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For the past two decades, many successful applications of microbial electrochemical
technologies (METs), such as bioenergy generation, environmental monitoring, resource
recovery, and platform chemicals production, have been demonstrated. Despite these
tremendous potentials, the scaling-up and commercialization of METs are still quite
challenging. Depending on target applications, common challenges may include
expensive and tedious fabrication processes, prolonged start-up times, complex
design requirements and their scalability for large-scale systems. Incorporating the
three-dimensional printing (3DP) technologies have recently emerged as an effective
and highly promising method for fabricating METs to demonstrate power generation
and biosensing at the bench scale. Notably, low-cost and rapid fabrication of complex and
miniaturized designs of METs was achieved, which is not feasible using the traditional
methods. Utilizing 3DP showed tremendous potentials to aid the optimization of functional
large-scale METs, which are essential for scaling-up purposes. Moreover, 3D-printed
bioanode could provide rapid start-up in the current generation from METs without any
time lags. Despite numerous review articles published on different scientific and applied
aspects of METs, as per the authors’ knowledge, no published review articles explicitly
highlighted the applicability and potential of 3DP for developing METs. Hence, this review
targets to provide a current overview and status of 3DP applications for advancing METs
and their future outlook.
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INTRODUCTION

Microbial electrochemical technologies (METs) are unique platforms that combine microbial
metabolism with electrochemistry for various value-added applications (Sravan et al., 2021).
Over the last 2 decades, many different applications of METs have been demonstrated: 1)
bioenergy generation, such as bio-electricity in microbial fuel cells (MFCs) (Munoz-Cupa et al.,
2020; Sravan et al., 2021), bio-hydrogen in microbial electrolysis cells (MECs) (Hua et al., 2019;
Rousseau et al., 2020), and bio-methane in MEC assisted anaerobic digesters (Zakaria and Dhar,
2019; Huang et al., 2020); 2) synthesis of platform chemicals, such as hydrogen peroxide (Chung
et al., 2020b; Zhao et al., 2021); 3) nutrient recovery (Zou et al., 2017; Barua et al., 2019); 4) water
desalination (Al-Mamun et al., 2018; Jafary et al., 2020); 5) biosensors (Do et al., 2020; Chung et al.,
2020a); and many more. Despite such tremendous potential, studies emphasized the challenges in
system design and fabrication, which must be addressed to improve their performance and
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robustness, especially for scaling-up and commercialization
(Dhar et al., 2016b; Sim et al., 2018; Zakaria and Dhar, 2019).
Specifically, developing a low-cost and efficient fabrication
technique is imperative for advancing METs (Bian et al.,
2018a; Theodosiou et al., 2020; You et al., 2020). The
utilization of conventional subtractive manufacturing methods
is time-consuming and highly laborious and can generate wastes
from cutting materials away from larger pieces (Theodosiou et al.,
2020; You et al., 2020). Moreover, the precise manufacturing of

miniaturized METs for applications like biosensors is also
challenging. For instance, construction defects such as
widening of spacings between parts and fittings or unwanted
pinholes may result in the intrusion of microbubbles, which can
significantly reduce the biosensing performance (Fraiwan et al.,
2013). Therefore, developing a highly functional, low-cost, and
environmentally sustainable fabrication method is essential for
reducing time lags toward commercialization ofMETs (You et al.,
2017; Bian et al., 2018a; You et al., 2020).

TABLE 1 | Summary of studies used 3D printing for the fabrication of key components in microbial fuel cells.

Component Material/ink Application Major findings/remarks References

Reactor body Polycarbonate acrylonitrile
butadiene styrene

Biosensor Rapid detection (COD: 2.8 min; cadmium: 12 min) and
high sensitivity (COD: 3–164 ppm; cadmium: 1–50 μg/L

Di Lorenzo et al.
(2014)

Reactor body Polycarbonate acrylonitrile
butadiene styrene

Biosensor Rapid detection (40 min) of COD (25–200 mg/L) López-Hincapié et al.
(2020)

Reactor body Acrylic based photosensitive
polymer

Biosensor This study focused on understanding performance of
biosensor using anode materials with different
morphologies

Quaglio et al. (2019)

Reactor body Nanocure® resin Power
generation

The primary objective was to develop a liquid-handling
robot for automated feeding of substrate to 3D printed
MFCs

Ieropoulos et al.
(2016)

Anode UV curable resin (post-treated via
carbonization)

Power
generation

Compared to carbon cloth anode, 3D printed porous
carbon anode improved maximum voltage generation
by ∼2.4 times

Bian et al. (2018a)

Anode UV curable resin (post-treated with
copper for surface modification)

Power
generation

3D printed electrode produced 3-fold higher maximum
voltage generation than carbon cloth electrode

Bian et al. (2018b)

Anode Graphene oxide, ferric ions, and
magnetite nanoparticles

Power
generation

3D printed electrode produced 7.9-fold higher
volumetric current density than carbon felt electrode

He et al. (2021)

Anode, cathode, and chassis PLA (post-treated with graphite or
nickel powder coating)

Power
generation

Carbon-coated 3D printed PLA anode showed power
generation comparable to modified carbon veil;
however, 3D printed PLA cathodes underperformed
regardless of the coating

You et al. (2020)

Anode (dual- and single-
chamber) cathode (dual-
chamber only)

PLA Power
generation

3D printing provided precise manufacturing of
electrodes (9.7 cm2) with lower costs

Jannelli et al. (2018)

Anode PLA Power
generation

3D printed anode showed 4.1-times lower power
generation than conventional plain carbon veil anode

You et al. (2017)

Anode Stainless steel and titanium alloy
(post-treated with polyaniline
coating)

Power
generation

Electrode with unique microporous skeleton structure
was fabricated with 3D printing, which is impossible for
traditional manufacturing methods; polyaniline coating
further developed the performance of 3D printed
electrodes

Zhou et al. (2017)

Anode Aluminum alloy (AlSi10 Mg) Power
generation

3D microporous electrode could produce energy
recovery up to ∼3 kWh/m3 per day

Calignano et al.
(2015)

Cathode Alginate + activated carbon Power
generation

Cost-effective and rapid fabrication of electrode Theodosiou et al.
(2020)

Bioanode Sodium, alginate, sigma, cellulose,
Shewanella oneidensis MR-1

Power
generation

First demonstration of 3D printed electroactive bacterial
bioanode

Freyman et al. (2020)

Membrane Tangoplus and natural rubber latex Power
generation

The 3D printed latex membrane showed comparable
power density as commercial CEM, while 3D printed
tangoplus membrane was more resistant to biofouling.
The fabrication costs of both membranes were lower
than commercial CEM

Philamore et al.
(2015)

Membrane Porous filaments of rubber-
elastomeric polymers

Power
generation

3D printed polymeric membranes showed 1.4-fold
higher power generation than a commercial cation
exchange membrane; however, fabrication cost was
higher

You et al. (2017)

Membrane electrode
assembly (MEA)

Fimo™ air-dry clay and terracotta
air-dry clay

Power
generation

Air-dry clay-based 3D printed MEAs could produce
∼50% more power than the controls (commercial CEM
and kilned red terracotta). Moreover, the fabrication cost
of 3D printedMEAswas cheaper than commercial CEM-
based MEA

Theodosiou et al.
(2019)
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The additive manufacturing (AM) process or three-
dimensional printing (3DP) has been expanding rapidly in
recent years. Briefly, 3DP generates 3D structures from
computer-aided design (CAD) models by adding the material
layer-by-layer, allowing rapid and precise fabrication of
sophisticated structures and devices with complex geometry
with minimum human interventions (Geissler and Xia, 2004;
Bian et al., 2018b; You et al., 2020). Due to these promising
features, 3DP has been implemented in various fields, including
industrial prototype printing, aerospace (Griffiths, 2015), medical
implants (Murphy and Atala, 2014; Rasperini et al., 2015), and
arts (Walters and Davies, 2010). Moreover, 3DP has been applied
to various energy-generating systems, such as solar cells (Angmo
et al., 2013; Vak et al., 2015) and batteries (Sun et al., 2013; Izumi
et al., 2014). Owing to the increased popularity and applicability,
3DP has recently been applied to fabricate different parts of
METs, such as reactor bodies, electrodes, and membranes
(Table 1). To the authors’ knowledge, no review articles
critically appraised the literature published on the application
of 3DP for developing METs. Hence, this paper aims to provide a
critical appraisal of the studies that utilized 3DP for METs.
Furthermore, potential future developments and
recommendations are outlined.

APPLICATION OF 3D PRINTING FOR
MICROBIAL ELECTROCHEMICAL
TECHNOLOGIES
Reactor Body
The majority of METs are primarily developed for water/
wastewater applications; thus, different types of reactor
architectures can significantly influence the effective flow and
hydrodynamics (e.g., mass transfer within biofilms) and thereby
influence their performance (Kim et al., 2014; Jiang et al., 2015; Yi
et al., 2020). Hence, optimizing the shape of the system, working
volumes, fluid inlet/outlet settings are critical (Logan et al., 2015;
Massaglia et al., 2017; Yi et al., 2020). For instance, a drop-like-
shaped MFC could perform better than a square-shaped one due
to the larger effective exposed area (Massaglia et al., 2017).
Moreover, the addition of baffles in the anode chamber could
result in higher voltage output in MFCs due to reduced dead
zones where the flow velocity is <5% of the maximum velocity (Yi
et al., 2020). However, fabrication of such designs and
configurations can be extremely challenging using the
traditional manufacturing technique, especially for the
miniaturized METs. Several studies have reported successful
utilization of 3DP for precise fabrication of reactor bodies for
METs (see Table 1).

Di Lorenzo et al. (2014) applied 3DP for rapid fabrication of a
miniaturized (2 cm3) air-cathode MFC biosensor. Their
fabricated MFC biosensor exhibited a good detection range
(3–164 ppm), high sensitivity (0.5 μAmM−1 cm−2), a fast
response time (2.8 min), and fast recovery time (12 min) while
detecting cadmium ions in water samples. Moreover, Quaglio
et al. (2019) developed 3D-printed a MFC biosensor (12.5 ml),
which allowed optimizing hydrodynamics (optimal fluid motion)

and morphology of anode electrode (porosity) via computational
fluid dynamics (CFD) modeling for quantification of sodium
acetate in water samples. Although 3DP can allow bulk
production of small-scale reactors for applications like
biosensing within reasonable timeframes and costs, direct 3D
printing of large-scale systems is not yet feasible. Nonetheless,
approaches like combining 3DP and CFD modeling can enable
low-cost advanced reactor engineering for large-scale field
applications (e.g., wastewater treatment) of METs. For
instance, governing equations for mass, momentum, and
energy conservation to find numerical solutions in CFD
modeling are not scale-dependent (Parra-Cabrera et al., 2018).
Thus, when combined with CFD, 3D printed lab-scale prototypes
can still be used for the design and optimization of large-scale
systems.

Electrodes
The development of electrodes that possess highly porous
structures for optimal bacterial adhesion and excellent
electrochemical performance for high current output has been
of great interest to the MET research communities (Zhou et al.,
2017; Bian et al., 2018a; Bian et al., 2018b). Notably, complex
macro-porous 3D electrode materials have been found suitable
for providing a larger surface area for the biofilm developments
and thereby improve the electrochemical performance of METs
(Hindatu et al., 2017; Zhou et al., 2017). However, the major
hurdle is in the precise construction of electrodes with
geometrical complexities (e.g., porous electrodes) using the
traditional manufacturing method (Zhou et al., 2017; Bian
et al., 2018a; Bian et al., 2018b). Recently, researchers have
explored 3DP for rapid prototyping of such ideal
electrodes METs.

Zhou et al. (2017) reported that 3DP could allow the precise
design of porous 3D structured X-shape skeleton electrodes with
titanium and stainless steel as printing materials. The further
modification of 3D-printed metal electrodes with polyaniline
could provide a crumpled and biocompatible surface. Notably,
the polyaniline coating of the 3D-printed titanium electrode
could increase power density up to 400 times than the
uncoated one. Calignano et al. (2015) developed an aluminum
alloy (AlSi10 Mg) anode using 3DP, which could enable energy
output of up to 3 kWh/m3 per day from an MFC. The authors
suggested that the 3D microporous coral skeletal structure could
provide surface roughness and excellent biocompatibility to
electroactive microbes. However, metal 3D printing is still
extremely expensive (Pumera, 2019). Moreover, some metal
alloys used for 3DP (e.g., AlSi10 Mg) alloy are prone to
corrosion (You et al., 2017; Revilla et al., 2020). Previous
studies also demonstrated the feasibility of utilizing polymeric
materials, such as polylactic acid (PLA), UV curable resin, for 3D
printing of electrodes for METs (see Table 1). However, the
electrochemical performance of 3D-printed polymeric electrodes
is not always satisfactory. For instance, power generation from
the PLA electrode developed by You et al. (2017) was ∼4 times
lower than the control (plain carbon veil) with the same
geometric structures. Despite conductive properties, thin
protective polymer layers on the surface of 3D-printed
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polymeric electrodes can restrict electrochemical performance,
which can be removed by surface modification (Pumera, 2019).
Bian et al. (2018a) proposed carbonization of the 3D-printed
anode from polymer resin to enhance the biocompatibility, which
could produce significantly higher power density than a
traditional carbon cloth anode (233.5 vs. 69 mW/m2).
Similarly, surface modification of a 3D-printed polymeric
electrode with copper could produce 12.3-fold higher power
than copper mesh electrodes (Bian et al., 2018b). Most
recently, He et al. (2021) developed a 3D-printed graphene
oxide (GO) aerogel anode with a customized printing ink
combining GO, ferric ions, and magnetite nanoparticles. The
hierarchical pores in their GO aerogel electrode could provide
effective mass transfer of substrates, leading to 7.9 folds higher
volumetric current output than carbon felt anode. Thus, utilizing
3DP for electrode fabrication has shown promising results. While
cost and performance are often the primary aspects considered by
researchers, ensuring the long-term stability (chemical stability,
corrosion resistance, etc.) of 3D-printed electrodes would be
critical.

Bioelectrode
Besides electrodes and other physical components of METs,
electroactive microorganisms are vital components affecting
METs performance (Koch and Harnisch, 2016). The selection
and enrichment of kinetically efficient electroactive bacteria
(EAB) are often challenging (Torres et al., 2009; Dhar et al.,
2016a). Due to slow growth kinetics, the time required for
complete enrichment of anode or cathode biofilms can be
significant (e.g., months-years), ultimately prolonging the
reactor start-up time (Zakaria and Dhar, 2019). Several studies
have utilized the effluent fromMET reactors as an inoculum source
(Zakaria et al., 2018; Barua et al., 2019; Chung et al., 2020a), which
can expedite the enrichment process of electroactive biofilms.
However, an innovative approach for the rapid establishment of
electroactive biofilms is still required. A recent study by Freyman
et al. (2020) suggested that 3DP can provide an attractive solution
to such time-consuming biofilms development procedures. They
investigated 3DP for constructing a bioanode with Shewanella
oneidensis MR-1 as living inks. More importantly, Shewanella
oneidensis MR-1 survived during the 3D printing process, and
theirMFC produced a stable current for almost 93 h. Of note, prior
to their study, 3DP was applied to engineer 3D objects and
structures with microorganisms, such as Escherichia coli,
Pseudomonas putida, Acetobacter xylinum, yeast cells (Lehner
et al., 2017; Schaffner et al., 2017; Qian et al., 2019).
Particularly, due to the adhesion of cells during the process,
objects 3D-printed with microbes could potentially achieve a
high cell density. Nonetheless, based on the authors’ knowledge,
Freyman et al. (2020) first demonstrated the feasibility of 3D-
printed bioanode, potentially opening up new possibilities for high-
performance METs.

Ion-Exchange Membranes
Ion-exchange membranes (IEM) are imperative, especially for the
dual-chamber METs, to facilitate the ion transport between
anode and cathode, governing the electroneutrality (Dhar and

Lee, 2013; Leong et al., 2013). The IEMs can alter the current
output, depending on their relative surface area, which is
associated with ionic conductivity and internal resistance of
METs (Zuo et al., 2007; Philamore et al., 2015). Hence,
increasing the specific ion-exchange area of IEM is great of
interest, but it is often a major challenge (Philamore et al.,
2015). Notably, commercially available IEMs can be costly
(e.g., >700 USD/m2 for Nafion) due to the complex
manufacturing process (Yee et al., 2012; Dhar and Lee, 2013).
Besides, IEMs require pre-treatment processes (Ghasemi et al.,
2013; Rahimnejad et al., 2014), which can be time-consuming.
Therefore, an efficient and low-cost membrane manufacturing
method is greatly needed.

Several studies implemented 3DP as an alternative fabrication
method for IEMs (Philamore et al., 2015; You et al., 2017;
Theodosiou et al., 2019). Philamore et al. (2015) have
manufactured IEMs for METs utilizing 3DP at a much lower
cost than commercial CEM ($0.00112–0.00357 for latex and $0.16
for Tangoplus resin vs. $0.22–40 for commercial CEM, per 20 cm2,
USD). The power generation from anMFCwith a 3D-printed latex
membrane was comparable to commercial CEM (10.51 vs.
11.39 µW). In contrast, maximum power generation was much
lower in the MFC with a 3D-printed Tangoplus membrane
(0.92 µW). Nonetheless, the latex membrane was more prone to
fouling and almost damaged after 210 days of operation, while the
Tangoplusmembranewasmore resistant to biofouling. In contrast,
3D printed membrane using rubber-elastomeric polymers
developed by You et al. (2017) could increase maximum power
output up to 1.4 times than commercial CEM; however, the
fabrication cost of the 3D-printed membrane was higher than
commercial CEM. Thus, these results suggested that selecting low-
cost and durable polymeric materials would be necessary for
fabricating economic and technically sustainable 3D-printed
IEMs. However, previous studies primarily focused on the
performance of 3D-printed IEMs in terms of current output
and biofouling potential, while limited information provided on
other critical features, such as proton permeability, membrane
resistance, substrate loss, and oxygen diffusion (in MFCs) (Dhar
and Lee, 2013).

Membrane Electrode Assembly (MEA)
The spacing between electrodes is critical for minimizing internal
energy losses in METs (Moon et al., 2015b). Therefore, MEA
(membrane sandwiched between electrodes) has been considered
by many researchers to reduce internal energy losses and thereby
improve the performance of METs (Moon et al., 2015b).
Typically, MEAs are prepared by pressing membrane and
electrodes with or without heat treatment (Theodosiou et al.,
2019), which has multiple drawbacks. For instance, a high degree
of hydrophilicity can often cause anolyte leakage from the surface
of MEA (Mashkour et al., 2021). Furthermore, uneven physical
contact between membrane and electrode resulting from the
conventional fabrication method can increase internal
resistance and ultimately lower the current output (Moon
et al., 2015a; Vilela et al., 2020). Therefore, precise fabrication
methods for MEA are required. Recently, Theodosiou et al.
(2019) compared 3D-printed MEAs with a commercial CEM.
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The 3D-printedMEAs from air-dry clay materials exhibited up to
50% higher power output (130 vs. 66 µW) for >70 days and
provided 34–51 times cheaper production cost. Although the
results were promising, future studies should focus on a
comprehensive investigation of underlying mechanisms that
can provide a superior performance of 3D-printed MEAs over
the conventional ones.

SUMMARY AND OUTLOOK

With the recent advancement in 3D printing technologies, their
application in METs has been gaining attention. Previous studies
demonstrated the potential as a precise and rapid fabrication
method for different components of METs. Notably, 3DP could
control complex geometric structures of electrodes with
customized properties (e.g., porosity, roughness, etc.) to improve
efficiency over traditional electrodes (discussed earlier). Although
outcomes have been promising, several drawbacks, such as high
cost, low durability, biocompatibility, and electrochemical
properties of 3D printed components (Angmo et al., 2013; Wei
et al., 2015; You et al., 2017), may limit the application of 3DP for
METs (Bian et al., 2018a). Therefore, future research should
continue to seek low-cost but well-performing 3D-printable
materials for MET components.

While polymeric materials would be a better choice for
keeping the cost low (You et al., 2017), activation or post-
treatment would be necessary to achieve desired performance
from 3D-printed electrodes (Baran and Erbil, 2019; Pumera,
2019). It is expected that activation steps will increase the
fabrication time and cost. Recently, various simple and low-
cost activation methods for 3D-printed polymer electrodes
have been developed for improving conductive properties for
various electrochemical applications (Browne et al., 2018;
Pumera, 2019). For instance, dimethylformamide (DMF)
immersion and electrochemical activation by applying
constant potential have recently been demonstrated as simple
and cost-effective methods for activating 3D printed polymer/
graphene by removing the insulating polymer layer (Browne
et al., 2018; Pumera, 2019). These methods should be explored

for developing highly conductive 3D-printed polymer electrodes
for METs. Moreover, strategies for improving biocompatibility
would be an additional aspect that needs to be addressed by the
METs research community. Likewise, there have been significant
developments toward developing advanced 3D-printed
membranes for various industrial applications (Lee et al., 2016;
Lv et al., 2017). Thus, multidisciplinary collaborations in these
areas can promote rapid development.

As an emerging concept, the feasibility of 3D-printed
bioelectrode could still be questionable. However, EAB can
rapidly recover from extreme and harsh environments, such as
extremely low-temperature settings below freezing point
(Winfield et al., 2015; Cho et al., 2020), long-term (5–10 days)
starvation (Ruiz et al., 2015; Dhar et al., 2018). The digital
printing of electroactive cyanobacterium onto the paper
electrode was also successful in the past (Sawa et al., 2017).
Thus, the concept of 3D-printed bioelectrode should be highly
feasible with further developments, which can undoubtedly
shorten the start-up time of METs. Additionally, there are still
many other possibilities to utilize such an innovative approach to
further advance METs. In METs, energy recovery from complex
organic substrates requires a partnership between EAB and their
syntrophic partners (e.g., fermentative bacteria), as complex
substrates (e.g., fermentable organics) can not be directly
oxidized by EAB (Parameswaran et al., 2009; Dhar et al., 2019;
Zakaria and Dhar, 2020). However, existing literature provides
limited information on how to manipulate or develop a well-
balanced syntrophic community for high-performance METs. It
can be envisioned that the application of 3DP can offer a
pragmatic solution to develop living bioelectrode with a
designer syntrophic co-culture with target functionality (e.g.,
electron recovery from a specific complex electron donor).
Thus, it will be interesting to see the feasibility and
sustainability (i.e., long-term reliable operation) of such new
opportunities.

Moreover, the broader impact of 3DP can be facilitated by
incorporating other research tools, such as CFD and machine
learning (ML) modeling tools (Figure 1). As discussed earlier, the
combination of CFD and 3DP bears immense potential as a
design optimization tool for large-scale METs. Particularly, the

FIGURE 1 | A proposed framework combining 3D printing with machine learning (ML) and computational fluid dynamics (CFD) modeling for design, optimization,
and fabrication of systems for METs.
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CFD model can provide critical information on the crucial
parameters, such as maximum flow locations and dead zones
with different designs for METs (Kim et al., 2014; Yi et al., 2020).
The information can be adopted to rethink and redesign METs
that can be rapidly prototyped with 3DP and tested for further
validation. Moreover, incorporatingML techniques with 3DP can
also be useful. For instance, previous studies substantiated the
significance of printing inks on the performance and
sustainability of 3D-printed components of METs (Philamore
et al., 2015; You et al., 2017; Theodosiou et al., 2019). ML can be
utilized to select efficient printing materials for achieving specific
characteristics, such as conductivity, porosity, and surface
roughness required for 3D-printed components of METs. The
lack of METs-specific training data and data source variability
could be barriers to such developments. However, there have
been developments toward ML algorithm validation with a small
amount of training data (Vabalas et al., 2019). Therefore, future
studies should explore these options for optimal design and
fabrication of 3D-printed components, especially for larger-

scale METs, in which, the current challenges and limitations
were discussed earlier.
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