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The predictability concept of Photovoltaic (PV) power on the time series was presented
and the approximate entropy algorithm and predictable coefficient were used to
quantificationally analyze the predictability of PV power on time series, then the
approximate entropy and predictable coefficient variation at different spatial scale were
analyzed. Finally, the measured data of a PV plant in western Ningxia were used for testing
and confirming the result. The results of several typical prediction methods show that the
proposedmethod can effectively characterize the predictability of PV power on time series.
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INTRODUCTION

Photovoltaic (PV) power is generally characterized by randomness, intermittence, and fluctuations
due to diurnal alternation and weather uncertainty (Gielen et al., 2019). Therefore, large-scale grid-
connected PV power plants will inevitably affect the safe and stable operation of the power grid. An
accurate prediction of PV power can ensure the stability of the power grid and help the grid to deal
with increased integration of PV power, thereby reducing economic loss related to PV generation
curtailment and improving the efficiency of the operation and management of PV plants
(Benhammane et al., 2021; Ni et al., 2020).

The forecast accuracy of PV power can be increased by improving data quality (Yang et al., 2020;
Lei et al., 2021) and prediction methods (Yang and Huang, 2018; Durrani et al., 2018; Rafati et al.,
2021; Wang et al., 2021). Besides, the conversion efficiency of PV power generation can be improved
by adopting new PV materials (Manokar et al., 2018; Kabeel et al., 2019; Karthick et al., 2020;
Manokar et al., 2020). To assess abnormal data in PV power, an improved data cleaning method was
proposed in (Zhang et al., 2017), where abnormal data for PV power were divided into three types of
outliers based on periodic time series, and the data were cleaned considering the rated capacity of the
PV power plant and the periodicity of the PV power time series. The clear sky model (Yang et al.,
2021) generally uses instantaneous solar radiation intensity combined with the atmospheric
transparency coefficient on cross-section to predict surface radiation which is then converted
into the PV power by the radiant energy conversionmodel. Chen et al. (Lopes et al., 2018) considered
the cloud information in the PV power model and proposed an ultra-short-term PV power
prediction model based on a ground cloud map combined with a radial basis function neural
network. Literature (Sasikumar et al., 2020) analyzed the influence of different degrees of water flow
on the power generation efficiency of PV panels. Literature (Manokar, 2020) analyzed the
performance of solar panels in the Chennai climate by using phase change materials.

The above methods can predict PV powers within a certain time range. They avoid the problem of
a high proportion of abnormal data in PV power that are caused by equipment failure, artificial
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power limitation, communication failure, and power reduction in
PV modules. Though some combination models (Chepp and
Krenzinger, 2021) effectively increase prediction performance,
they cannot ensure an accurate prediction at any given time. The
above method can predict the future wind power value well
within a certain time range, and some combined models can
effectively increase the prediction performance of the model, but
it still cannot guarantee the absolute accuracy of the prediction
effect in any period. The prediction accuracy of wind power is not
only related to the prediction method adopted, but also related to
the fluctuation characteristics of wind power itself, one of which is
predictability. The approximate entropy is an important method
of analyzing the complexity of time series. It measures the
probability of generating new patterns in the signal and
describes the degree of self-similarity of the time series in the
patterns. The complexity of the time series can be quantitatively
tested through approximate entropy, and the degree of self-
similarity in the internal structure of the time series can be
revealed. The lower the complexity, the stronger the self-
similarity of internal structure.

The paper is structured as follows: Predictability Analyses of
PV Power Series describes the predictability of PV power series;
Approximate Entropy and Its Quantitative Characterization
Index introduces an approximate entropy based evaluation
model; the application of approximate entropy in PV power
prediction is analyzed in Application of Approximate Entropy
in PV Power Forecasting; Clustering Effect of PV Power Stations
presents the convergence model of PV power stations; the
predictability of PV time series in different modes is analyzed
in Case Study; Conclusion presents conclusions and
recommendations for future work.

PREDICTABILITY ANALYSES OF
PHOTOVOLTAIC POWER SERIES

PV power forecasts at a given sampling scale are generally
calculated for several time steps ahead using statistical,

learning, or physical methods based on historical power data
or numerical weather predictions. The methods of PV power
prediction can be divided into two groups according to their
objects: irradiance-based prediction (indirect methods) and
power-based prediction (direct methods) (Hashemi et al.,
2021). Indirect prediction first forecasts the solar irradiance
received by the Earth’s surface or by PV panels which are
then converted into PV power. This may need to establish
multiple prediction models with greater complexity. Direct
prediction does not consider the changes of solar irradiance
but uses historic PV power data to train statistical or
intelligent methods based forecasting models which are then
applied to real-time data for prediction. The following studies
focus on direct prediction which is generally suitable for ultra-
short-term PV power forecasting.

The predictability of PV power is the degree to which the
regularities contained in the output of PV power stations can
be effectively grasped (Liu et al., 2017). Predictability
indicates the extent to which PV power can be accurately
predicted. Figure 1 shows fluctuation curves of PV powers
under different meteorological conditions. If the historical
data are all zero (shown in red in Figure 1), according to the
law of PV output, the predicted value is also zero, indicating
that the time series has the highest predictability. When
historical data exhibits random fluctuations (shown in blue
Figure 1) which have no obvious regularity, the predicted
value will change randomly and has reduced predictability.
The value of the research on the predictability of photovoltaic
power lies in improving the scale of photovoltaic grid-
connection of the existing power system and promoting the
large-scale development and utilization of solar energy.
Combined with historical meteorological data and
numerical weather prediction (NWP) data, weather types
were divided according to partial daily pattern prediction
framework in Fei et al. (2020), which were divided into
sunny weather, cloudy weather, and rainy weather.

The value of research on PV power predictability lies in that it
goes beyond an objective evaluation of advantages and
disadvantages of different prediction methods on the same
platform, and provides the basis for different PV power
stations to determine a practical indicator of prediction
accuracy. It can facilitate an increased scale of the connection
of the PV grid to the existing power system and promote the
large-scale development and utilization of solar energy.

APPROXIMATE ENTROPY AND ITS
QUANTITATIVE CHARACTERIZATION
INDEX
Approximate entropy is a dynamic nonlinear parameter used
to describe the complexity of an event sequence (Ryan et al.,
2019). It does not require a large number of data to obtain a
stable value, which enables its use in engineering applications.
Furthermore, a sequence with a higher entropy value has
greater complexity and a higher probability of generating a
new pattern in the signal.

FIGURE 1 | PV power fluctuation curves under different weather
conditions.
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Construction of Approximate Entropy
Given a set of PV power time series si (i � 1, 2, . . ., n), the
approximate entropy is estimated using the idea of image space
reconstruction (Zhang et al., 2021) as follows:

1) For a time series si (i � 1, 2, . . ., n) with a sampling
interval of Δt, select a suitable embedding dimension m
and delay time τ to reconstruct the phase space of the
time series:

xi � {si, si+τ , . . . , si+(m−1)τ}, i � 1, 2, . . . , n − (m − 1)τ. (1)

2) Calculate the distance between the ith point xi and the jth
point xj in the reconstructed phase space:

dij � max
����xi − xj

����, i � 1, 2, . . . , n − (m − 1)τ,
j � 1, 2, ..., n − (m − 1)τ. (2)

3) For a given xi, find the number N(i) that satisfies dij ≤ εi. εi
is generally taking 15–20% of the standard deviation of the
original time series. At the same time, calculate the ratio
Rm(r,i) of N(i) to the total number of points in the
phase space.

Rm(r, i) � N(i)
N − (m − 1)τ, i � 1, 2, . . . ,N − (m − 1)τ, (3)

where r is the similarity tolerance threshold.

4) Take the natural logarithm of each Rm(r,i) and find its
average:

AVm(r) � 1
N − (m − 1)τ ∑N−(m−1)τ

i�1
lnRm(r, i). (4)

5) Increase the dimension to m + 1 and repeat steps 1) to 4),
producing Rm+1(i) and AVm+1(r). Then the theoretical
approximate entropy is defined as:

ApEn � lim
N→∞

[AVm(r) − AVm+1(r)]. (5)

C-C Method for Embedding Dimension
The C-C method can estimate delay time τ and time window
length Γ simultaneously by applying the correlation integra. Let
the time series be si (i � 1, 2, . . ., n) after phase space
reconstruction:

Si � [si, si+τ , ..., si+(m−1)τ], i � 1, 2, ...,M, (6)

where M � n − (m − 1) τ.
The specific description of the C-C method is as follows.

1) The correlation integral of the embedded time series is
defined as the following formula:

C(m,N ,R, k) � 1
M2

∑
τ ≤ i≤ j≤M

θ(R − ‖Si − Sj‖), (7)

where N is the length of the time series after reconstruction; R is
the radius of the phase point, R > 0; k is the number of sub time
series; and θ(*) is the Heaviside function.

The slope of a linear region is used to approximate this
correlation dimension. The time series is divided into k sub-
time series of lengthN/k. Each sub-sequence is defined asD(m, k).
The maximum and minimum radii R are selected. The difference
is defined as follows:

ΔD(m, k) � max{D(m,Rj, k)} −min{D(m,Rj, k)}. (8)

△D(m, k) measures the maximum deviation of the radius R.
Finally, the proper estimates of N, m, and R can be obtained by
using BDS statistics (Su et al., 2021). The optimal embedding
dimension obtained by the C-Cmethod is 2 or 3. To facilitate the
analyses, this paper assigns m � 2 and τ � 1.

Physical Meaning of Approximate Entropy
The core of the approximate entropy algorithm is calculating
the distances between feature vectors of different dimensions
and statistics that meet the distance requirements specified by
a certain tolerance range. The distance calculation is described
here by Figure 2 using m � 2. In the two-dimensional mode,
the feature vector Xi is the connection between the two
adjacent sampling points x(i) and x(i + 1) in the sequence
line; given a similar tolerance threshold of r, two intervals A
and B in Figure 2 represent the tolerance range of x(i) and x(i +
1) respectively. If the two endpoints x(j) and x(j + 1) of the
eigenvector Xj fall into intervals A and B respectively, it is
considered that the distance between the eigenvector Xi and Xj

is less than the tolerance threshold r. The modes representing
the two-dimensional eigenvectors Xi and Xj are similar about
tolerance r. Similarly, in the three-dimension (i.e.m � 3), if the
distance between the eigenvectors Xi and Xj is less than the
tolerance threshold r, the connecting line (Xi) of adjacent
sampling points x(i), x(i + 1) and x(i +2) is similar to the

FIGURE 2 | Basic principles of approximate entropy.
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connecting line (Xj) of x(j), x(j + 1), and x(j + 2) under
tolerance r.

The physical significance of approximate entropy is to measure
the mean value of the logarithmic conditional probability of new
patterns appearing in signal sequence when the dimension changes.
Therefore, the approximate entropy has certain significance in
characterizing the predictability of signal sequence theoretically.

APPLICATION OF APPROXIMATE
ENTROPY IN PHOTOVOLTAIC POWER
FORECASTING
Predictability Coefficient Based on
Approximate Entropy
The sequence of a higher approximate entropy has greater
complexity and contains more uncertainty information,
meaning lower predictability of the sequence. Therefore, the
coefficient of predictability kpred can be obtained by taking the
reciprocal of approximate entropy.

kpred � 1
ApEn

. (9)

The application of the approximate entropy algorithm in the
predictability analyses of PV power generation includes the
following four points (Xu et al., 2020):

1) The approximate entropy algorithm has good anti-noize
and anti-interference capabilities, especially withstanding
occasionally strong transient interference, such as the PV
power time series usually contains, in the form of high-
frequency noise interference. Thus, the anti-noize ability
of the approximate entropy algorithm is very important.

2) The approximate entropy algorithmmeasures the complexity
of a time series. It is only related to the complexity of the time
series and has nothing to do with the amplitude (Wu et al.,
2010). It reflects the degree of self-similarity of the sequence in
the pattern and has only a relative meaning. Due to different
numbers of clusters and weather types, the magnitude of the
output sequence of PV power plants varies greatly. Therefore,
the use of approximate entropy that is independent of
amplitude can effectively compare the predictability of
different sequences.

3) The stochastic and deterministic processes of the approximate
entropy algorithm have universal applicability, especially for
PV power time series which often contains both deterministic
and random components of complex chaotic signal
components.

4) The approximate entropy algorithm describes the
predictability of the sequence in its structural distribution
from a statistical perspective. It can extract characteristic
information hidden in the time series within a short
period, making it suitable for real-time demands for the
high predictability of PV power.

In summary, the approximate entropy algorithm applies to the
predictability analysis of modeling domain sequences in power

prediction and provides a new means of support for more
accurate power predictability research. The specific flow of its
algorithm is shown in Figure 3.

CLUSTERING EFFECT OF PHOTOVOLTAIC
POWER STATIONS

Information on Photovoltaic Power Stations
This article examines the locations of several PV power stations in
Ningxia, China as shown in Figure 4 to complete the preliminary
division from a single site to multiple sites based on their latitudes
and longitudes. Because of the high latitudes of this set, the angle
of solar altitude is relatively small, which means that obliquity
must be accounted for, and the solar radiation obtained per unit
area of the ground is small. In areas with low latitudes, the Sun’s
altitude angle is relatively large, whichmeans it is closer to or even

FIGURE 3 | Algorithm flow chart.
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reaches the point-blank phenomenon, and more solar radiation is
obtained per unit area of the ground than in high-latitude regions
(Fedorov et al., 2020). This article chooses a PV power station
around a latitude of 37.5°N.

Initially, the PV power plants 47, 51, 52, 54, 63, 66, 67, 94, 96,
100, 102, 112, 130, 198, and 205 were selected, totalling 16 plants.
Their information is listed in Table 1.

Convergence of Photovoltaic Power
Stations
In each region, there are different light resources, and the
volatility generated by this variance in one area can offset
that of another. In the region, complementary effects can be
formed to meet the needs of the operation of the PV system. A
normalized polyline comparison chart is given in Figure 5 for
one, four, and eight 30 MW PV power plants respectively. The
polyline graph in the black rectangular frame shows that the
power of a single plant has large fluctuations; as the number of
aggregated PV power plants increases, the fluctuation of their

aggregated output power decreases, meaning that the
complexity of the power sequence decreases and the PV
power curve is smoother (Yang et al., 2020). The above is an
intuitive expression of the clustering effect on PV power. The
approximate entropy is used here to quantitatively describe the
expression of this clustering effect, reflecting its specific impact
on predictability.

There are different methods of the combination of PV power
stations. The mutual information value of each pair of PV power
stations is calculated to indicate the correlations between the two
stations, as shown in Table 2.

This thesis does not simply aggregate the power of each PV
power station but uses the obtained mutual information value
table to hierarchically cluster eight different stations. The
clustering results are shown in Figure 5. If the power of the
47th PV power station is taken as the benchmark, the aggregated
power of PV stations 63, 96, 130, 198, 52, 102, and 111 can be
assessed in terms of correlation according to the results of the
hierarchical division shown in Figure 6.

CASE STUDY

Predictability AnalysesUnder theClustering
Effect
The data collected from 16 PV power plants in Ningxia, China,
are used as experimental data. These data represent output power
between 00:00 and 23:45 from July 01, 2017 to September 30,
2017, with a time resolution of 15 min. For each day, 96 sets of
data were obtained, including independent time data and the
output power of 16 single-farm power plants. The installed
capacity of the power plant is between 10 and 100 MW. A PV
power plant is selected with an installed capacity of 30 MW, the
approximate entropy and recurrence rate accumulated from one
PV power plant to eight PV power plants is calculated. The
original sequence was a 14-days PV power sequence from July 10,
2017 to July 23, 2017. The predictability of PV power under the
clustering effect was investigated.

FIGURE 4 | Geographical distribution of PV power stations.

TABLE 1 | Information on PV power stations.

Installed capacity/MW Power station number Latitude Longitude

10 100 37.5333 105.1833
112 37.5333 105.1833

20 66 37.5500 106.0666
67 37.3130 105.9016
205 37.5500 106.5833

30 47 37.5333 105.1833
52 37.5500 106.5833
63 37.3300 105.5200
96 37.7704 106.0179
102 37.2833 106.4833
111 37.9847 105.8098
130 37.5369 105.5473
198 37.7704 106.0179

50 54 37.2833 106.4833
100 94 37.5500 106.0666

250 37.7704 106.0179

FIGURE 5 | Normalized PV power fluctuation curves.
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The average approximate entropy and recurrence rate of the
power generated by a certain number of PV power plants at
different similar tolerance thresholds (r) is given in Table 3.

It can be observed from Table 3 that the increase in the
number of PV power stations decreases the approximate entropy
value of the time series, meaning that the predictability coefficient
of the PV power time series gradually increases and the ultra-
short-term prediction error decreases. The average approximate
entropy of a single PV power series is 0.2371, and the
predictability coefficient is 4.22. When the number of PV
power stations increases to eight, the approximate entropy
value of the power series reaches 0.2086, and the predictability
coefficient is 4.79. The recursive graph is an effective tool to
analyze the fluctuation of PV power time series, and its

corresponding index is the recursive rate (Shen et al., 2018). It
can be seen from Table 3 and Figures 5, 7 that with the
continuous increase of stations, the convergence effect in
Figure 5 is obvious, but the blank points in the sequence
point 40–60 in Figure 7 gradually increase (the more blank
points, the more fluctuation points). After analysis, it is found
that the PV power fluctuation is not obvious when the number of
stations in Figure 5 is 8 and the numerical change is not obvious
when the recursive rate index is used to measure the convergence
effect. The power time series of a single PV power station is more
complex than that of eight PV power stations and has smaller
predictability. As the PV power stations converge one by one, the
power curve gradually becomes smooth, leading to increased
predictability.

Based on the eight PV power stations selected above,
additional six PV power stations of no. 100, 112, 66, 67, 54,
and 94 are added successively. The average approximate entropy
of the corresponding power sequence is calculated as shown in
Figure 8 in order to verify the limitation of the clustering effect.
As the number of converged PV power stations continues to
increase, the approximate entropy is stable between 0.15 and 0.2
and will not decrease with the increase of the number of
converged PV power stations. However, the recurrence rate
remains unchanged, so it is impossible to analyze the
convergence effect of data. Therefore, the cluster power cannot
be predicted and improved according to the recurrence rate. This
reveals that the predictability will not increase infinitely even
under the clustering effect.

To further illustrate these conclusions, PV power stations with
different installed capacities were selected, in combination with
the conclusions obtained in Figures 7, 8, the recurrence rate is not
analyzed, but only the calculation results of approximate entropy
are analyzed. Stations 100 (10 MW), 47 (30 MW), and 94 (MW)

TABLE 2 | Mutual information value of each PV power stastions.

Mutual
information
value

47 52 63 96 102 111 130 198

47 1 0.9565 0.9863 0.9662 0.9497 0.9510 0.9619 0.9534
52 0.9565 1 0.9571 0.9637 0.9638 0.9524 0.9504 0.9469
63 0.9863 0.9571 1 0.9643 0.9651 0.9619 0.9649 0.9587
96 0.9662 0.9637 0.9643 1 0.9511 0.9386 0.9686 0.9523
102 0.9497 0.9638 0.9651 0.9511 1 0.9507 0.9515 0.9333
111 0.9510 0.9524 0.9619 0.9386 0.9507 1 0.9416 0.9448
130 0.9619 0.9504 0.9649 0.9686 0.9515 0.9416 1 0.9648
198 0.9534 0.9469 0.9587 0.9523 0.9333 0.9448 0.9648 1

FIGURE 6 | Hierarchical clustering results for each PV power station.

TABLE 3 | Average approximate entropy and recurrence rate for the convergence of different numbers of PV power plants.

Number
of PV
power
plants

1 2 3 4 5 6 7 8

Approximate entropy 0.2371 0.2294 0.2293 0.2250 0.2139 0.2132 0.2105 0.2086
Recurrence rate 0.3955 0.3981 0.3946 0.3932 0.3928 0.3921 0.3904 0.3906
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were taken as an example to calculate the approximate entropy
under different similar tolerance thresholds based on the power
sequences over the 14 days, as shown in Figure 9.

Figure 9 shows that when the similarity tolerance threshold
increases, the approximate entropy first increases and then
decreases gradually, and finally tends to be stable. The is
mainly due to the diurnal trend of PV power, i.e. the PV
power rising until noon and then declining to zero until the
sunset given no the influence of cloud disturbance or other
disturbance. The difference between Xi and Xj after the
reconstruction of the phase space is found to be small. In the
case of a small similarity tolerance threshold (e.g. r < 0.1), the
number of dij ≤ εi is very small, and the corresponding results of
the model are not stable. When the threshold value for similarity
tolerance exceeds 0.1, approximate entropy tends to be stable with
an increased threshold value, and the result is more convincing.
Furthermore, the installed capacity of a PV power station shows is
shown to affect power predictability. The approximate entropy

FIGURE 7 | Recursive diagram of PV power on a certain day after the
convergence of different stations. (A) Number�1. (B) Number�4. (C)
Number�8.

FIGURE 8 | Variation of approximate entropy with the number of
converged PV power stations.

FIGURE 9 | Approximate entropy values under different installed
capacities.
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calculated for a PV power station with a higher installed capacity
is generally lower than that calculated for a smaller installed
capacity under different similarity-tolerance thresholds, revealing
that the former has greater predictability. This is confirmed by the
clustering effect.

Approximate Entropy in Different Time
Series
To validate the universality of the experiment, we first adopt the
power series of three PV power plants with different installed
capacities as an example, gradually increasing the length of the
time series (from 1 to 14 days), and count the average value of
approximate entropy under different similarity-tolerance
thresholds to determine the influence of the length of time
series on predictability.

It can be seen from Figure 10 that when the time series grows
gradually, the approximate entropy of PV power under each
installed capacity shows almost no obvious change trend. The
approximate entropy is between 0.2 and 0.225, and the
predictability coefficient is between 4 and 4.44. These results

indicate that the effects of time series length on the value of
approximate entropy are not obvious. Thus, in future research,
shorter PV power time series can be used to analyze the
predictability of the whole series. Reducing the sample size can
improve research efficiency.

Influence ofWeather Types on Predictability
of Photovoltaic
Different types of weather cause different PV power curves and
thus produce different accuracies in PV power prediction.
Therefore, unlike the case of wind power, the weather is an
important consideration in PV power prediction. The following
calculations also relate to the type of weather.

Taking PV power station 47 with its installed capacity of
30 MW as an example, weather occurrences are divided into
three types: sunny, cloudy, and rainy. The PV power series for
each weather type is studied separately at a time series length of
6 days. To study the influence of weather type on PV
predictability, approximate entropy values are calculated. The
approximate entropy values for different weather types are
shown in Figure 11.

In Figure 11, the approximate entropy curves are shown
under different similarity-tolerance thresholds for rainy,
cloudy, and sunny weather. The approximate entropy is the
least in sunny weather, and it is less in rainy weather than in
cloudy weather when r < 0.27, but the difference is not large; then,
when r > 0.27, the value in rainy weather is greater than in cloudy
weather, and the difference is large. That is to say, in sunny
weather, when PV power is the least complex, and the
approximate entropy is the smallest, the predictability is the
largest; when the weather is cloudy or rainy, the predictability
is lower, the approximate entropy is greater, and predictability is
lower. Therefore, the predictive coefficient based on approximate
entropy also has strong applicability for different weather types.

Relationship Between Approximate Entropy
and Photovoltaic Prediction Error
To verify the correlation between the predictability and the ultra-
short -term prediction accuracy, the ELM、Persistence method

FIGURE 10 | Approximate entropy at different time series lengths.

FIGURE 11 | Approximate entropy under different weather types.
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and BP are used here to produce the ultra-short-term forecasts of
PV power for 4 h ahead based on the time series of the total
output of different numbers of clustered 30 MW PV power
stations over 76 days from July 01, 2017 to September 14,
2017, and the prediction error is calculated under the
corresponding evaluation indexes, to measure the rationality of
judging the predictability of PV power by approximate entropy.
The mean value of the root means square error (RMSE) of fourth-
hour forecasts calculated by Eq. 10 is shown in Table 4.

RMSE �

���������������
1
4
∑16
i�13

(PMi − PPi

Cap
)2

√√
, (10)

where pMi is predicted PV power, pPi is actual PV power, Cap is
the total installed capacity of the clustered power stations.

It can be seen from Table 4 that the RMSE obtained by the
above four methods all show a similar trend, the Pearson
correlation coefficient of approximate entropy with RMSE
listed in Table 4 is estimated to be around 0.912. In general,
correlation coefficients of between 0.8 and 1.0 indicate that the
two sets of data have a strong correlation. With the increasing of
installed capacity, the RMSE of the whole day prediction results
decreases gradually. In other words, the order of predictability of
each sequence is in the same trend as the installed capacity, that is,
the greater the installed capacity, the higher the predictability.
This is consistent with the conclusion of approximate entropy
and predictable coefficient.

The predictable coefficient, namely the reciprocal of
approximate entropy, is an indicator for quantitative analysis
of the predictability of PV power time series. The greater the
value, the stronger the predictability of the corresponding PV
power time series is, and the predictable coefficient is inversely
proportional to the approximate entropy. Therefore, there is no
lower bound on the predictive coefficient; The time series of
cluster PV power is different from the time series of single field
PV power, and its time series has certain implicit characteristics.
The predictability degree of the PV power time series can be
obtained through approximate entropy and predictable value.

The above analysis shows that the predictability coefficient of
cluster PV power series is higher than that of a single station. For
the same prediction method, when the cluster and single station
are respectively predicted, the prediction accuracy of the cluster is
also higher than that of a single station. It can be seen that the
higher the predictability of PV power, the higher the prediction
accuracy. On the other hand, for PV power stations with different
installed capacities, the convergence degree of PV power stations

with large installed capacities is also different. The statistical
values of the predictable coefficients of PV power stations with
different scales are shown in the third row of Table 4.

The performance of the prediction methods is additionally
tested on sunny, cloudy, and rainy days, as shown in Table 5. It is
found that the prediction error is the least on sunny days and
relatively greater on rainy days. This is because cloudy and rainy
days are greatly affected by cloudmovement, resulting in frequent
fluctuations of PV power and enhanced randomness of the
sequence, which is consistent with the conclusion obtained by
the approximate entropy. The Pearson correlation coefficient of
approximate entropy sequence and error sequence listed in
Table 5 is 0.931, indicating a high correlation between them.

Combined with the example analysis, it can be seen that the
predictive coefficient based on approximate entropy is more
suitable for the power of photovoltaic clusters. This is because
the increasing number of photovoltaic clusters will produce the
convergence effect, and the time segments with severe
fluctuations will become relatively smooth with better
predictability and higher predictability coefficient. For a single
photovoltaic power station, the applicability range is smaller than
that of a photovoltaic cluster, and it is more affected by weather
conditions. Especially for rainy days, it can be seen that the
prediction effect is poor and the coefficient of predictability is low.
In sunny and cloudy weather conditions, the effect is consistent
with the cluster, and the predictability is good, and the coefficient
of predictability is high.

CONCLUSION

This paper has investigated the predictability of PV power which
is believed to correlate to digital characteristics of the time series
of PV power itself. Using approximate entropy, a predictability
coefficient has been proposed here to quantitatively interpret the
predictability of PV power. The following conclusions are drawn:

TABLE 4 | Comparison of approximate entropy and prediction error.

Number of PV stations 1 2 3 4 5 6 7 8

ApEn 0.2371 0.2294 0.2293 0.2250 0.2139 0.2132 0.2105 0.2086
Predictability coefficient 3.855 3.942 4.011 4.444 4.675 4.690 4.751 5.035
RMSE ELM 0.1328 0.1383 0.1256 0.1176 0.1180 0.1068 0.0969 0.0998

Persistence method 0.1726 0.176555 0.1854 0.1625 0.1762 0.1654 0.1532 0.150444
BP 0.1435 0.1430 0.1405 0.1568 0.1462 0.1395 0.1384 0.1385

TABLE 5 | Approximate entropy and prediction results for different types of
weather.

Weather type Sunny Cloudy Rainy

ApEn 0.1542 0.3160 0.3335
Predictability coefficient 6.485 3.165 2.999
RMSE ELM 0.0770 0.0956 0.1203

Persistence method 0.1736 0.1559 0.1861
BP 0.1056 0.1247 0.1569
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1) For a constant time scale, the predictability of the PV
power time series increases with the number of clustered
PV power plants. The predictability of the entire plant is
greater than the predictability of a single unit. The
mechanism of the clustering effect with PV power is
consistent.

2) The value for approximate entropy is different in the
context of different weather types, indicating that the
predictability varies with weather types. The order of
approximate entropy is rainy, cloudy, and sunny, from
greatest to least. As the time scale gradually increases, no
regularity appears for the predictability of PV power time
series due to the convergence of PV power stations.
Therefore, a shorter time series for PV power may be
selected to analyze the sequence characteristics of a longer
time scale.

3) The predictability index proposed based on approximate
entropy theory can be used to quantitatively describe the
predictability of PV power by the prediction coefficient,
and can also provide a reference for other PV power
prediction and evaluation indexes.

4) Due to the influence of cloud disturbances, changes in the
working environment of PV modules, and severe weather
changes, PV output power is expected to fluctuate to a
certain extent, leading to greater uncertainty and reducing
the predictability of PV power. Therefore, even if the
prediction error of the model itself is ignored, the
improvement of the prediction accuracy has certain
limitations.

This paper mainly considers the predictability from the
macro perspective of photovoltaic single station to
photovoltaic cluster. The prediction method is statistical
extrapolation. The advantage is to evaluate the

predictability degree of PV under different weather
conditions according to the predictable coefficient of
approximate entropy value, that is, the reliability degree of
point prediction results. However, there is no discussion on
whether the prediction method based on photovoltaic cell
module model and photoelectric conversion efficiency model
has such a law. The next research idea is to discuss the law
generated by the physical model and how to combine the
predictable coefficient of approximate entropy measurement
with how to improve the prediction accuracy of photovoltaic
power generation.
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