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A Kalman filter photovoltaic (PV) power prediction model based on forecasting experience
is proposed to solve the problem that the accuracy of the prediction method based on
historical experience is reduced under anomalous situations. This study uses the hourly
solar irradiance forecasting model, numerical weather prediction (NWP) data, and the
photoelectric conversion model to calculate the ground irradiance and PV power
generation, which are used as the forecasting experience data. The dynamic equation
of the Kalman filter model is obtained by fitting the forecasting data to make the prediction
model with the future situation information properties while solving the modeling difficulties
caused by the transcendental equation characteristic of the photoelectric conversion
model. In the iterative process of the Kalman filter algorithm, the measured power is used
to correct the prediction error and significantly limit the error variability so as to realize the
ultra-short-term accurate prediction of PV power and ultimately improve the management
of PV energy storage power stations. The comparative analysis through DKASC data
simulation verifies that the results show that the proposed model is effective and can
achieve better results in predictive accuracy.
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INTRODUCTION

In recent years, fossil energy is becoming increasingly depleted worldwide. In order to alleviate the
energy crisis and reduce environmental pollution, solar energy has been widely developed and
applied as a green and environmentally friendly renewable energy source. According to the
International Renewable Energy Agency (IRENA), the global cumulative installed PV capacity
maintained a steady upward trend from 2010 to 2019, and the total installed capacity reached
584,842 MW by 2019 (IRENA, 2020). PV power generation is cyclical and randomly fluctuating due
to weather factors, which makes it difficult for PV power generation to be connected to the grid
effectively and reduces the PV power generation consumption level (Salim et al., 2018). In addition,
the random fluctuation of PV power generation also affects the management level of battery energy
storage power stations, making them more costly to operate. The ultra-short-term accurate
prediction of PV power generation is an important prerequisite to solve the effective grid
connection of PV power generation and improve the management level of energy storage power
stations (Bortolini et al., 2014).

In the existing literature related to forecasting, the short-term power forecasting method for PV
power generation can be roughly split into the following three categories: physical, statistical, and
machine learning methods (Zhou et al., 2020). In the physical, it is implemented by using physical
models such as a solar irradiance equation and PV module operation equation and combined with
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NWP data; instead, the statistical method is based on statistical
modeling of historical weather data and PV power data to find out
the regularity of historical data for prediction; the machine
learning method, as a branch of artificial intelligence, can
learn directly from datasets to construct a nonlinear mapping
between input and output data to achieve PV power prediction
without explicit programming.

Atique et al. (2019) used ARIMA time series model to forecast
the total daily solar power generation by studying the seasonal
and nonseasonal variations of the total daily solar panel
generation and converted the time series data into stationary
data. Bacher et al. (2009) entered historical power output and
predicted irradiance into an autoregressive model with exogenous
inputs for a power output prediction up to 6 h in advance.
Hassanzadeh et al. (2010) indirectly forecasted PV power
generation by predicting solar irradiance through the Kalman
filter algorithm and then used the least square method to forecast
PV power generation. Scolari and Sossan, (2017) used an
extended Kalman filter (EKF) algorithm to predict PV power
by subjecting the PV panel mathematical model to Taylor
expansion as an observation matrix. However, the PV panel
mathematical model is a transcendental equation, and it is
difficult to obtain a system state space model.

Sharadga et al. (2019) evaluated the performance of different
neural networks and statistical models and compared the
prediction of PV power generation in the time series
prediction of large PV power plants. Zhang et al. (2015)
proposed a method for PV power generation forecasting based
on similar days, consisting of an SDD engine and a prediction
engine. And it could achieve high accuracy. Wang et al. (2019)
proposed a convolutional neural network, a long- and short-term
memory network and a hybrid model based on the convolutional
neural network and a long- and short-term memory network
model to forecast PV power generation and compared the
models. Khan et al. (2017) used the back-propagation (BP)
neural network model to predict PV output power in haze
weather and regarded solar radiation intensity, wind speed,
temperature, humidity, and atmospheric mass index as input
attributes. Meng et al. (2018) presented a hybrid model
combining the back-propagation neural network (BPNN) and
GA to forecast PV power generation. Dong et al. (2020) used a
convolutional neural network framework to predict solar
irradiance, where the GA and the particle swarm optimization
were used to optimize the relevant parameters. However, in
traditional ANNs, a large number of parameters need to be
optimized by GA, which would greatly increase the
computational complexity. And the method based on the BP
neural network has a good approximation ability, but it is easy to
fall into the misunderstanding of local minimum (Liu et al.,
2017).

The literature analysis reveals that the existing forecasting
methods are based on historical experience for power prediction.
Such forecasting methods require a large amount of historical
data and computational effort. In addition, atmospheric pollution
and the anomalies of the atmospheric environment caused by El
Nino leave the historical database with insufficient experience,
which can seriously affect the accuracy of PV power prediction.

Furthermore, the NWP service provided by the World
Meteorological Organization (WMO) is becoming increasingly
sophisticated. We can easily query the detailed weather
conditions such as temperature, cloud cover, dew point,
humidity, visibility, and other forecasting data for the next
24–72 h by using the mobile APP service (Qing and Niu,
2018). Different from the existing methods, this article
proposes a PV power forecasting method based on forecasting
experience, which uses forecasting experience data to establish a
model to solve the problem of insufficient historical experience
due to sudden weather change situations. The predictive
architecture is shown in Figure 1.

This article presents a Kalman filter PV power prediction
model based on the hourly solar irradiance model and NWP data.
The specific contents of this article are organized as follows:
Introduction analyzes the relevant literature and then proposes
the model prediction structure; Hourly Forecast of Solar
Irradiance calculates the irradiance forecasting experience data
based on the hourly solar irradiance forecasting model,
considering cloud cover and geographic position; Photoelectric
Conversion Model calculates the power forecasting experience
data based on the photoelectric conversion model; Kalman Filter
Prediction Model Based on Forecasting Experience establishes a
Kalman filter PV power prediction model based on the previous
forecasting experience data; Simulation and Result Analysis
presents the simulation results; Finally, Conclusions concludes.

HOURLY FORECAST OF SOLAR
IRRADIANCE

The solar irradiance received on the surface of the earth is
periodic and nonstationary due to the influence of the Earth’s
rotation and revolution. In addition, the cloud movement causes
the ground solar irradiance to be random and uncertain. In this
section, considering the factors of atmospheric attenuation and
cloud cover, the irradiance of the ground is calculated based on
the hourly solar irradiance model.

Astronomical Irradiance
According to Obukhov et al. (2018), the daily average ION of
extra-atmospheric solar radiation on the horizontal surface is
calculated as follows:

ION � 24
π
· ISC · (1 + 0.033 · cos 360 ·N

365
) · (cosφ · cos δ · sinws

+ sinφ · sin δ),
(1)

where ISC � 1367W/m2 is the solar constant;N is the day number,
such that N � 1 on 1st January; φ is the latitude of the receiving
surface locality; δ is the solar declination angle; and ws is the solar
hour angle.

The declination angle is obtained as follows:

δ � 23.45 · sin(360 · 284 +N

365
). (2)
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Sunshine Time Correction
The PV power stations are usually located on the slope with a
certain inclination angle rather than a horizontal plane. Then, the
sunrise time and sunset time are determined when the sunlight is
parallel to the module surface, using the PV module surface as a
reference.

The sunrise and sunset hour angles of horizontal can be
obtained as follows:

w0 � arccos(−tan δ · tanφ). (3)

The sunrise and sunset hour angles of atmosphere refraction
can be obtained as follows:

ws � arccos(sin h0 − sinφ · sin δ
cosφ · cos δ ), (4)

where h0 � −0.8333°.
The sunrise and sunset hour angle differences caused by the

atmospheric refraction can be obtained as follows:

△w � ws − w0. (5)

For non-horizontal planes, the sunrise and sunset hour
angle correction caused by atmospheric refraction is given
as follows:

wup � w′up −△w, (6)

wdown � w′down +△w, (7)

where w′ up and w
′
down is the sunrise and sunset hour angles toward

the inclined plane in any direction, which can be calculated by
Bingzhong (1999).

Then the sunrise and sunset time correction based on an
inclined plane is as follows Eqs 8, 9:

tup � 12 + wup

15
, (8)

tdown � 12 + wdown

15
. (9)

The astronomical irradiance of PV power station can be
determined by Eqs 1, 2, 4. And the sunshine time is ultimately
determined by Eqs 8, 9.

Irradiance Attenuation
The extra-atmospheric solar radiation reaches the ground after
being attenuated by the atmosphere and cloud cover.
Considering the atmospheric mass and transparency, the
total solar radiation can be decomposed into direct
radiation and scattered radiation (Chicco et al., 2016). In
addition, due to the tilt angle of the PV array, the solar
irradiance IS received by the PV array surface can be
calculated as follows:

Direct radiation on an inclined surface can be obtained as
follows:

ID � ION · Pm · cos i. (10)

Scattered radiation on inclined surface can be obtained as
follows:

Id � 1
2
· ION · sin α · 1 − Pm

1 − 1.4 · lnPcos
2θ

2
. (11)

Total solar radiation can be obtained as follows:

IS � ID + Id. (12)

Here, p is the atmospheric transmittance; m is the air quality; i is
the solar incidence angle; α is the solar elevation angle; and θ is the
tilt angle of PV array.

After atmospheric attenuation, the total solar radiation is
absorbed, scattered, and reflected by clouds, and only a
fraction of it will reach the ground. Mobile cloud shading is
the main cause of irradiance fluctuation. Thus, according to NWP
data of the cloud, we can use the cloud cover coefficient method to
calculate solar irradiance for cloudy and other conditions
(Qishen, 1986). The cloud cover coefficients are shown in
Table 1.

FIGURE 1 | Predictive architecture schematic.
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The solar irradiance received by the surface of the PV array
under cloud shelter can be obtained as follows:

{ Iscs � Is · d
d � c + b · CC + a · CC2 (13)

where Iscs is the solar irradiance received by the surface of the PV
array under cloud shelter; d is the weakening coefficient of the
cloud to the solar radiation; and CC is the cloud cover; if CC ≤ 2,
the value of d is 1, if CC ≥ 3, we can calculate the value of d
according to Eq. 13. c, b, and a are empirical coefficients, as
shown in Table 2 (NBSLD, 1974).

This study uses the data of the Desert Knowledge Australia
Solar Centre (DKASC) (DKASC, 2019). The DKASC is located in
central Australia (23°42′0″S, 133°52′12″E). We use the data from
April 20, 2019 until April 22, 2019 as our forecasting days and
then the hourly irradiance on the PV array surface determined by
the above model is shown in Figure 2.

PHOTOELECTRIC CONVERSION MODEL

According to the irradiance in forecasting days, the power
generation of the PV power station can be calculated by the
solar cell model. The PV conversion model used for simulation in
this study uses Luft et al.’s TRWmodel (Desoto et al., 2006) which
is given as follows:

I � Isc[1 − k2(exp( V

k1 · Voc
) − 1)], (14)

in which

k1 �
(Vmp

Voc
− 1)

ln(1 − Imp

Isc
), (15)

k2 � (1 − Imp

Isc
) exp( − Vmp

k1 · Voc
). (16)

The power output of the PV panel is calculated as follows:

P(V) � V · Isc{1 − k2[exp( V

k1 · Voc
) − 1]}. (17)

Considering the solar radiation variation, array temperature,
and load affecting the efficiency of PV cells, this study regards
Iscref, Vocref, Vmpref, and Impref as PV parameters under standard
conditions (Gref � 1000W/m2, Tref � 25°C). The related
parameters Isc, Voc, Vmp, and Imp can be obtained by the
following formula (Xu et al., 2016):

Isc � Iscref · G

Gref
(1 + a · ΔT), (18)

TABLE 1 | Cloud cover coefficient.

Weather status Clear sky Partly cloudy sky Cloudy sky Overcast sky

Cloud cover (CC) 0 ≤ CC ≤ 2 3 ≤ CC ≤ 5 6 ≤ CC ≤ 8 CC ≥ 9

TABLE 2 | Empirical coefficients value of c, b, and a.

Season c b a

Spring 1.06 0.012 −0.0084
Summer 0.96 0.033 −0.0106
Autumn 0.95 0.030 −0.0108
Winter 1.14 0.003 −0.0082

FIGURE 2 | Hourly irradiance on PV array surface in forecasting days.

TABLE 3 | Equipment configuration parameters of the DKASC PV system.

System specification Value

Array rating 26.52 kW
Panel rating 170 W
PV technology Mono-Si
Number of panels 156
Panel type eco-Kinetics ECOKES 170 M
Inverter size/type 3 × 9 kW, SMA SMC 9000TL-10
Installation completed Mon, Aug 23, 2010
Array tilt/azimuth Fixed tilt � 20′ Azimuth � 0′

FIGURE 3 | NWP temperature data in forecasting days.
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Voc � Vocref · ln(e + b · ΔG)(1 − c · ΔT), (19)

Imp � Impref · G

Gref
(1 + a · ΔT), (20)

Vmp � Vmpref · ln(e + b · ΔG)(1 − c · ΔT). (21)

Here, ΔG �(G/Gref−1);ΔT �(T−Tref); and e is natural logarithm;
The compensation coefficients a, b, and c are constant, which can
be fitted according to a large amount of empirical data, and the
typical value is a � 0.025/°C, b � 0.5/(W/m2), and c � 0.00288/°C
(Singer et al., 1984).

The equipment configuration parameters of the DKASC PV
system (Alice Springs) are shown in Table 3. And the NWP
temperature data in forecasting days are shown in Figure 3. Using
the irradiance data in Figure 2 and the temperature data in
Figure 3 as inputs, the output power curve of DKASC in
forecasting days is calculated by the photoelectric conversion
model, as shown in Figure 4.

The aforementioned model forecasts the power value of PV
power generation by physical methods. However, it lacks the
dynamic correction process of the prediction results, and the

prediction accuracy is insufficient. The forecasting method
proposed in this article takes the prediction results of this
stage as the forecasting experience and establishes the Kalman
filter PV power prediction model.

KALMAN FILTER PREDICTION MODEL
BASED ON FORECASTING EXPERIENCE

The key of the Kalman filter algorithm is to establish the system
dynamic equation, and the empirical information of the PV
power prediction system is contained in the dynamic equation.
However, due to the transcending equations characteristic of the
PV cell’s physical model, it is difficult to establish the analytical
expressions of the dynamic equations required for the
prediction model. Different from the existing literature based
on historical experience, this study considers solar irradiance as
the system state variable and PV power generation as the system
observation, uses the aforementioned model results as
forecasting experience data to fit the observation equation of
the prediction model, and then introduces the excitation noise
as the control equation input quantity to determine the system
differential control equation. By iterative recursion of the
Kalman filter, the predicted power value at the next time is
dynamically corrected by the measurement power value at the
previous time, which improves the prediction accuracy of PV
power. The framework established by the Kalman filter PV
power dynamic equation based on forecasting experience is
shown in Figure 5.

The Dynamic Model of PV Power Prediction
System
The Kalman filter algorithm state equation and observation
equation can be obtained as follows:

xt � A · xt−1 + Qt

yt � H · xt + Rt
(22)

Here, xt is the estimated target state vector at time t; yt is the
estimated target observation vector at time t; A is the state
transition matrix; H is the observation matrix; Qt is the system
excitation noise covariance matrix; and Rt is the system
observation noise covariance matrix.

FIGURE 4 | Model calculation power values in forecasting days.

FIGURE 5 | Framework established by the Kalman filter dynamic
equation.

FIGURE 6 | Observation equation curve.
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Regarding Is as the system state variable, p as the system
observation, and then using the least squares method polynomial
fitting to obtain the model’s observation vector yt expression
which is denoted as follows:

yt � x0,t + x1,t ·mt + x2,t ·m2
t +/ + xn,t ·mn

t + Rt. (23)

Here, xn,t is the system state variable, solar irradiance, and mt is
the polynomial coefficient that forms the observation matrix Ht.

Considering the data nonlinearity and fitting accuracy, the
third-order polynomial is selected for fitting, which can
effectively reduce the system bias and fitting time. Using the
data in Figures 2, 3 as the forecasting experience data, the fitting
curve is shown in Figure 6.

The state space equation of the PV power prediction system
can be expressed as follows:

xt � A · xt−1 + Qt. (24)

Here, the state transition matrix A coincides with the identity
matrix I, and Qt and Rt are the model error and the instrument
error, respectively, which should be estimated by utilizing the last
seven values of the model window data, the number that
sensitivity tests proved as optimal (Galanis et al., 2017).

Qti �
1
6
·∑6
i�0

[(xti+1 − xti) − (∑6
i�0(xti+1 − xti)

7
)]2

(25)

Rti �
1
6
·∑6
i�0

⎛⎝(yti −Htixti) − ⎡⎣∑6
i�0(yti −Htixti)

7
⎤⎦⎞⎠2

(26)

In the method proposed in this article, the Kalman filter is a
dynamic estimation process. The forecasting window is updated
in real time based on the NWP data of the cloud to achieve the
goal of sampling and fitting prediction each hour, making the
Kalman filter algorithm meet the criteria of being dynamic and
flexible yet reliable.

Dynamic Correction Process
The initial value of state vector xt which is denoted as follows:

xt/t−1 � A · xt−1. (27)

The state covariance matrix as follows:

Pt/t−1 � A · Pt−1 · AT + Qt−1. (28)

After the observation value yt is determined, the estimated
value of state vector x at time t as follows:

x̂t � xt/t−1 + K t · (yt −Ht · xt/t−1) (29)

Kt is the Kalman gain, which serves to ensure that the Kalman
filter algorithm adapts to any dynamic process, and can be
determined by the following formula:

Kt � Pt/t−1 ·HT
t (Ht · Pt/t−1 ·HT

t + Rt)−1. (30)

After iteration, the state covariance matrix as follows:

Pt � (I − Kt ·Ht) · Pt/t−1. (31)

The recursive nature of the state equation and the linear
unbiased least mean square estimation criterion are used to
make the best estimate of the state variables of the Kalman
filter. And then by using the state equation of signal and
noise, the estimated values and observed values at the previous
time and the current time are compared to update the state
variables and realize the estimation of the state variables. The
Kalman filter algorithm is recursive in the order of “prediction-
measurement-correction,” based on a series of observations of
random states to make quantitative inferences, and the minimum
mean square error to make the estimated value more accurately
close to the true value. The algorithm flow is shown in Figure 7.

SIMULATION AND RESULT ANALYSIS

We use the data from April 20, 2019 until April 22, 2019 for
simulation verification. Observation Eq. 23 is determined by
fitting the forecasting experience data, which are hourly
irradiance on the PV array surface in Figure 2 and the model
calculation power values in Figure 3 in forecasting days. The
ultra-short-term prediction of PV power is achieved by the
dynamic correction process of the Kalman filter prediction
model. And the forecasting window can be adjusted according
to the NWP data.

The error evaluation of the system uses absolute percentage
error as follows:

Eape �
∣∣∣∣∣∣∣∣∣ypi − yqi

yqi

∣∣∣∣∣∣∣∣∣ × 100%. (32)

Here, ypi is the predicted value and yqi is the actual value.
The Kalman filter PV power prediction curve is shown in

Figure 8, and the error curve is shown in Figure 9. To facilitate
comparative analysis, the predicted data of the Kalman filter
model based on forecasting experience and the predicted data of
the Kalman filter model based on historical experience are given
in the figure (Ying and Tianyang, 2021). The sampling period of
DKASC field output power data is 5 min. In practice, considering
the NWP time scale and leaving sufficient preparation margin for
the ultra-short-term prediction of PV power, the data sampling
period in this simulation is 10 min. The horizontal coordinate of
the graph indicates the time, and the data of the forecasting days
are used and expressed as continuous values.

In order to effectively verify the effectiveness of the prediction
model established in this article, the DKASC data selected in the
first 2 days of weather conditions change significantly are used to
simulate the historical experience of insufficient, anomalous
output power situations; the third-day weather conditions are
more normal and used to simulate the historical experience of
sufficient, normal output power situations. As shown in Figure 8,
the predicted power curve of the Kalman filter model based on
forecasting experience is in good agreement with the actual power
curve, and the predicted power curve of the Kalman filter model
based on historical experience deviates relatively large from the
actual data curve. Combined with the partial enlarged detail in
Figure 8, because the solar irradiance is relatively weak at sunrise
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and sunset time, the actual value yqi of absolute percentage error
in Eq. 23 is extremely small. Even if there is a small change in the
predicted value, the absolute percentage error will fluctuate
greatly; therefore, the error value of the corresponding sunrise

and sunset time in Figure 9 is large. From the overall view of the
error curve Figure 9, the error range of the Kalman filter
prediction method based on forecasting experience is within
8% when the illumination is insufficient and within 3% at
other times. And the error range based on historical
experience is within 15% when the illumination is insufficient
and within 6% at other times. As can be seen from the
combination of Figures 8, 9, the prediction results of the
Kalman filter model based on forecasting experience are better
than those based on the historical experience.

Deep belief network (DBN) prediction is a typical prediction
method using a large amount of historical experience data, and

FIGURE 7 | Kalman filter PV power prediction flow.

FIGURE 8 | Kalman filter model PV power prediction curve. (A)
Photovoltaic power prediction curve in forecasting days; (B) Photovoltaic
power prediction curve in insufficient illumination; (C) Photovoltaic power
prediction curve in sufficient illumination.

FIGURE 9 | Kalman filter model PV power prediction error curve.

FIGURE 10 | Comparison curve of Kalman filter and DBN prediction
result.
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DBNmethods have beenmore widely used in the field of prediction in
recent years. Under the same conditions, the Kalman filter and DBN
prediction methods are compared. In order to visually compare the
prediction results of the Kalman filter and DBN, the time period with
sufficient solar illumination is selected for comparative analysis, and the
PV output power in the time period of 10:00 a.m.–16:00 p.m. in the
forecasting days is predicted. The result curves are shown in Figures 10,
11, which can show that compared with the DBN prediction method,
the Kalman filter PV power prediction results proposed in this article
are closer to the actual power data. And it is easy to see from the error
curve that the power prediction error of the proposed method in this
article is within 3%, the error range of the DBN prediction method is
generally within 6% in normal weather conditions, and the maximum
prediction error reaches 18% when the weather conditions change
greatly. Overall, the Kalman filter prediction accuracy in this article is
more prominent for situations with drastic weather changes and
insufficient historical experience.

The simulation experiment is conducted on a personal computer
with Intel Core i5-6,400 and 8.00 GBRAM. The Kalman filter model
spent 7.8 s in the simulation phase, which is efficient enough for
most prediction situations. And theDBNmodel spent a total of 108 s
in the simulation phase, which is less efficient. The training data set
of the DBNmodel during prediction is 8,640 sets of data in 30 days,
while the Kalman filter model uses real-time prediction, which
requires the amount of data such as future weather forecasting
and does not require a large amount of historical data.

CONCLUSIONS

In this article, a Kalman filter PV power prediction model based on
forecasting experience is proposed. Forecasting experience data are

determined using the hourly solar irradiance prediction model, NWP
data, and PV conversion model calculations. The dynamic
equations of the Kalman filter PV power prediction model
are determined by fitting the forecasting experience data of
irradiance and PV power. The measured power data are used
to dynamically correct the prediction error and limit the
residual white noise of the system to realize ultra-short-term
prediction of PV power. Finally, using DKASC data and by
comparing the analysis with the Kalman filter prediction
method based on historical experience and the DBN
prediction method, it is verified that the model established
in this article has a better prediction accuracy, especially for
situations with insufficient historical experience. At the same
time, the model in this article has the advantages of low data
volume requirement and small computational speed.
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