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With the development of distributed energy resources (DERs), the power flow (PF) in the
distribution network (DN) is changed from unidirectional to bidirectional, resulting in
complex control and coordinate measures. Network reconfiguration (NR) is a feasible
solution for the power grid side to deal with the complex PF. This paper proposed an edge-
cloud-coordinated reconfiguration framework with edge servers (ESs) in the prosumer side
and cloud servers (CSs) in the utility grid side, where the edge computing (EC) technology
is implemented in ES to support load forecasting (LF), while cloud computing (CC) is used
in CS to reconstruct the DN. LF is implemented by the long–short-termmemory network to
acquire the load information in advance, and the social preference of prosumers has been
considered. The NR is formulated as a complex combinatorial optimization problem with
the goal of minimizing power losses, while satisfying the power flow and voltage
requirement. The NR problems are solved by the proposed advanced harmony search
algorithm, which can find the optimal global solution, while satisfying the complex
constraints of the NR problem. Numerical results are conducted based on an IEEE 33-
bus network, which shows the high accuracy of LF and demonstrates the effectiveness of
the proposed framework in terms of reducing more than 40% power losses and satisfying
the voltage requirement.

Keywords: edge-cloud-coordinated computing, network reconfiguration, load forecasting, distributed energy
resource, long–short-term memory

INTRODUCTION

With the wide use of distributed energy resources (DERs), such as photovoltaic (PV) and wind energy, an
entity with the competence of both production and consumption called prosumer was created (Liu et al.,
2018). Prosumers can serve as a seller and buyer in the tradingmarket with the capability of consumption
and production, which complicate the power flow (PF) by transferring unidirectional transmission to
bidirectional transmission (Ma et al., 2019; Morstyn and McCulloch, 2019). The control and coordinate
mechanisms of the system are becoming complex, resulting in challenges for the manager of distribution
networks (DNs). Demand response (DR) based on the interaction between prosumers and utility grids or
a third-party network manager has gradually become a hot research topic for the solution of the
prosumers’ strategies in complex PF (Liu et al., 2017). Although the DR also helps the utility grid to set the
strategies for responding to the complex PF, the focus is on the prosumer side. However, network
reconfiguration (NR) based on advanced load forecasting (LF) is a good way to solve the problem.
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NR can change the PF of the network by changing the state of
switches (Baran and Wu, 1989). Sarma et al. (1994) reduce the
network to find the alternate paths of power supply to the affected
load points by properly merging certain nodes and then find the
restorative procedure that satisfied voltage and current
constraints to reconfigure the DN under faulty conditions.
Moreover, NR can also optimize PF of DN and reduce power
losses by changing switch states according to load distribution
with the development of fast switches (Liu et al., 2019). The NR
problem is a complex nonlinear integer optimization problem.
Therefore, obtaining the optimal NR solution of DN within a
short period of time is difficult. For facing with the solution,
which is difficult, previous studies are mainly divided into two
categories: 1) mathematical optimization methods and 2)
heuristic algorithms. In terms of the mathematical
optimization methods, the NR problem is usually modeled as
a mixed-integer cone programming model (Jabr et al., 2012).
Based on the mixed-integer cone programming model, the NR
problem with distributed generation is solved and the global
optimal NR solution is obtained (Jabr et al., 2012), a two-stage
robust optimization model is built to consider the load
uncertainty in NR problem (Lee et al., 2015), and the
worthiness of hourly dynamical NR under renewable energy
resource access is analyzed (Dorostkar-Ghamsari et al., 2016).
In terms of the heuristic algorithms, the NR solution can be
obtained through various heuristic principles. The branch-
exchange method means closing a tie switch accompanied
with opening a sectionalizing switch and gradually comparing
the power losses of different switch states to get the optimal NR
solution (Mishra et al., 2017). Through combining with the
random walks-based technique, the computational runtime of
solving the NR problem based on the branch-exchange method is
speeded up (Ababei and Kavasseri, 2011). A segmented-time
dynamical NR problem coupled with reactive power contribution
of distributed generators is proposed, whose optimal solution is
searched by a solution algorithm based on the particle swarm
optimization (PSO) method (Chen et al., 2016). However, the
mathematical optimization methods and heuristic algorithms are
faced with the difficulty of cumbersome and time-consuming
solutions.

NR requires operators to decide a large number of switches,
and LF is based on a large number of data, which are all
computationally heavy tasks. Edge computing (EC) is
emerged from the Internet of things that can be used to
dramatically improve the computation performance by
deploying services at the edge of the network (Ren et al.,
2019). EC has the advantages of achieving low latency
transmission, saving energy for mobile devices, supporting
context-aware computing, and enhancing privacy and
security for mobile applications. In recent years, researchers
from both academia and industries have investigated a wide
range of issues related to EC, which includes system and
network modeling, optimal control, and resource allocation
(Mao et al., 2017). Besides, the forecasting error often exists
in the LF of a single prosumer (Gong et al., 2019) so that an edge
server allocated in a distribution transformer (DT) is required
for improving the forecasting accuracy by aggregating LF.

According to the current studies, LF is performed via various
methods, which can be divided into two categories: conventional
and machine learning-based techniques. From the perspective of
the conventional methods, a combined probabilistic load forecast
model is established based on a constrained quantile regression
averaging method (Wang et al., 2019a). Besides, a hybrid model is
built for overcoming the computational complexity and
forecasting accuracy problems, combining the wavelet
transform, and gene expression programming (Al-Hilfi et al.,
2021). However, the performance of conventional methods is
unsatisfying in nonlinear load series forecasting due to the linear
model established. Therefore, the machine learning-based
techniques have been widely used in LF recently (Xu et al.,
2018; Chen et al., 2019; Jawad et al., 2020). An extreme
learning machine-based predictor is proposed, where the
weighted averaging is used to combine the individual forecast
outputs for the accuracy improvement (Song et al., 2016).
Moreover, capable of solving the gradient vanishing problems,
the long–short-termmemory (LSTM) network is employed in the
short-term forecasting problems involving time series (Rafi et al.,
2021).

A multilayer data flow processing system consisting of a cloud
center on the top layer, EC servers on the middle layer, and edge
devices on the bottom layer has been proposed in Wang et al.,
2019b. Mach and Becvar, 2017 describe the major application
scenarios that adapt to EC and focus on three major areas, that is,
computation offloading decisions, computing resource allocation,
and mobility management. A comprehensive model designed to
solve the optimization problem of online resource allocation in
edge clouds and an efficient online algorithm were proposed in
Wang et al., 2019c, which are based on the regularization
technique under unpredictable resource prices and user
movements. Therefore, with the powerful computation
capacities, LF and NR with a huge computation cost can be
solved with the help of EC and cloud computing (CC),
respectively. Therefore, LF and NR with a huge computation
cost and time can be solved by the computation allocation in EC
and CC. Moreover, the computation time can be further reduced
by the parallel computation in multiple edge servers.

In this paper, an edge-cloud-coordinated reconfiguration
framework (ECCRF) was proposed to manage the LF tasks in
the prosumer side and NR tasks in the power grid side. The social
preference of each prosumer is also considered in the framework
during the process of LF. The main contributions include the
following:

1) An ECCRF with edge servers (ESs) in the DT of the prosumer
side and cloud servers (CSs) in the utility grid side is created,
where the EC technology is implemented in ES to provide LF,
while CC is used in CS to reconstruct the DN.

2) The short-term LF tasks considering the social preference of
prosumers have been suggested for ES, enabling the ES to
conduct the LF for an aggregated prosumer with similar
preference under a DT and providing the basic execution
conditions for tasks in the CS.

3) NR is implemented in CS due to the fact that it is a system level
task that required information of the whole system. Based on
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the LF results, NR is formulated as an optimization problem
with the goal of minimizing power losses. Besides, an
advanced harmony search algorithm was proposed for
solving the NR tasks.

EDGE-CLOUD-COORDINATED
RECONFIGURATION FRAMEWORK

Overview of the Framework
The ECCRF is based on EC and CC, consisting of two aspects: the
physical field and cyber field. In the physical field, the major
entities are PV prosumers, distribution transformers, and
physical DN. With the competence of production and
consumption of PV prosumers, they act as either a seller or
buyer based on their load profiles, which have influence on the PF
of the DN. Each DT separates prosumers to different parts,
allowing prosumer access to DN in multiple areas. The NR of
the DN should be considered to suit the new PF for reducing
power loss and increasing voltage stability and frequency stability.

In the cyber field, there are the user energy management system
(UEMS), multiple ESs, and a CS, which correspond to prosumers,
DT, andDN of the physical field, respectively.With themetering and
a little computation capacity, theUEMS can help users collecting load
information, adjusting load distribution, etc. The ES located near each
DT is the fundamental of EC, focusing on the control in the DT level.

The UEMS and ES belong to the user side, aimed at the control and
operation of prosumers. However, as the fundamental of CC, the CS
is focused on the power grid side, in charge of global operation
of the DN in the system level. Each entity has a special
communication mechanism about its information. The
specific topology of the ECCRF with these two fields is
shown in Figure 1.

Edge Server and Cloud Server Role
To implement the NR in the physical field, LF was considered in
the framework assisted by the cyber field. The load information
of prosumers can be obtained by LF ahead of time, which is
useful to plan the network future operational structure in
advance.

Load Forecasting Tasks From Prosumers
UEMS is used to be the entity to provide individual load
information to the market for prosumers to participate in the
trading, but LF is a heavy computation task for UEMS with
limited computation resources and high cost to transmit to the
cloud. With the powerful computation capacity and storage, the
ES coordinates the operation of many prosumers that access
DTs, and the LF task can be offloaded to ES with less
transmission cost and time. As the goal of LF is to alleviate
the influence of dynamic load consumption of prosumers on the
power grid, LF can be implemented in the ES.

FIGURE 1 | ECCRF contains the physical field and cyber field. The EC technology is implemented in ES to provide LF, while the CC is used in CS to reconstruct the DN.
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Reconfigured Tasks of the Distribution Network
The CS serves as themanager of the DN in power grid side, which in
charge of the system level control, such as the NR problem, with the
powerful computation capacities. Based on the LF results that
transmit from ES, the CS can get the future PF in advance and
find a best network structure for the power grid by analyzing
switching patterns. Therefore, the coordination of edge (aimed at
LF) and cloud (focused on NR) is built, proposing solutions for the
power grid in face of random access of prosumers and dynamic load
consumption. The overall flowchart of ECCRF is provided Figure 2.

DATA-DRIVEN LOAD RESPONSE OF
PROSUMERS

The influence of dynamic load distribution of prosumers on the
DN was considered, so the control mechanism on the power
grid side was mainly analyzed, that is, the NR. With the
powerful computation capacity and storage, the ES can
conduct LF and predict the aggregated load of all prosumers
under a DT so as to facilitate the power grid side to analyze the
impact of the prosumers’ trading. The load information was
collected from the smart meter installed in each prosumer and
then sent to ES for data analyzing (i.e., LF). The social
preference of an individual prosumer will have a great
influence on the system energy management (Chen et al.,
2021) and also affect the LF, that is, each prosumer has
individual preference, so that the prosumer can be
aggregated to multiple categories according to their load
profiles to enhance the accuracy of LF. Besides, the load
distribution obeys a regular distribution in 1 day, and
the weekly and holiday load distributions are time-
correlated. Therefore, the learning of load information
should be based on the long-term load profiles (24 h in this
paper). Separating the prosumers’ load values in each time slot
may ignore the time correlation. Because the memory cell of
LSTM would achieve the transformation and maintaining
processes of the time-series load distribution, the LSTM
network is capable of implementing the time-series LF
(Wang et al., 2019c). Therefore, the LSTM model is used for

LF, which relates the load distribution between current and
previous time slots.

Data-Driven Load Response Strategies
Suppose there are P prosumers in the system with access to
different DTs (the number is A), and the DT has the number of Pa

prosumers. Each prosumer can serve as a buyer and seller in the
energy trading according to its net load

L � Epv − fl (1)

where Epv andfl are the PV production and load consumption of
prosumers, respectively.

The net load of the prosumer includes the comprehensive load
information consisting of PVproductionEPV and load consumption
fl and the role of the seller and buyer. In terms of the role of the
prosumer, if L> 0, that is, the prosumer’s PV production is greater
than its load consumption, the role of the prosumer is to be a seller.
Otherwise, if L< 0, the role of the prosumer is to be a buyer, whose
PV production cannot meet its load consumption.

According to the characteristic of historical load curves, the
prosumers can be aggregated to four categories shown in Figure 3:
single-peak prosumers, that is, commercial users; double-peak
prosumers, that is, large industries and government utilities;
peak-avoiding prosumers, that is, small factories; and stationary
prosumers, that is, light industries. The load consumption of
single-peak prosumers, double-peak prosumers, and peak-
avoiding prosumers is relevant to time, while that of the
stationary prosumers is independent of time. There is difference
in the peak occurrence time of single-peak prosumers, double-peak
prosumers, and peak-avoiding prosumers. Moreover, the change of
load curve of double-peak prosumers is more violent than those of
single-peak prosumers and peak-avoiding prosumers.

The data-driven method, curve clustering, is applied to divide
the categories of prosumers based on the load curves. Considering
the clustering goal being determined by the characteristic of the
load curve in the whole time slot, the rate of load curve is used as
the indicator to determine which categories the prosumers belong
to. For obtaining the indicator, take the number ofM sample points
from the load curve, form the vectorM, and calculate differentials
kmi between each two adjacent points (i.e., Eq. 2), and then obtain

FIGURE 2 | Overall flowchart of ECCRF.

FIGURE 3 | Load curves of four different categories.
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the number of M-1 differentials. In the clustering process, the
clustering goal is to find a cluster center with minimum sum of
square errors, which can be expressed as follows:

kmi � Lm
i − Lm+1

i (2)

minE � ∑A

a
∑M−1

m�1
����kmi − μa

����22 (3)

μa �
1

M − 1
∑M−1

m�1 k
m
a (4)

where Lmi and Lm+1
i are themth load point and the next load point

in the load curve of prosumer i, respectively. μa is the center of
cluster a, A is the total number of clusters, and kma is the
differential of the clustered load curve after initializing.

Prosumer Behavior Characteristic
Under the background of DN reconfiguration, the short-term
(e.g., day-ahead) LF and predicting the current load through the
historical load data were considered. Some features related to net
load distribution are considered as the LSTM model input:

1) The load data prior to the forecast day, which are a time series
consisting of 24 elements from every 1 h for 24 h:
L � [L1i L2i / L24i ],i ∈ [1,...,n], where I is the prosumer
ID and n is the number of prosumers.

2) The day in 1) that used to predict the load corresponds to the
day of the week: W, where the range of W is 0–6.

3) The day in 1) that used to predict the load corresponds to a
holiday or not: H, where the holiday is 1 and not a holiday is 0.

4) The temperature of the day in 1) used to predict the load: T,
where T consists of three elements, maximum temperature,
minimum temperature, and average temperature.

Due to the fact that each feature has different dimensions, the
normalization method is used in these features, converting the range
of each feature to (0, 1). The L and T are general data, converted by
max-min normalization, while the W represents category data,
converted by one hot encoder, which transfers the data dimensions
to the number of categories, and only one category in each dimension
is 1 and the rest is 0. The feature of 2 day load data (1 day prior to the
forecast day and 1week prior to the forecast day) after normalization
was chosen as the input vector for LF, and each cluster has a specific
feature vector and forecast separately by the LSTM model

X � [L′ W′ H′ T′ ] (5)

Long–Short-Term Memory Realization
Method
The LSTM model consists of three layers: input layer, hidden
layer, and output layer. The time series feature with
multidimensions is input to the model through the input
layer, and the load of the forecasting day is the output. The
objective of the LSTM model is to build a connected relation
between input and output in the hidden layer, and then, the
model can used to load forecast when the input data are known.

The LSTMmodel has advantages in handling problems that have
long-term dependencies, like the load of the forecasting day is related

to the load 1 day before or 1 week before. The advantage comes from
the forget mechanism with three gates (forget gate, input gate, and
output gate) in the block of the hidden layer, which is shown in
Figure 4. The multidimension load featureXh of time slot h is input
to the block together with the output uh−1 of the previous time slot
h−1, and the forget gate decides whether the information is pass or
forget. The input gate determines how much new information can
enter and generate the alternative memory cell C̃

h
. After that, the

state of this block can update that C̃
h →Ch, and then, the output gate

determines whether the new cell is output to the next time slot. The
gate and node formulation are shown as follows:

Ih � σ(XhWxi + uh−1Whi + bi) (6)

Fh � σ(XhWxf + uh−1Whf + bf) (7)

Oh � σ(XhWxo + uh−1Who + bo) (8)

C̃
h � tanh(XhWxc + uh−1Whc + bc) (9)

Ch � Fh⊗Ch−1⊕Ih⊗C̃h
(10)

uh � Oh⊗ tanh(Ch) (11)

where theW and b inEqs. 6–11 are theweightmatrix and bias of the
gates, respectively, which are the learning objectives of the LSTM
model; σ(•) and tanh(•) are the sigmoid function and hyperbolic
tangent function, respectively (Goodfellow et al., 2016); and ⊗ and ⊕
are the multiplication and addition operators, respectively.

The first learning process is based on Eqs. 6–11 and generates
the initial weight matrix W and bias b. Then, they will be updated
through the back-propagation through time (BPTT) process by
minimizing the error accumulated in the first step using the loss
function (Goodfellow et al., 2016)

J(h) � ∑Q

q�1(D(xh
q) − yh

q)2 (12)

where Q is the number of output units; uq(•) is the output
function in unit q, indicating the real output; and yt

q is the
ideal output of unit q.

FIGURE 4 | Structure of the hidden layer in the LSTMmodel, where three
gates (forget gate, input gate, and output gate) ensure the time-series
forecasting capability.
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RECONFIGURATION PROBLEM
FORMULATION AND THE SOLVING
ALGORITHM
Due to the prosumers with load consumption, random
access to the DN will change the PF in the whole system.
To realize the requirement of voltage and PF, the NR is
formulated as an optimization problem under the assistance
of ES and CS.

High-speed switching devices can be used to achieve fast
transient response and are extensively used in the connection
of submicrogrids that are subdivided from a microgrid (Kermany
et al., 2017). It can be seen that high-speed switching devices
shorten the transient response times of the system and make a
significant contribution to the stability of the power system. With
this technology maturity and cost reduction of the field
equipment, its use will be very common in the future. The
reconfiguration is conducted by these methods, and the time
horizon will be in days.

Formulation of the Problem
PF in the DN is calculated by the forward and backward
substitution methods because of the radial structure in the DN
(Das et al., 1995). This method first stratifies the nodes to find the
root node and network connection relation, then calculates the
power of each branch through forward traversal and calculates
the voltage of each node through backward traversal, and finally
calculates the PF of the system

ΔSij �
P2
j + Q2

j

U2
j

(Rij + jXij) (13)

S(k+1)i � S(k)j + ΔS(k+1)ij (14)

Uj � Ui − (Rij + jXij) (S(k+1)j )
(U(k+1)

i )p (15)

where ij is the branch between node i and node j; the total node in
DN is N; Rij andXij are the resistance and reactance of branch ij,
respectively; S is the power with S � P + jQ; and U is the voltage
with U � U∠θ.

The power loss can be calculated based on the PF of the
system, and each single branch has an individual power loss, but it
is insignificant for analyzing the whole system power losses,
which is given as

Ploss � ∑i,j∈NPloss(i, j) � ∑i,j∈NRij

P2
j + Q2

j

U2
j

(16)

When the load of each prosumer changes or new user accesses
the system, the power consumption of each node will also change;
then, the CS will conduct DN reconfigured calculations and adjust
the switching pattern according to the target of minimum power
loss. The switching pattern will affect the network structure so that
the system parameters (e.g.,Rij and Xij) will change. The
constraints of the reconfiguration problem consist of the PF,
voltage, power line transmission capacity, power usage, and
radial structure of DN, which can be expressed as

minf(k) � ∑i,j∈NkijRij

(Pj + L(prj))2 + (Qj +H(prj))2
U2

j

(17)

s.t.Umin < |Ui|<Umax (18)

P−
cap <Pij <P+

cap (19)

F(x) � 0 (20)

whereP−
cap and P

+
cap are the lower and upper bounds of power line

transmission capacity, respectively; kijis the sectionalizing switch
of line ij, and if it is a tie line, it will be lij; and Eq. 20 is the PF
constraint.

Harmony Search Algorithm
The network structure was expressed as a directed graph to build the
mathematical model, and each switching pattern corresponds to a
specific graph. The PF calculation should be implemented in each
different switching pattern to obtain the power loss, voltage, and
optimal reconfiguration solution. Due to the fact that finding the
switching states is a combinatorial problem and calculating the
power loss is an optimization problem, the reconfiguration problem
expressed in Eqs. 17–20 is a complex combinatorial optimization
problem related to graph theory, which is difficult to solve.

The harmony search algorithm (HSA) is a heuristic global
search algorithm, which has been successfully applied in
combinatorial optimization problems (Al-Omoush et al.,
2019), such as NR with distributed generation (Rao et al.,
2013) and wireless sensor network coverage (Alia and Al-
Ajouri, 2017). The goal of HSA is to find a pleasing harmony
(e.g., the global optimal solution) for the musician in a scene
where instruments with different tones are playing together. Each
instrument has its pitch range, and the pleasing harmony is
measured by an auditory standard. Under the NR background,
the objective function of minimizing power loss (Eq. 16) is the
auditory standard of the musician, the sectionalizing switches kij
and tie switches lij are the playing instruments, the minimum
power losses ΔP′ are the pleasing harmony, and each constraint
of the optimization problem is the pitch range of instruments.
The process of HSA is expressed as follows:

1) Initialization: There are five parameters of the HSA which
should be set up in advance, which consist of harmony
memory size (HMS), (e.g., the size of the solution space),
harmony memory considering rate (HMCR), (e.g., the
probability of selecting a set of solutions from the HM),
pitch adjusting rate (PAR), (e.g., probability of fine tuning
when harmony is selected from HM), tuning bandwidth (bw),
(e.g., the adjustment range of the fine tuning), and maximum
iterations (Tmax), (e.g., the number of maximum iterations).

2) Generate the initial HM: The initial HM is generated by many
random combination of each instrument

HM �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k11 k12 / k1n
k21 k22 / k2n
« « 1 «
kHMS
1 kHMS

2 / kHMS
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where k � [ k11 k12 / k1n ] is the harmony vector.
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3) Improvising a new harmony: During the improvisation, the
new harmony vector knew is generated based on three rules:
memory consideration, pitch adjusting, and random selection.
The process is shown as follows:

4) Update the HM: If the objective function (Eq. 16) under the
new harmony vector is better than the original one, then the
new harmony vector knew will replace the original one in
the HM.

5) Judge termination conditions: The end of the algorithm is
controlled by the objective function or the number of
maximum iterations Tmax, and in general, the algorithm is
stopped when the Tmax is reached.

The HSA is improved to fit the complex combinatorial
optimization problem under the NR background with LF. Each
node in DN is connected by a branch with a sectionalizing switch
or tie switch, and one tie switch can form a loop with other

The process of generating a new harmony

generate a random number τ between 0 and 1
if τ <HMCR
xnew � x (x is the harmony vector from initial HM)
else if τ <PAR
xnew � x′ ± bwpa (a is a random number between 0 and 1)
Else
xnew � x′ (x′ is one of the randomly generated vectors within the constrains)
end

FIGURE 5 | Flowchart of AHSA.
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sectionalizing switches in the network. The loop is specified in advance,
and one of the switches of a loop should be open to satisfy the radial
structure of DN; then, the network structure can be obtained from the
state of open switches. The harmony vector can be expressed as follows:

kHMS � [ kHMS
1 kHMS

2 / kHMS
n ] (22)

wheren is the number of loops in theDN, eachkni is the open switch the
loop has, and the number of loops is equal to the number of tie switches.

HSA has a process of randomly selecting and generating
vectors. However, the change of the switching state should be
based on the loop to guarantee the radial network in the NR
problem, and randomly changing every element of the harmony
vector cannot keep the radial system. Therefore, the advancedHSA
(AHSA) is proposed to generate initial HM and left HM at first,
and the harmony vectors in bothmatrixes are switch combinations
that satisfy the radial network requirement and contain all possible
combinations. The HM in AHSA is shown as follows:

HMini � [ k1 k2 / kHMS ]T (23)

HMleft � [ kHMS kHMS+1 / ktotal ]T (24)

where each vector k is the switching pattern that satisfies the
radial network requirement, and the total is the total number of
possible switching combinations.

The process of improvising a new harmony is changed to
selecting the vectors in initial HM and left HM; if the random
number τ is larger than HMCR, then knew � kindex+bwpa and
knew � kj j ∈ [HMS, ..., total] is the new vector when
τ <PAR and τ ≥PAR, respectively. The vector in HM
gradually approaches the optimal solution with the process of
updating HM. HSA repeats the iteration process until the Tmax is
reached, and the flowchart of the AHSA is shown in Figure 5.

CASE STUDY

Basic Data
An IEEE 33-bus distribution system, as shown in Figure 4, is used
here to verify the performance of the proposed framework. There
are five DT accesses to five buses, and the number of the
prosumers in the system is 60, which is connected to medium-
voltage feeders and includes four categories, that is, commercial
users, large industries and government utilities, small factories
and stationary prosumers, and light industries. Five loops for
AHSA are specified in advance, as shown by the red circle in
Figure 6. A CS and five ESs are allocated in the system. Each ES is
set in the DT, which is in charge of forecasting several prosumers’
load according to their historic information from the user energy

FIGURE 6 | IEEE 33-bus distribution system in the reconfiguration framework with five DT accesses to five buses, 60 prosumers classified into four categories, a
CS, and five ESs allocated.
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management system, that is, load data, day of the week, holiday or
not, and temperature. CS is allocated in the manager of the
distribution network, such as the system operator, to conduct the
network reconfiguration tasks.

Results of the Edge-Cloud-Coordinated
Reconfiguration Framework on a
Nonholiday
For analyzing the scenario of a nonholiday, Monday is selected as
an example.

1) Results of the load forecasting in the edge server

The LSTM model is implemented using MATLAB toolbox
LSTM with an Intel Core i5-8250 CPU 1.60 GHz, 16 G memory
computer. The input data are the historic information in 24 time
slots with four features. The output layer is the total load in 24 h;
the hidden layer has 100 units, the learning rate is 0.01, the
gradient threshold is 1, and the maximum epoch is 200.

The data used to train the model include 420 samples from
60 users. To verify the effectiveness and accuracy of the model,

FIGURE 7 | Learning process of LSTMmodel, where the root mean squared error (RMSE) is the error between the predicted value and true value, and the loss is the
changes in the loss function during the iteration process.

TABLE 1 | Predicted load of partly prosumers.

Prosumers Category 1 Category 2 Category 3 Category 4

1 47.76374 29.87932 26.73657 58.55854

2 47.31781 48.0755 28.46528 62.97279

3 48.27306 47.66911 28.05889 60.47416

4 45.73666 55.76434 33.72304 62.44304

5 48.77169 53.99023 33.62071 60.51896

6 30.31986 71.45154 31.43846 53.02795

7 31.26932 59.31918 32.69224 54.07735

8 46.19807 29.86412 28.40526 59.57488

9 43.86567 54.26651 25.5151 63.73332

10 47.98841 62.59095 26.97888 59.69719

11 48.66515 73.74819 33.14068 57.61136

12 49.70727 69.62491 32.8217 60.81638

13 32.29397 80.2813 29.43753 54.33529

14 34.11959 70.19643 30.50211 54.17554

15 45.91605 50.20569 26.84509 60.45713

FIGURE 8 | Switching pattern after NR, where the open switches of the minimum power losses in each loop are 7, 34, 10, 17, and 28.
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88% of the data are used to train the model and 12% are used to
test the model. The input data consist of a cell array with four
dimensions, and the output data are an array with one
dimension, resulting in four units in the input layer and one
unit in the output layer. The learning process using the
MATLAB toolbox is shown in Figure 7. Root-mean-squared
error (RMSE) is the error between the predicted value and
true value. From Figure 7, the RMSE is almost 0 near the
5000th iteration and remains stable at around 0 with minor
fluctuations. The “Loss” in the bottom graph reflects the
changes in the loss function during the iteration process; the

values decrease with the increase in the number of iterations.
It is observed that the RMSE and loss reach a steady state
after the 5000th iteration, indicating the success of the
learning process. Therefore, the LSTM model trained by ES
can realize short-term LF within a certain range of accuracy.
The load data in the predicted day obtained by LSTM are shown
in Table 1.

2) Results of the Network Reconfiguration in the Cloud
Server

The CS minimizes the network losses by changing the state of
the switches when the load information of prosumers is obtained
from ES, that is, conducting NR based on the forecasting PF. The
switching pattern under the new PF is calculated through AHSA,
as shown in Figure 8, and the open switches of the minimum
power losses in each loop are in the branches {6–7, 11–21, 9–10,
16–17, 27–28}, which satisfy the radial structure of the
distribution system. Besides, the NR a day ahead will provide
the feasible solution for complexity PF raised by increasing
number of prosumers.

The process of power loss changes during the AHSA
iteration and the corresponding bus voltage are partly
shown in Table 2. The buses shown in Table 2 are away
from the power supply bus due to the fact that the voltage
level of these buses will suffer the most severe drop and
convenience to judge the operation requirement of the
distribution system. The first iteration is the initial state
with open switches in the branches {7–20, 11–21, 8–14,
17–32, 24–28}. It is clear that the power losses are higher,
and the bus voltage drops seriously, which does not satisfy the
operation requirement of the distribution system. The power
loss decreases with the iteration process until the optimal
result of 153.19 W is obtained, which is about 42% less
than the initial power loss, and the bus voltages are all
higher than 0.94 p. u., which are the required constraints of
the distribution system.

Results of the Edge-Cloud-Coordinated
Reconfiguration Framework on a Holiday
According to the load information on the holiday, LF and NR on
Saturday are performed to improve case analysis.

TABLE 2 | Iteration process of the AHSA, where the minimum power loss is
153.19 W.

Iteration process Power loss (W) Voltage of the partly bus

15 16 17 31 32

1 266.29 0.89 0.89 0.89 0.90 0.90

2 202.67 0.93 0.91 0.91 0.91 0.91

3 199.77 0.89 0.89 0.89 0.95 0.89

4 179.46 0.92 0.92 0.92 0.94 0.92

5 179.0 0.92 0.92 0.92 0.92 0.92

6 158.95 0.93 0.93 0.93 0.94 0.94

7 153.19 0.94 0.94 0.94 0.94 0.94

FIGURE 9 | Predicted load of partial prosumers.

FIGURE 10 | Optimized structure of the distribution system on Saturday.
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1) Results of the load forecasting in the edge server

In the Saturday scenario, the basic parameters of the LSTM
model are the same as the parameters of the Monday scenario.
Besides, the training process and required database of the LSTM
model are the same in the two scenarios so that the trained
mapping mechanism by the edge server is identical. Therefore,
only the input data required for the forecasting should be
changed, and they are composed of load data of Friday, day of
the week, holiday, and temperature. Through the trained LSTM
network, the load data of prosumers on Saturday can be predicted
by the edge server, and the load of partial prosumers belonging to
different categories is shown in Figure 9. It is clear that there is an
obvious difference in the load characteristics of prosumers.

2) Results of the network reconfiguration in the cloud sever

According to predicted load data, the NR is performed by the
cloud server. The optimal reconfiguration strategy is obtained
through AHSA, that is, opening the switch in the branches
{6–7, 9–10, 13–14, 16–17, 27–28}. The optimal topology of the
distribution system shown in Figure 10 satisfies the radial structure
of the distribution system. Moreover, the minimum power loss of
152.81Wdecreases by 44.46% compared with the initial power loss
of 275.13 W, which is in opening the switches in the branches
{7–20, 11–21, 8–14, 17–32, 24–28}. It is evident from Figure 11
that the bus voltages are all higher than 0.94 p. u., satisfying the bus
voltage constraints of the distribution system.

Practical Feasibility of the Coordinated
Reconfiguration Framework.
The proposed ECCRF is proposed for dealing the prosumer-
based DR with complex power flow in the supporting of the
infrastructure. The load forecasting can be implemented in a
Jetson TX2 development board equipped with an NVIDIA Pascal
GPU and a CPU cluster, which is optimized for higher single-
thread performance, and an ARMCor-tex-A57 Quad-Core CPU,

which is better suited for multithreaded applications. However,
the NR can be implemented in a domestic tower server with two
Intel Xeon Scalable Gold 6,248 CPUs and two NVIDIA RTX
2080Ti GPUs. Besides, the information sharing between the
prosumers and network can be realized by the communication
system based on the wireless channels in the private 4G/5G
network with a virtual private network (VPN) as well as
equipment support of ESP and prosumers’ UEMS.

CONCLUSION

In this paper, we proposed an ECCRF to manage the LF tasks in
the prosumer side and NR tasks in the power grid side. The
framework realized the NR with the goal of minimizing network
losses, and the social preference of each prosumer is taken into
consideration. The simulation was conducted in a designed test
bed with the IEEE 33-bus distribution system. The holiday and
non-holiday cases are considered in the studies. It is shown that in
both cases, the trained LSTM network can achieve the high-
accuracy LF for the mentioned four kinds of load characteristics.
Then, the NR results show that with the high-accuracy load
information, the power losses of the whole network can be
reduced more than 40%, and the volage requirement can
always be satisfied. At the current stage, the method is mainly
suitable for a DN with a certain number of buses and the load
information of the bus is fully known. For a DN with a large
number of buses or some load information being not completely
known, the NR will be different, and the requirement of
computation capacity will be increased. Therefore, it is very
interesting to study the DN reconfiguration with many buses
and incomplete information in the future.
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FIGURE 11 | Bus voltage of the distribution system.
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