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China has a large manufacturing industry and shoulders the responsibility of reducing
carbon emissions. Smart grid technologies can integrate multiple renewable energy
technologies, which possess significant potential in reducing carbon emissions.
To estimate the carbon emission reduction potential of the smart grid in China’s
manufacturing industry, this paper applies a temporal logarithmic mean Divisia index
(LMDI) method to analyze the driving forces of carbon emission changes in the whole
manufacturing industry and 28 sub-industries from 2000 to 2017, respectively. The
results reveal that industrial activity and energy intensity are the key factors leading to
the increase and mitigation of carbon emissions, respectively. Sub-industries with high
emission intensity are crucial for the reduction of carbon emissions in the manufacturing
industry. By applying a smart grid, the carbon emissions could be reduced by 27.51%
in the optimistic scenario.
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INTRODUCTION

Due to its continued economic growth, industrialization, and urbanization, China surpassed the
United States as the world’s largest emitter of carbon dioxide in 2007. According to the BP world
energy statistics review, China’s carbon emissions in 2016 reached 9.12 billion tons, accounting
for 27.3% of global carbon emissions. The extreme climate phenomenon caused by the sharp
increase in greenhouse gas has brought great challenges for human survival and development. In
2015, to undertake international responsibilities and obligations, the Chinese government proposed
reducing carbon emissions per unit of GDP by 60–65% by 2030 from the 2005 level. As the pillar of
China’s economy, industry consumes 70% of the domestic energy and contributes more than 50% of
the domestic carbon emissions. To achieve the goal of reducing carbon emissions while maintaining
high-quality economic development, the manufacturing industry has made the reduction of carbon
emissions its top priority. Considering China’s significant coal consumption, the reduction of
carbon emissions in the manufacturing industry is not only related to the industrial structure but
also related to the energy structure. This unreasonable energy structure is an important factor that
leads to the industry’s high carbon emission intensity.

There is rich literature focusing on carbon emission reduction regarding the manufacturing
industry (e.g., Li and Cheng, 2020). It has also been demonstrated that smart-grid technologies
are helpful for reducing carbon emissions in power and transportation industries (Fu et al., 2012);
however, the potential of smart-grid in terms of reducing carbon emissions in the manufacturing
industry is rarely studied. Since a variety of energy resources are converted into electric power for
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serving manufacturing industries, it is of great practical
significance to estimate the carbon emission reduction potential
of the smart grid.

In this paper, we use the logarithmic mean Divisia index
(LMDI) decomposition method to analyze the influencing factors
of carbon emissions in the manufacturing industry and attempt
to clarify the impacts of industrial activities and energy structure
on the sub-industry’s carbon emissions. Then we estimate
the potential of emission reduction by optimizing the energy
structure through a smart grid.

LITERATURE REVIEW

Carbon emission is an important aspect of environmental
economics and energy economics. As for the relationship
between carbon emissions and energy structure, many studies
have been carried out from the industry level and regional level,
mainly focusing on manufacturing, the power industry, energy
structure, coal consumption, coal power, and renewable energy
power generation.

Some scholars have analyzed the relationship between
China’s energy consumption, especially coal consumption, and
carbon emissions from a regional perspective. Sun et al.
(2016) used Moran’s I index and a geographical weighted
regression model to illustrate the spatial features of provincial
carbon emission transfer and its economic spillover effects.
They found that 18 provinces reduced coal consumption
through carbon emission transfer, indicating that the transfers
occurred due to the presence of carbon emissions. Because
these regions reduced coal consumption in the production
processes, they had cleaner modes of production. Some
scholars have studied the differences and reasons of carbon
emissions in eastern, central, and Western China (Xu and Lin,
2017). Cai and Guo (2018) identified the driving forces of
carbon emissions of 286 Chinese cities, finding that industry
composition, development stage, and geographical location are
important driving forces to increase the carbon emissions of
Chinese cities.

Some scholars have analyzed the impacts of economic
activities, energy intensity, and technology on carbon emissions
from the perspective of industry. Since the decomposition
analysis method can better quantify the potential of carbon
emissions reduction, the LMDI method is widely used in research
about the region and industry. By using a decomposition analysis
of carbon emissions from China’s manufacturing industry,
Chinese scholars found that economic output effect and energy
intensity effect are the most significant of carbon emissions,
and the output effect is far greater than the inhibition effect of
energy intensity and energy structure on carbon emissions (Xu
et al., 2012; Tan and Lin, 2018). Energy intensity can be further
decomposed into technology, intermediate input, and industrial
output structure; however, the effect of technological change on
carbon emissions is not obvious in recent years (Zhou and Ang,
2008). Lin and Du (2014) used a comprehensive decomposition
model to study the impact of technological progress on the
decline of China’s energy intensity. In the long run, technological

progress will be key to achieving the sustainable growth of
energy productivity. Ang et al. (2015) expanded the LMDI
decomposition method and studied carbon emissions of the
manufacturing industries in 30 provinces of China. Based on this
information, domestic scholars further analyzed the influencing
factors of carbon emissions in the sub-industries of China’s
manufacturing industry (Shi et al., 2019).

Additionally, scholars have carried out research on the
emissions reduction effects of a smart grid. Lamiaa and Tarek
(2013) studied Egypt to explore the development of a smart
grid and its contribution to carbon emissions reduction in the
electricity sector. Some scholars have studied how to optimize the
smart grid to encourage the use of more renewable energy for
power generation (Li et al., 2021). Some scholars have designed
emissions reduction schemes for smart grids in six representative
EU countries and have found that by adopting new technologies
and effective regulatory frameworks, we can realize the emissions
reduction potential and achieve the 2020 emissions reduction
target (Darby et al., 2013).

Although many scholars are concerned about the carbon
emissions emitted by the manufacturing industry and believe that
the unreasonable energy consumption structure is an important
driving force, the contribution of renewable energy use to carbon
emissions reduction is less significant than one might think.
In this paper, smart grids and the manufacturing industry’s
carbon emissions are combined to bridge the gap in emissions
reduction strategies.

RESEARCH METHODS AND DATA
SOURCES

Calculation Methods
According to Kaya’s equation (Kaya, 1989), the carbon emissions
of the energy-related manufacturing industry is mainly driven by
five forces: carbon emissions coefficient, energy structure, energy
intensity, economic activities, and industrial scale. This can be
expressed as follows:

Cij =
∑

ij

Cij

Eij
×

Eij

Ei
×

Ei

Yi
×

Yi

Pi
× Pi (1)

On the right hand side of Equation 1, the first component
could be interpreted as the CO2 emissions coefficient since the
CO2 emissions is deflated by the energy consumed in sub-
industry i of the manufacturing industry, where j repents the
energy types (j = 1,2,. . .,18). The second component measures
the energy structure since the CO2 emissions is deflated by
the of energy type consumed in the sub-industry. The third
component could be interpreted as the energy intensity. An
increase in energy usage technical efficiency will lead to a
larger energy intensity change and therefore more of the change
in E/Y. The fourth and fifth components measure output
per capita and the number of employees in sub-industry i
which represent industry activity and industry scale of the sub-
industry, respectively.
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Using the notations described above, we can rewrite
Equation 1 as

Ci =
∑

j

ECij + ESij + EIi + EAi + IPi (2)

According to the LMDI model given by Ang (2005), the total
change of carbon dioxide emissions related to energy between
the base year 0 and target year t of China’s manufacturing
industry can be divided into five driving forces: carbon emissions
coefficient (EC) effect, energy structure (ES) effect, energy
intensity (EI) effect, economic activity (EA) effect, and industry
population (IP) effect. Now that the change of CO2 emissions
from the period 0 to t is as follows:

1C(t−0)
i = Ct

i − C0
i = 1C(t−0)

i,EC +1C(t−0)
i,ES +1C(t−0)

i,EI

+1C(t−0)
i,EA +1C(t−0)

i,IP (3)

According to the LMDI model given by Ang (2005), the total
change of carbon dioxide emissions related to energy between the
base year 0 and target year t of China’s manufacturing industry
can be divided into five driving forces: EC effect, ES effect, EI
effect, EA effect, and IP effect. The specific calculation is as
follows:

1EC =
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where

L(Ct
ij, C0

ij) =
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ij
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Ct

ij 6= C0
ij

Ct
ij Ct

ij = C0
ij

(9)

Data Source
According to the industrial classification of national economic
activities (GB/T 4754-2011), the manufacturing industry is
divided into 31 sub sectors. Due to the data discontinuity of
C42, C43, and C37, this study covers 28 sub-industries of the
manufacturing industry. The output value and employment
population of manufacturing sub-industries are from China
Industrial Statistics Yearbook (2001–2019). The output value is
calculated using the constant price in 2000. Energy consumption
and carbon dioxide emissions data of the manufacturing industry

is from carbon emissions inventory and energy inventory of
CEADs. According to the revised China’s carbon emissions
factors published in Nature by Liu et al. (2015), the list was
compiled with China’s energy statistical yearbook data and widely
used by scholars at home and abroad.

ANALYSIS OF ENERGY AND CARBON
EMISSION

Relationship Between Energy
Consumption and Carbon Emissions
In recent years, with the growth of manufacturing output value,
the energy consumption and carbon emissions of manufacturing
industry are also increasing. In 2000, 28 sub-industries in the
manufacturing industry consumed 6.05 million tons of standard
coal, which increased to 1977 million tons of standard coal in
2017, an increase of 2.3 times in 18 years. In the same period,
CO2 emissions increased from 1365.1 tons to 4608.3 tons, an
increase of 2.4 times. Thus, there is a positive correlation between
energy consumption and CO2 emissions. Although electricity is
the second largest energy source for the manufacturing industry,
the ratio of electricity to energy consumption remained low
at less than 20%.

From 2000 to 2017, the carbon emissions and energy
consumption of the manufacturing industry can be roughly
divided into four stages. In the first stage (2000–2005), growth
rate of energy consumption and CO2 emissions increased sharply
from less than 9% to about 20% while the proportion of electricity
in energy consumption decreased. In the second stage (2005–
2010), the growth rates were basically controlled within 10%,
although they once declined to 4% in 2008. The proportion
of electricity continued to shrink. In the third stage (2010–
2014), the growth rates were both within 10%, and the ratio of
electricity began to increase. In the last stage (2014–2017), the
growth rates were both negative, and the proportion of electricity
reached 23.8% in 2017.

Carbon Emissions for Different Energy
Sources
The 18 types of energy in the energy emissions list fit into
six categories: raw coal, coal products, oil, natural gas, and
electric and thermal energy. As demonstrated in Figure 1,
coal has always been the main source of energy consumed by
the manufacturing industry and the largest source of carbon
emissions; however, since 2010, the proportion of coal-related
carbon emissions has dropped to less than half. Figure 1
indicates that carbon emissions from raw coal reached a
peak in 2004 (37%) and then gradually declined, and carbon
emissions from coal products have gradually increased from
27 to 37%. It is obvious that electrical power is the second
largest source of carbon emissions in the manufacturing
industry. Electricity-related carbon emissions accounted for 17–
24% of the total emissions from the manufacturing industry
between 2000 and 2017, reaching a peak of 24% in 2017.
The proportion of oil-related carbon emissions declined after
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FIGURE 1 | Energy consumption of manufacturing industry in 2000–2017.

2000 and then increased again after 2013. The scale of natural
gas used by the manufacturing industry is low compared
to proportion of other energies used and tends to rise as
a whole.

China’s energy resource structure is different from developed
countries, as it uses a larger amount of coal and lower amounts
of low carbon energy resources. In the view of the average
level of the world, the proportion of oil, natural gas, and coal
is much more equal, that is 34, 24, and 27% respectively.
Fossil energy use in America and Europe is dominated by oil
and natural gas, while the proportion of coal is only 14 and
13% respectively. However, coal is the most important resource
in the electric power industry of China, while the share of
nuclear energy, photo-voltaic, wind power, and other non-fossil
energy is pretty low.

CALCULATION PROCESS AND RESULTS
ANALYSIS

Carbon Emissions From Manufacturing
Sub-Industries
The CO2 emissions’ intensity of 28 manufacturing sub-industries
shows great diversity in 2017. The industry with the highest
CO2 emissions intensity is C31 (447 tons/10000CNY), while
the industry with the lowest CO2 emissions intensity is C39
(0.04 tons/10000CNY). It is apparent that there are significant
differences in CO2 emissions across the 28 sub-industries.
Therefore, according to the CO2 emissions intensity, we divide
28 sub-industries into three categories: high emissions intensity
industry (HEIs), medium emissions intensity industry (MEIs),
and low emissions intensity industry (LEIs). HEIs include C31,
C30, C25, C26, and C32. The CO2 emissions of these five
industries alone account for 82% of the total emissions of
28 industries. MEIs mainly include C22, C17, C28, and other
traditional industries with high energy consumption. LEIs are
mainly light industry, i.e., C39 and other high-tech industries.
The average emissions intensity of HEIs is 1.99 tons/10000CNY,
5.9 times of MEIs (0.34 tons/10000CNY), and 20.6 times of

LEIs (0.1 tons/10000CNY). Therefore, HEIs are the focus of our
following research.

Time Series Decomposition Analysis of
Manufacturing Industry
In this section, we use the LDMI decomposition model to analyze
the main drivers of manufacturing CO2 emission changes in
2000–2017. According to the trend of CO2 emissions from 2000
to 2017, we have conducted research in four stages, namely,
2000–2005, 2005–2010, 2010–2014, and 2014–2017.

Decomposition Results for the Whole Manufacturing
Industry
During 2000–2017, the CO2 emissions of China’s manufacturing
industry increased from 1.617 billion tons to 5.032 billion
tons, with an increase of 211%. Figure 2 shows that EA effect
and EI effect are the main driving forces for the increase
and decrease of CO2 emissions, respectively. Industrialization
and urbanization are inferred to for the driving factor behind
the expansion of the manufacturing industry and related CO2
emissions since 2000. In terms of CO2 emission reduction, the
energy intensity decreased rapidly during 2000–2017. EI effect
led to a reduction of 582.83 billion tons of CO2 emissions,
accounting for 170.7% of the reduction of CO2 emissions in
the manufacturing industry. IP effect accounts for 12.8% of the
change of CO2 emissions in the manufacturing industry. The
CO2 emissions coefficient of fossil energy is basically constant,
and the change mainly comes from the technological progress
and the improvement of production efficiency of electric heating
production. In the four stages, CO2 emissions increased much
more rapidly than in the following years. Among the five
influencing factors, EA effect is the most important force behind
CO2 emissions.

Decomposition of Manufacturing Sub-Industries
This section decomposes the 28 sub-industries of the
manufacturing industry to study their energy-related carbon
emissions and explore the main forces driving carbon emissions
changes in sub-industries. Although the cumulative contribution
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FIGURE 2 | Decomposition result of carbon emission changes in manufacturing industry.

of the influencing factors of carbon emissions in each sub-
industry varied significantly between 2000 and 2017, the
decomposition results from the 28 sub-industries show that
the EA effect is the main force increasing carbon emissions,
while the EI effect is the main contributor to carbon emissions
reduction. As analyzed in the previous section 5.1, HEIs
contribute a lot to carbon emissions, hence they are the focus of
our following research.

For HEIs, as the rate of urbanization continues to accelerate
in China, the demand for raw materials for infrastructure
construction keeps increasing in 2000–2017, leading to the rapid
development of HEIs and the increase of carbon emissions. As
shown in Figure 3, the EC effect had a positive impact on the
carbon emissions of HEIs from 2000 to 2017. The ES effect had
a negative impact on the carbon emissions of C31 and a positive
impact on other HEIs, but the impact was not significant. The
EI effect is mainly driven by technological progress and remains
relatively limited compared with the EA effect in 2000–2017. The
EI effect of C31 reached −2417 million tons, followed by C30,
C26, C25, and C32, which accounted for −161, −261.1, −127.9,
−175.5, and −14.8 of the total changes in carbon emissions,
respectively. The cumulative contribution of the EA effect in C31
is the largest of the 28 sub-industries, accounting for 226.6%
of carbon emissions changes. Compared to the impact caused
by EA effect, the expansion of the IP effect resulted in 738
million tons of carbon emissions from C31, followed by C30,
C26, C25, and C32, which contributed 49.2, 49.9, 33, 44, and
13.3%, respectively.

Carbon Emissions Reduction Potential of Smart
Grid
The EC effect is closely related to the energy consumption
structure. By using smart power to produce clean energy, the
proportion of thermal power generation can be significantly
reduced. According to China’s carbon emissions reduction
commitment, the country will strive to achieve carbon neutrality
in 2050. The report “2050 World and China Energy Outlook”
issued by CNPC research institute points out that China’s energy
structure will continue to develop toward clean and low-carbon,
clean energy will gradually replace coal after 2030, and the
proportion of coal will drop to 47.1 and 32.4%, respectively, in
2030 and 2050. Therefore, based on the energy consumption
structure and the carbon emissions produced in 2017 with
the calculation formula (9) and (10), we set three scenarios:
conservative estimation, normal estimation, and optimistic
estimation. In the first scenarios, the raw coal power generation
will be reduced by 30% on an existing basis; in the second and
third, coal-fired power will be reduced by 50% and 70%, as shown
in Table 1.

The use of a smart grid can help achieve a better
emissions reduction effect. It is conservatively estimated
that by applying a smart grid, the carbon emissions
will be reduced by 543.25 Mt, which is 12% compared
with the carbon emission of 4608.28 Mt in 2017. Under
normal and optimistic conditions, carbon emissions will
be reduced by 905.41 and 1267.58 Mt, which accounts for
19.65 and 27.51% in the manufacturing industry of 2017.
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FIGURE 3 | Decomposition result of carbon emission changes in sub-industry.

TABLE 1 | Potential of Carbon Emission Reduction of Smart Grid in 2017.

Scenarios The reduction of coal-fired power The reduction of CO2 emissions (Mt) Change rate of carbon emission

Conservative estimation 30% 543.25 11.79%

Normal estimation 50% 905.41 19.65%

optimistic estimation 70% 1267.58 27.51%

Therefore, using a smart grid has great potential for carbon
emissions reduction.

CONCLUSION AND POLICY
IMPLICATIONS

Conclusions
In 2000–2017, the energy structure in which coal was
dominant was the main reason for the increase of CO2
emissions. In 2017, CO2 emissions of HEIs accounted for
82% of total CO2 emissions of the manufacturing industry,
which are also major coal consuming industries. Economic
activity (EA) effect and energy intensity (EI) effect are
the main driving forces for the increase and decrease of
CO2 emissions in China’s manufacturing industry respectively.
Energy structure (ES) effect and industrial population (IP)
effect promote the increase of CO2 emissions, while CO2
emissions coefficient (EC) effect alleviates CO2 emissions. As
our goal is to maintain green and sustainable development, a
feasible way to reduce carbon emissions is to reduce energy
intensity and optimize energy structure, rather than reduce
economic activities.

Policy Implications
Firstly, restrict the development of high energy-consuming
industries to reduce carbon emission intensity. It is necessary to
implement more stringent threshold access and environmental
impact assessment policies for high energy consumption
enterprises and to restrict the expansion of the non-metallic
mineral products industry and other high emission industries. It
is also important to promote high energy consumption industries
to continuously improve energy utilization efficiency.

Secondly, make efforts to optimize the energy structure.
Gradually reduce the proportion of coal consumption in
energy consumption, and control coal, oil, and natural gas
in fossil energy consumption to an appropriate level. We
should encourage the use of renewable energy sources, such as
hydro-power and wind power, and appropriately encourage the
development of nuclear power.

Finally, we should develop and use smart grid technology.
By using smart grids, we can provide a strong power grid
foundation and technical support for power transportation,
enhance the strength of power grids, and access large-scale clean
and renewable energy. This would then reduce the proportion
of electric power, optimize the energy structure, and reduce
carbon emissions.
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