forest biomass into bioenergy. Direct use of forest
biomass could reduce carbon dioxide emissions associated with conventional energy
production systems. However, there are certain drawbacks to the direct use of forest
biomass, such as low energy conversion rate and soot emissions and residues. Also, lack
of continuous access to biomass is a severe concern in the long-term sustainability of
direct electricity generation by forest biomass. To solve this problem, co-combustion with
coal, as well as pelletizing of biomass, are recommended. The co-combustion of forest
biomass and coal could reduce carbon monoxide, nitrogen oxides, and sulfide emissions
of the process. Forest biomass can also be converted into various liquid and gaseous
biofuels through biochemical and thermochemical processes, which are reviewed and
discussed herein. Despite the favorable features of forest biomass conversion processes
to bioenergy, their long-term sustainability should be more extensively scrutinized by future
studies using advanced sustainability assessment tools such as life cycle assessment,
exergy, etc.
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INTRODUCTION

Greenhouse gases (GHGs) emissions and other harmful gases are among the primary global concern,
mainly caused by the increasing use of fossil energy carriers (Jun-jun and Da-rui, 2012). GHGs have
been thought of as a critical factor in global warming that plays a crucial role in climate change
(Panahi et al., 2020b). Extensive research has shown that using other carbon sources like biomass
could reduce these concerns (Hosseinzadeh-Bandbafha et al., 2018). In the literature available on the
application of biomass to generate energy, the relative importance of forest biomass is debated
(Vassilev et al., 2010; Gustavsson et al., 2015). Generally, the forest biomass is classified into fuelwood
and industrial roundwood (Raunikar et al., 2010). Fuelwood is harvested from forestlands and
directly combusted for useable heat or converted into bioenergy and biofuel and used to generate
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heat and power. More specifically, due to the high content of
macromolecular sugars such as cellulose and organic matter,
fuelwood is a promising feedstock for thermochemical
conversion, biological conversion, liquefaction, and gasification
(Perez-Garcia et al., 2005; Tan et al., 2015). Forest biomass can be
used in co-combustion with fossil fuels or alone in boilers and
other equipment of power generation (Scarlat et al., 2011; Calvo
et al., 2013). Accordingly, when countries set their macro
strategies related to energy development, efficient utilization of
forest biomass resources to solve environmental crises is strongly
considered (Figure 1). For example, among the available energy
sources in China, 54.2% of forest biomass is used to generate
power and fuel (Liao et al., 2004).

It is reported that the energy generated by forest biomass can
support 15.4% of the total human energy consumption (Welfle
et al., 2014). During the period 2004–2015, the whole power
generation from forest biomass stood at around one million kW/
yr, contributing to the elimination of forest residues and
achieving ecological-zero carbon dioxide (CO2) emissions
(Ince et al., 2011; Nunes et al., 2018). For instance, forest
biomass application as a replacement for fossil energy in
Australia reduces atmospheric CO2 emissions by 25 million
tons annually (Zomer et al., 2008; Pour et al., 2018).
Furthermore, the European Union (EU) statistics show that
there is an increasing trend for total energy that forest waste

can provide for human consumption from 2010 to 2030 (Table 1)
(Urban et al., 2010).

In light of the significance of forest biomass in the global
energy market in the future, the present work aims to briefly
report on various methods of forest biomass conversion into
bioenergy and biofuels.

DIRECT UTILIZATION OF FOREST
BIOMASS

Direct Combustion of Wood for Energy
Production
A significant advantage of forest biomass is that it could be
directly combusted. Direct combustion is a thermochemical
process during which biomass burns in the open air, and the
photosynthetically stored chemical energy of the biomass is
converted into heat (Lam et al., 2019). Although direct
combustion of forest biomass leads to the emissions of CO2,
particulates (PM2.5), sulfur dioxide (SO2), and other harmful
substances, their amounts are still less than those caused by the
combustion of fossil fuels (Karaj et al., 2010; Kacprzak et al.,
2016). For example, previous research has established that the
direct combustion of forest biomass generates 20% less CO2

emissions than fossil fuels (Froese et al., 2010). However, there

FIGURE 1 | Distribution of research activities on forest biomass to replace fossil-based energy carriers globally and the research interrelations between different
countries.

TABLE 1 | Statistics by the EU on energy generation from different types of forest biomass in 2010 and estimated values in 2030.

Biomass species Biomass potential (TJ × 104) References

2010 2030

Forest residues 180 163–301 Moiseyev et al. (2014)
Wood processing 419 427 Searle and Malins (2016)
Forest crops 180–193 427–615 Böttcher and Graichen (2015)
Total 779–792 1,017–1,343
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are certain drawbacks associated with the use of forest biomass.
One of these is the low energy conversion rate; moreover, direct
combustion leads to soot and residues (Hong-ru and Yi-hu,
2007).

Direct combustion of biomass for power generation has
continued since the 1990s (Yin et al., 2008). Biomass-fired
combined heat and power (CHP) plants include a vibrating
grate boiler, condensing steam turbine, and electric generator
(Chen et al., 2021). The vibrating grate boiler is mechanized
combustion equipment with a simple structure and small
capacity. Its grate surface vibrates under the action of
alternating inertial force and prompts biomass to leap forward
on it to achieve mechanized combustion. Burning forest biomass
produces heat within the boiler that converts water into steam
(steam Rankine cycle). After water evaporation in the boiler,
steam enters the turbine to expand and perform work, afterward
pressure is reduced, and steam is condensed and converted to
water (Dote et al., 2001). It should be noted that the steam
Rankine cycle is one of the most critical thermodynamic cycles for
electricity generation (Dincer and Bicer, 2020).

The conversion rate of forest biomass into electricity by
Rankine cycle is reported at about 39–44%; therefore, the
combustion of each ton of forest biomass generates about
4.4 kWh of electric energy (Van den Broek et al., 1996; Dote
et al., 2001). One obvious advantage of using this electric energy is
reducing fossil-based CO2 emissions caused by the power
generation industry. Table 2 tabulates the CO2 emission
reductions of forest biomass-based power plants compared to
their fossil-based counterparts.

A significant problem with the direct combustion of forest
biomass for energy production is that these waste resources are
generally far from industrial and residential areas. Moreover, the
forests are vast, and biomass collation is a complex problem; thus,
lack of permanent access to biomass is a severe concern in the
sustainability of direct electricity generation using forest biomass.
Nevertheless, it is recommended that forest biomass-based
industries be located within a 120 km radius of forests to solve
this concern. Still, they need a lot of financial investment and
storage capacity (Hoffmann et al., 2012).

Co-combustion of Forest Biomass and Coal
Co-combustion is a feasible and straightforward option for
solving the concerns associated with the direct combustion of

forest biomass, such as permanent access to biomass, the area
required for storage, and economic problems related to
transportation and distribution (Liang et al., 2017). The main
advantage of the mixed combustion of biomass and coal vs. coal
combustion is that it could reduce carbon monoxide (CO),
nitrogen oxides (NOx), and sulfide emissions while ensuring
production efficiency (Perea-Moreno et al., 2017). Technically,
the co-combustion of forest biomass and coal uses pulverized coal
boiler and fluidized bed boiler as the reactor. In the fluidized bed
boiler, when forest biomass is added, the generation of nitric
oxide (NO) is reduced, and the combustion process is more
efficient (Kabir and Kumar, 2012). Also, compared to coal, the
volatile content of biomass is higher that is a favorable parameter
for rapid ignition. It has been found that 87 tons of CO2 emission
could be reduced by replacing 1 ton of coal with forest biomass
during co-combustion (Royo et al., 2012). It is estimated that in
2030 and beyond, biomass utilization will increase by 450,000 t/
yr, and relevant CO2 emission reduction will reach 395,000 t/yr
(Kazagic et al., 2016). Furthermore, alkaline ash caused by
biomass combustion can block SO2 emissions from coal and
reduce global acidification (Demirba, 2005; Tsalidis et al., 2014).

Due to reducing harmful gases and increased power
generation reliability, co-combustion is considered a cheap
option to utilize existing biomass resources in power
generation (McIlveen-Wright et al., 2011). Given this fact,
thermal power plants can use biomass as clean and cost-
effective combustion supporting agent to mix with coal (Dai
et al., 2008). However, forest biomass suffers from several
significant drawbacks despite these desirable features, e.g.,
poor energy density, high particle emissions, unstable
combustion performance, and difficulties in storage and
transportation (Kang et al., 2018). Hence, future research
should aim at providing solutions to mitigate these obstacles.

FOREST BIOMASS PELLETS

Several techniques have been developed to facilitate the
transportation and improve the conversion rate of forest
biomass, like mechanical processing of biomass into granular
substance (pellet). Pelleting of forest biomass improves its density
and reduces water content (Valdés et al., 2018). Density and
moisture are two critical properties of biomass affecting

TABLE 2 | CO2 emission reduction potentials of biomass-based power plants compared to their fossil fuel-based counterparts.

Types of biomass Country/Region Types of
power plants

Capacity of
power plant

CO2 emission
reduction (t/yr)

References

Forest waste (wood chips, wood pellets, and
black pellets)

Japan, Tohoku region Thermal power plant 500 MW 198,000–252,000 (Furubayashi and Nakata,
2018)

Forest waste Portugal, Harbor of
Sines

Thermal power plant 314 MW 1,000,000 (Nunes et al., 2014)

Palm tree waste Iran, Bushehr
Province

Rankine cycle steam
power plant

8 MW 40,500 (Mallaki and Fatehi, 2014)

Forest waste (woody biomass) Japan Thermal power plant 5.7 MW 30,934 (Nakano et al., 2015)
Forest waste (wood chips) United States Thermal power plant 70 MW 552,032 (Campbell and Mika, 2009)
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combustion efficiency. Hence, direct combustion or co-
combustion of pelleted forest biomass with coal could increase
combustion efficiency. For instance, it has been reported that the
efficiency of pellet-fired boilers ranged between 85 and 90%
compared with wood-fired boilers varying from 75 to 85%
(Sandro et al., 2019).

Forest biomass can also be mixed with other biomass to
enhance the overall properties of the mixture for pellet
production (de Souza et al., 2020). For instance, the water
content of biomass pellets could affect their durability, a
property that could be adjusted by mixing different types of
forest biomass. More specifically, when the moisture content of
forest biomass is reduced to 1–5%, the average durability reaches
95%, which is convenient for the storage and transportation of the
product (Pradhan et al., 2018).

In the manufacturing process of forest biomass pellets, the
biomass needs to be dehydrated in advance (Civitarese et al.,
2018). A rotary dryer could be used to remove the moisture in
poplar wood chips, with a moisture removal rate of about 17%. In
comparison, the moisture removal rate for Robinia pseudoacacia
sawdust stands at a higher rate of 31%. These differences are
ascribed to the differences in the density of various types of forest
biomass (Prokkola et al., 2014; Del Giudice et al., 2019). Notably,
if the rotary dryer cannot remove the moisture effectively, the
pneumatic dryer would be a good choice, also increasing the
drying rate by 22% (Frodeson et al., 2013).

From an environmental point of view, it is reported that if
biomass pellets are used instead of coal for power generation,
CO2 emissions will be reduced by 205 Mt annually (Purohit
and Chaturvedi, 2018). Sikkema et al. (2011) reported that
through the consumption of 8.2 million tons of wood pellets,
12.6 million tons of CO2 emissions were avoided in all EU
countries in 2008.

Compared with sawdust, coal, and other traditional fuels,
mixing forest biomass pellets with coal causes less harm to the
environment. For example, co-combustion of forest biomass
pellets and coal reportedly led to a 50% reduction in CO2

emission, and the ash formed in the combustion process only
accounted for about 1%, 15–20 times less than coal combustion
(Palšauskas and Petkevičius, 2013; Morrison et al., 2018). Ehrig
and Behrendt (2013) also showed that co-firing wood pellets
with coal resulted in lower CO2 than other renewables. It is
also claimed that adding eggshells in the combustion of forest
biomass pellets could also absorb CO2 through the calcium
carbonate present in eggshells, further reducing GHG
emissions (Yuan et al., 2019). Molina-Moreno et al. (2016)
also reported that CO and NOx emissions levels caused by
pellets combustion were very satisfactory. Tamura et al. (2014)
claimed that co-firing wood pellets with coal when wood
pellets were burnt in lower row burners could prevent CO
emissions.

Despite these promising results, power plants relying on forest
biomass pellets also face several problems such as high energy
consumption, labor-intensive process, higher prices than other
solid biofuels, need for higher storage space in comparison with
oil, need for ash removal, and susceptibility of pellets to moisture
exposure (Abdoli et al., 2018).

CONVERSION OF FOREST BIOMASS INTO
LIQUID BIOFUELS

The pollution caused by diesel combustion in diesel engines is one
of the main contributors to global air pollution (Aghbashlo et al.,
2017b; 2018b). The most crucial emissions released from diesel
combustion are CO2, NOX, sulfur oxides (SOX), CO, and PM
emissions (Aghbashlo et al., 2021b). There is evidence that these
emissions play a crucial role in damage to the environment and
human health (Hosseinzadeh-Bandbafha et al., 2020). To solve
the problem associated with diesel exhaust emissions and to
mitigate the existing environmental pressure, cleaner
alternatives to diesel are widely sought (Khalife et al., 2017;
Aghbashlo et al., 2018a).

Biodiesel, long-chain fatty acid methyl or ethyl esters (FAME
or FAEE, respectively) is produced mainly via the
transesterification reaction using short-chain alcohols,
i.e., methanol or ethanol, and in the presence of a base or acid
catalyst (Chuah et al., 2017; Hajjari et al., 2017). Compared with
diesel, biodiesel combustion leads to lower smoke, PM CO, and
unburned hydrocarbon (HC) emissions (Amid et al., 2020). Also,
it contributes much less to global warming than diesel because the
carbon contained in biodiesel is mainly of biogenic CO2 origin
(Hosseinzadeh-Bandbafha et al., 2018). The research on biodiesel
production has already reached maturity, resulting in replacing
diesel with various biodiesel blends in many parts of the world. It
should be quoted that neat biodiesel and its blends (up to 20%)
with diesel can be used in diesel engines without requiring engine
modifications (Narasimharao et al., 2007).

Despite its advantages, some physicochemical properties of
biodiesel limit its widespread application, including higher
viscosity of biodiesel than fossil diesel and poor cold flow
properties (Aghbashlo et al., 2015; Pang, 2019). Moreover,
biodiesel production from first-generation feedstock (edible
vegetable oils) has led to high production costs and triggered
competition between fuel and food over arable land water
resources (Aghbashlo et al., 2017a). Fuels derived from waste
biomass are classified as second-generation biofuels and are
regarded as a solution to overcome the mentioned competition
between food and fuel (Laesecke et al., 2017). High oil content
tree species are suitable raw materials for biodiesel production
(Patel et al., 2019).

Pyrolysis is also a promising thermochemical valorization
technique for producing biofuels from forest waste at
moderate temperatures (typically between 300 and 1,300°C)
(Aghbashlo et al., 2019; Yek et al., 2020) During this process,
the feedstock’s chemical structure faces fundamental changes
(Foong et al., 2020; Ge et al., 2021). Generally, pyrolysis is
known as the method with the ability to produce a variety of
solid, liquid, and gaseous products depending on pyrolysis
conditions (Aghbashlo et al., 2021a). Slow pyrolysis produces
solid products such as biochar or charcoal, while fast pyrolysis
results in the production of liquid products (bio-oil). It is reported
that forest biomass is an ideal feedstock for pyrolysis (Chireshe
et al., 2020), and different researchers have successfully
conducted pyrolysis of forest biomass to produce bio-oil
(Oasmaa et al., 2010; Puy et al., 2011; Stefanidis et al., 2015;

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6842344

Yu et al. Forest Biomass and Bioenergy

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Luo et al., 2017). It should be noted that the bio-oil produced by
the pyrolysis process typically has a high oxygen and water
content, and thus, it should be upgraded (van Schalkwyk
et al., 2020).

Another conversion pathway to valorize forest biomass is
gasification. González and García (2015) converted wood
biomass into bio-oil through the gasification process and
subsequent liquefaction (Fischer-Tropsch). Natarajan et al.
(2014) reported that the installation of five Fischer-Tropsch
plants could contribute to achieving Finland’s various 2020
targets, i.e., using up to 58% of the available forest biomass for
energy production, total emission reduction of 4%, and powering
the transportation sector with 100% biofuel. Sunde et al. (2011)
also estimated that converting forest biomass and woody wastes
into liquid biofuel by the Fischer-Tropsch process as a
replacement for fossil diesel could reduce the overall
environmental impacts of the transportation sector in Norway.
GHG savings and reductions in greenhouse impacts by
production and use of Fischer-Tropsch biofuel from forest
residues are estimated to amount to roughly 20–90% on a
100-year timescale (Jäppinen et al., 2014). It should also be
noted that in addition to reducing CO2 emissions, biofuel
production from forest biomass could also offer economic
opportunities, including creating new jobs (Natarajan et al.,
2014).

Bioethanol production from forest biomass has also been
investigated since the early 1990s (Mabee and Saddler, 2010).
The lignocellulosic nature of forest biomass (such as PopulusL.,
Salix babylonica, and Saccharum officinarum) and its abundance
mark it as a suitable feedstock for second-generation bioethanol
production (Limayem and Ricke, 2012; Ko et al., 2020).
International Energy Agency (IEA) estimates that the potential
use of 10% of global forest and agricultural biomass in 2030 can
provide 233 billion L of bioethanol, equivalent to 155 billion L of
gasoline (Morales et al., 2021). The bioethanol production
potentials of several forest biomass are shown in Table 3.

Bioethanol is well known as a promising substitute for
petroleum-based gasoline (Huang et al., 2020; Amid et al.,
2021), with considerably lower emissions throughout its life
cycle (Mabee and Saddler, 2010). For example, Becerra-Ruiz
et al. (2019) reported a decrease of 99, 93, and 67% in CO,
HC, and NOx, respectively, when a 5500W portable engine
generator of alternating current burned bioethanol instead of

gasoline. Compared to first-generation bioethanol such as corn
and sugarcane-based bioethanol, second-generation bioethanol
(i.e., bioethanol produced from lignocellulosic feedstocks) has
significantly lower life cycle GHG emissions (Wang et al., 2020).
Moreover, bioethanol yields of forest biomass are relatively higher
than those of other types of biomass. In a study investigating
bioethanol yields, Mabee and Saddler (2010) reported that
bioethanol yields of forest biomass ranged between 0.12 and
0.3 m3/t (dry basis) vs. 0.11 and 0.27 m3/t (dry basis) for
bioethanol production from agricultural residues.

The biochemical or thermochemical conversion are two
primary methods used to process lignocellulosic feedstocks
into bioethanol (Soltanian et al., 2020). The biochemical
conversion starts with pretreatment to separate hemicellulose
and lignin from cellulose and is followed by hydrolysis of cellulose
to obtain fermentable sugars (Panahi et al., 2020a). Finally, sugars
are fermented into ethanol (Anyanwu et al., 2018). Pretreatment
is an instrumental stage of the process, and hence, its type and
conditions play important roles in the overall technical viability of
the whole process (Negro et al., 2020; Morales et al., 2021). The
various pretreatment methods include chemical, physical,
physicochemical, and biological (Sharma et al., 2020).

It should be noted that forest biomass, due to the presence of
bark and juvenile wood, tends to have higher lignin contents (Zhu
et al., 2015). As a result, forest biomass is more recalcitrant to
bioconversion into sugars than other biomass types such as
agricultural residues (Yamamoto et al., 2014). Although there
are pretreatment processes to overcome such a high level of
recalcitrance for efficient sugar/biofuel production, they are more
time-consuming and costlier. One of these methods is steam
explosion treatment which has been reported to increase
bioethanol production of Hemp fiber by upto 70% (Zhao et al.,
2020). It has also been claimed that the application of surfactants,
owing to their unique structure and functional properties, could
improve the solubility, fluidity, bioavailability, and
biodegradability of forest biomass, thereby increasing the
production of bioethanol. Zheng et al. (2020) argued that
tween, polyethylene glycol (PEG), and sulfonate-based
surfactants could increase the conversion rate of lignocellulose
by 10–20%.

Compared to the biochemical conversion, thermochemical
conversion, particularly gasification, can be applied to a
broader range of forest biomass (Wang et al., 2020). During

TABLE 3 | Potential of different types of forest biomass for second-generation bioethanol production.

Biomass species Convertible materials (%) Convertible materials yield
(t/ha/yr)

Potential bioethanol yield
(L/ha)

References

Manihot esculenta 35 (Sugar) 30 4,500–4,901 Zabed et al. (2016)
Miscanthus spp. 56–73.5 (Holocellulose) 5–43 4,600–12,400 Ho et al. (2014)
Panicum virgatum 35–70 (Holocellulose) 5–25 555–3,871 Zabed et al. (2016)
Populus spp. 56 (Holocellulose) 2–10 1,500–3,400 Ho et al. (2014)
Saccharum spp. 12–17.6 (Sugar) 70–122.9 (Sugar) 5,345–9,950 Lebaka (2013)

61–73 (Holocellulose) 19.6–34.4 (Holocellulose)
Salix spp. 69.9 (Holocellulose) 5–11 769–4,026 Zamora et al. (2014)
Triticum aestivum 65.3–76 (Sugar) 1.8–6.4 (Sugar) 1,001–1700 Lebaka (2013)

59–70 (Holocellulose) 6.5–11 (Holocellulose)
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gasification of the lignocellulosic biomass at high pressure and in
the absence of inert gases, lignocellulosic biomass is converted
into syngas, which will then be converted into bioethanol through
the Fischer-Tropsch process (Laesecke et al., 2017). Also, syngas
can be utilized by the microorganism Clostridium ljungdahlii to
generate bioethanol in the presence of catalysts (Limayem and
Ricke, 2012).

CONVERSION OF FOREST BIOMASS INTO
GASEOUS BIOFUELS

The gasification process of forest biomass leads to syngas
production through a series of thermal cracking reactions
(Burbano et al., 2011). Forest biomass, including seeds, leaves,
tree trunks, and fruit shells, could be pyrolyzed in a fixed bed
gasifier for a long time at high temperatures (above 1,200°C) to
produce hydrogen-rich syngas (Brachi et al., 2014; Ozbas et al.,
2019), which has been highlighted as one of the most promising
alternative sources of energy (Shih and Hsu, 2011). It is claimed
that 1.3 Gt/yr of biomass can produce 100 Mt/yr of hydrogen
(Duan et al., 2020).

During gasification, the reaction rate can be controlled by
adjusting the gas flow. Using this strategy, the decomposition
rate of forest biomass into hydrogen could reach 60% (Solar
et al., 2018). The cost of hydrogen production from forest
biomass through gasification is about 1.18 USD/kg H2 (Sarkar
and Kumar, 2009), almost half of the other processes (Sarkar and
Kumar, 2010). It should be noted that industrial gasification
devices are usually connected with power generation equipment
to generate electricity while providing gas; the former can be
supplied to nearby households (Sasujit et al., 2017; Schulzke, 2019).

Adding appropriate catalysts to the gasification process can
improve the gas content (Pang, 2019). In the catalytic gasification
experiment of Eucalyptus residue with NiO as the catalyst, the total
gas production increased by 30%. Corujo et al (2010) also reported
that through catalytic gasification, the biochar and ash contents
were decreased, and the utilization rate of biomass was improved. It
has been argued that catalytic cracking is more economical than
traditional biofuel production methods such as pyrolysis and
fermentation (Meerman and Larson, 2017).

In addition to producing hydrogen-rich syngas, forest biomass
can also be used to produce biogas through anaerobic digestion
(Tabatabaei et al., 2020a). The technology of converting forest
biomass into CH4 is relatively mature and has been used for
practical production for many years (González et al., 2006;
Tabatabaei et al., 2020b). The production of biogas, whose
main components are CH4 and CO2, is largely affected by the
composition of raw materials (Dehhaghi et al., 2019). It should be
noted that in addition to species, the composition of forest
biomass could also be affected by variations in geographical
location and growth environment.

One of the main challenges of anaerobic digestion is the non-
degradability of lignin under anaerobic conditions (Dehhaghi
et al., 2019). In better words, lignocellulose-rich organic materials
such as forest biomass suffer from the disadvantage of low
availability of cellulose and hemicellulose as biodegradable

components for microorganisms and their enzymes (Lópe et al.,
2013). Nevertheless, similar to other types of lignocellulosic
biomass, chemical (hydrolysis with acids, alkali, or oxidants),
physical (irradiation, shredding, thermal, and pressure shocks),
and biological (fungi, actinobacteria, or their enzymes)
pretreatments could also be employed to improve the anaerobic
biodegradation of forest biomass (Chang and Holtzapple, 2000;
Taherzadeh and Karimi, 2008; Hendriks and Zeeman, 2009).

CONCLUSION

It was shown that forest biomass could, directly and indirectly, be
used as an energy resource. More specifically, forest biomass can be
directly combusted to reduce CO2 emissions associated with
conventional energy production processes. However, the energy
conversion rate of forest biomass is low, and it also leads to
emissions of soot and residues. Also, the lack of continuous
access to biomass and the need for lots of financial investment
and storage capacity are among the severe concerns in the
sustainability of direct electricity generation using forest biomass.

In comparison, co-combustion of biomass and coal vs. combustion
of coal alone could be regarded as a promising strategy to reduce
emissions while ensuring production efficiency. It also partly solves
issues related to biomass availability, the area required for storage, and
economic problems related to transportation and distribution. Despite
these desirable features, forest biomass suffers from poor energy
density and high moisture, which could be addressed by pelleting
forest biomass. Due to the improved density and moisture, direct
combustion of pelleted forest biomass or its co-combustion with coal
accelerates the combustion rate. Nevertheless, power plants relying on
forest biomass pellets also face several problems such as high energy
consumption, labor-intensive process, and higher prices than other
solid biofuels. Forest biomass also can be converted into bio-oil,
bioethanol, and biogas by biochemical and thermochemical
methods, which are critically explained in the present work.

Given the growing awareness about the environmental
consequences of burning fossil fuels, the future will undoubtedly
shift toward the use of more biomass and biofuels. Although forest
biomass conversion processes to bioenergy are well known, as
mentioned, their long-term sustainability should be more
extensively scrutinized by future studies using advanced
sustainability assessment tools such as life cycle assessment, exergy, etc.
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