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Decay calculations play an important role in reactor physics simulations. In particular, the
isotopic decay of the burned fuel during refueling is important for predicting the startup
reactivity of the following burn-up cycle. In addition, there is a growing interest in high-
fidelity simulations where the mesh in the burn-up region can involve millions of regions.
However, existing models repeatedly solve the same Bateman equations for each region,
which is a waste of calculational resources. RMC is a Monte Carlo neutron transport code
developed for advanced reactor physics analysis including criticality calculations and burn-
up calculations. This paper presents a decay calculation method named the Decay Chain
Method (DCM) to optimize the RMC code for large-scale decay calculations. Unlike
traditional methods, the Decay Chain Method solves the Bateman equations one
decay chain at a time rather than one region at a time. The decay calculation in the
burn-up mode then treats the decay steps as zero power burn-up steps with some
optimized calculational methods to further reduce the calculational time. These methods
were evaluated for a single pin example and for a Virtual Environment for Reactor
Applications (VERA) full-core example. The calculations for the single pin example verify
the accuracy of the decay step treatment in the burn-up mode and show the improved
efficiency. The single pin is divided into 1–1,000,000 decay regions to study the efficiency
differences between the Transmutation Trajectory Analysis (TTA) and DCMmethods. Both
methods have a linear complexity with respect to the number of regions but DCM costs just
one-sixtieth of the TTA time. In the simplified VERA full core example, the DCM method
reduces the decay calculation time to 0.32 min from 75.26 min while the accuracy remains
unchanged.

Keywords: decay chain method, transmutation trajectory analysis, large-scale burnup calculation, virtual
environment for reactor applications (VERA), reactor Monte Carlo code (RMC)

INTRODUCTION

Nuclide concentrations in reactors evolve continuously due to the neutron reactions while running
or spontaneous decay during shutdown (Cetnar, 2006). The time evolution of the nuclide
concentrations can be described by a set of first-order differential equations, called the Bateman
equations (Bateman, 1910). The Bateman equation solutions, which give the burn-up calculations,
play an indispensable role in reactor physics simulations.

There is a growing interest in high-fidelity simulations using detailed reactor-core models where
the fuel region can be divided into millions of regions. Several full-core benchmarks have been
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developed, such as the Virtual Environment for Reactor
Applications (VERA) (Godfrey, 2014) of the Consortium for
Advanced Simulation of Light Water Reactors (CASL) (CASL,
2014; Turinsky and Kothe, 2016), the Nuclear Energy Agency
(NEA) Monte Carlo performance benchmark problem (H&M)
(Hoogenboom and Martin, 2009) and the MIT PWR (BEAVRS)
benchmark (Horelik and Herman, 2012). One common feature of
these benchmarks is the huge number of burn-up regions,
ranging from thousands to millions of regions. Several Monte
Carlo neutron transport codes, such as Serpent2 (Leppänen et al.,
2015), MCNP6 (Fensin et al., 2015), MC21 (Griesheimer et al.,
2015), VERA-CS (Collins and Godfrey, 2015; Godfrey et al.,
2016) and RMC (She et al., 2014; Wang et al., 2015), support
burn-up calculation function by coupled to a burn-up calculation
module.

The decay calculations are essential because burn-up-decay
and burn-up-decay-burn-up problems are common and
important in reactor simulations. For example, in the 10th
VERA problem, the isotopic decay of the burned fuel is
important for predicting the startup reactivity of the following
burn-up cycle. The ninth VERA problem includes ten shutdowns,
one of which lasted almost 18 days (Godfrey, 2014). However, the
computational time for the decay calculations increases with the
increasing number of burn-up regions. However, existing models
ignore the fact that the same Bateman equations are re-computed
a huge number of times with different initial conditions. Thus, a
new method is needed to avoid these repetitive calculations and
speed up the decay calculations.

This paper introduces the Decay Chain Method (DCM) for
decay calculations which is more appropriate for problems with
millions of decay regions than traditional methods. This model
for decay calculations during burn-up is then incorporated into
the RMC code. The decay steps are treated as zero power burn-up
steps to simulate burn-up-decay or burn-up-decay-burn-up
problems with several methods used to optimize the
calculations. Both the accuracy and efficiency of DCM are
better than those of existing methods.

DECAY CHAIN METHOD

Decay and Burnup Equations
We mark a nuclide as i, and mark its atomic density as Ni. The
decay constant λi determines the rate at which nuclide i
transmute to other nuclides. Meanwhile, other nuclides, like
nuclide j, also transmute to nuclide i by the branching ratio
bj,i. If the number of nuclides taken into consideration is n, the
Bateman equations for decay problems can be written as
(Bateman, 1910; Cetnar, 2006):

dNi

dt
� −λiNi +∑

n

j�1
bj,iλjNj. (1)

In burn-up problems, nuclides are transmuted from one
nuclide to another by neutron reactions. Burn-up equations
have a similar form to the decay equations with an effective

decay constant λeffi and an effective branching ratio beffj,i
introduced to account for the influence of the neutron
reactions. The equivalent decay constant λeffi represents the
transmutation of nuclide i caused not only by decay reactions
but also by nuclear reactions:

λeffi � λi + ϕ∑
n

j�1
σ j,i. (2)

The equivalent branching ratio beffj,i also takes both decay
reactions and nuclear reactions into consideration:

beffj,i � bj,iλj + ϕσ j,i

λeffj
, (3)

where ϕ is the neutron flux and σ j,i is the microscopic cross-
section. Based on Eqs 2, 3, the burn-up equations can be written
as (Isotalo and Aarnio, 2011a):

dNi

dt
� −λeffi Ni +∑

n

j�1
beffj,i λ

eff
j Nj, for i � 1, . . . , n. (4)

We mark an n × n square matrix as A with Ai,j � −λiδi,j + bj,iλj
for decay problems or Ai,j � −λeffi δi,j + beffj,i λ

eff
j for burn-up

problems. The decay equations and the burn-up equations can
also be written in the following matrix form (Isotalo and Aarnio,
2011a):

dN
→
dt

� AN
→
. (5)

The solution to this equation is:

N
→(t) � eAt N

→(0). (6)

Decay Chain Method
Several neutron transport codes, such as VERA-CS (Collins and
Godfrey, 2015), MC21 (Aviles et al., 2017) and RMC (Liu et al.,
2017; Wang et al., 2017), have been developed using High
Performance Computing (HPC) with parallel processors to
handle BEAVRS or VERA fuel-core burn-up calculations
where the calculation may involve millions of burn-up regions.
RMC solves the burn-up equations with an embedded depletion
calculation module named DEPTH (She et al., 2013a). In the
traditional method, the burn-up equations are solved one region
at a time using the DEPTH module. This method will be called a
cell-based method in this paper. In burn-up problems, the
matrices differ in different regions. In decay calculations, the
elements in the Bateman equation matrix are all constants. Thus,
the matrices in all the regions are the same. The cell-based
method is applicable to both burn-up and decay problems.
However, in decay problems, the same Bateman equations are
repeatedly solved in the cell-based method rather than using a
more efficient method for very large problems. This paper
describes the Decay Chain Method (DCM) that was developed
to significantly accelerate the solution of large decay calculations.
Unlike the traditional cell-based method, the Decay Chain
Method solves the Bateman equations for each mother nuclide
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to avoid repetitive calculations. The mathematic derivation of the
DCM is expressed as follows.

The number of nuclides that need to be taken into
consideration is n.N

→(0) is a series of nuclide concentrations in
vector form at time 0. We assume that N1

�→(0), N2
�→(0) ,. . ., Nn

�→(0)
are a basis for a linear space of n dimensions. Thus, N

→(0) can be
expressed as:

N
→(0) � α1N1

�→(0) + α2N2
�→(0) + . . . + αnNn

�→(0), (7)

where α1, α2, . . . , αn are constants. According to Eq. 6, the
concentration vectors at time t can be calculated as:

N1
�→(t) � eAt N1

�→(0),
N2
�→(t) � eAt N2

�→(0),
...
Nn
�→(t) � eAtNn

�→(0).
(8)

Based on Eqs 7, 8, we find that N
→(t) can be calculated as

N
→(t) � eAt N

→(0)
� eAt(α1N1

�→(0) + α2N2
�→(0) + . . . + αnNn

�→(0))
� α1e

At N1
�→(0) + α2e

At N2
�→(0) + . . . + αne

AtNn
�→(0)

� α1N1
�→(t) + α2N2

�→(t) + . . . + αnNn
�→(t).

(9)

Comparing Eqs 7, 9, we find that if a concentration vector can
be broken up into a linear combination of several different
concentration vectors, the concentration vector after decay will
still be equal to the linear combination of those concentration
vectors.

The following simple example demonstrates the difference
between the Decay Chain Method and the traditional cell-based
method. For simplicity of writing, the example assumes that there
are only three types of nuclides, named N1, N2 and N3, in 4 decay
regions, named a, b, c, and d. The initial value of the
concentration vector in each region is arbitrarily set and listed
in vector form in Table 1. The decay constant of nuclide N1 is
ln2 d−1, its daughter nuclide is N2. The decay constant of nuclide
N2 is ln(4/3) d−1, its daughter nuclide isN3. The decay constant of
nuclide N3 is 0 d

−1, which means N3 is a stable nuclide. The decay
time is one day.

In the cell-based methods, the final nuclide concentrations in
region a are calculated by the DEPTH module using Eq. 1. Then,
the final composition in region b is calculated, with the same
method used for regions c and d. The values of the final
composition in four regions are also arbitrarily set. The

solution process for each region is shown in Figure 1. Thus,
the DEPTH module must be called four times.

The Decay Chain Method uses three unit orthogonal vectors,
(1, 0, 0)T, (0, 1, 0)T and (0, 0, 1)T to calculate the final
concentrations of the three nuclides in the DEPTH module.
Any arbitrary set of three unit orthogonal vectors can be used
but this set is most convenient for the calculations. DEPTH
provides four algorithms for solving the decay and
transmutation equations (She et al., 2013a). They are
transmutation trajectory analysis (TTA) (Cetnar, 1999),
Chebyshev rational approximation method (CRAM) (Pusa
and Leppanen, 2010; Pusa, 2011), Quadrature rational
approximation Method (QRAM) and the Laguerre
polynomial approximation method (LPAM) (She et al.,
2013b). All four solvers in the DEPTH module can be used
to calculate the final concentrations with TTA used here due to
its efficiency and accuracy (Isotalo and Aarnio, 2011a). The
values of the final atomic density of three nuclides are also
arbitrarily set. The solution process for every nuclide is shown in
Figure 2.

TABLE 1 | Initial nuclide concentration vectors in the four decay regions.

Decay region Initial nuclide concentration
vector

a (2,0,5)T

b (0,0,3)T

c (0,4,0)T

d (1,4,7)T

FIGURE 1 | Cell-based method solution process for four regions.

FIGURE 2 | Solution process using three unit orthogonal vectors.
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Then, the final concentrations in each region are calculated
using linear operations of the solution vectors in Figure 2, as
shown in Figure 3. The DEPTH module needs to be called just
three times in the Decay Chain Method. The vector operations
are then very fast compared to the operations needed to solve the
decay equations.

In problems with 1,500 nuclides and millions of decay regions,
the DEPTH module needs to be called only 1,500 times in the
Decay ChainMethod instead of millions of times in the cell-based
method.

The calculation process for the Decay Chain Method is shown
in Figure 4.

DECAY CALCULATIONS IN BURNUP
MODE

The neutron flux drops to almost zero when a reactor is set into
shutdown mode from running. The burn-up equations, Eqs 2, 3,
can be simplified into the decay equations. Eqs 2, 3 indicate that
the decay calculation can be treated as a special case of the burn-
up calculation where the power and neutron flux are both zero.
Therefore, zero power burn-up steps, which are named decay
steps in this paper, are introduced to simulate burn-up-decay and
burn-up-decay-burn-up problems.

The decay steps used several optimization methods to improve
efficiency and accuracy.

First, the MC neutron transport calculation was bypassed in
the decay steps. In normal burn-up calculations, the majority of
the computing time is used for the MC calculations to simulate
the neutron transport to predict the one-group neutron flux and

cross-sections in Eq 2, 3. In the decay steps, the neutron flux is
zero, so the product term ϕσ j, i becomes zero. Thus, the one-group
cross-section is not needed in Eqs 2, 3, so the neutron transport
does not need to be simulated.

Second, the burnup strategies like the predictor–corrector
method are not needed and the Bateman equations can be
simply solved using the starting point approximation method.
In burn-up calculations, as shown in Eqs 2, 3, the atomic density
of nuclides is determined by the one-group neutron flux and
cross-sections. On the other hand, the one-group neutron flux
and cross-sections are also influenced by the atomic density of
nuclides. To simplify this problem, the starting point
approximation method assumes that the one-group neutron
flux and cross-sections keep unchanged in one burn-up step.
However, this assumption may cause significant error if the one-
group neutron flux is large enough. Thus, the predictor-corrector
method (Kotlyar and Shwageraus, 2013) use the average of
nuclide atomic density at the starting point and the end point
to calculate the one-group neutron flux and cross-sections. In
burn-up calculations, the predictor-corrector method could get
more accurate results than the starting point approximation
method. However, in decay calculations, the one-group
neutron flux is zero, and the starting point approximation
method gives the same results as the predictor–corrector
method because the decay matrixes are constants.

Third, the TTAmethod is used to solve the Bateman equations
during the decay steps. TTA outperforms the CRAM method for
solving the decay equations (Isotalo and Aarnio, 2011a) although
CRAM is more suitable for solving the burn-up equations (Isotalo
and Aarnio, 2011a; Pusa, 2011). Since the neutron reactions are
not included, the analytical solution of the TTA method provides

FIGURE 3 | Solution process for calculating the nuclide concentrations in four regions.
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an efficient solution to the decay equations that is accurate and
much faster.

RESULTS AND ANALYSIS

Verification of the Decay Steps During the
Burnup Mode
The first example used to verify the model is the single pin-cell
model taken from the standard Westinghouse 17 × 17 PWR
assembly (Horelik and Herman, 2012) whose physical parameters
are presented in Table 2.

The pin was assumed to be depleted to 1,200 MWd/tUs in
three burn-up steps, interspersed with a decay step that lasts for
10 days. The RMC used 20,000 particles per cycle with 500 total
cycles and 100 inactive cycles for each transport calculation. The
Solver, Strategy and Sub-step options were set to the most
commonly used values. The Solver option was set to CRAM.
The Strategy option was set to predictor-corrector. The Sub-step
option was set to 10 (Isotalo and Aarnio, 2011b), which means
that each depletion step was divided into 10 sub-steps in the
DEPTHmodule. The ACE data used by RMCwas processed from
the ENDF/B-VII.0 library.

The calculations with and without the MC transport are
referred to as Method 0 and Method 1 in this paper. The
calculations without MC transport and using the TTA
method is referred to as Method 2. The calculation without
MC transport, using the TTA method and adopting the
starting point approximation strategy in place of the predictor-
corrector strategy during the decay step is referred to as Method
3. The fuel had a total of 644 isotopes after the decay step and
atomic densities of the top 50 isotopes at the end of the decay step
are presented inTable 3. The atomic density differences of the top
50 nuclides at the end of the decay step predicted by the two
methods differed by less than 0.001%. The k-eigenvalues and the
wall-clock time are listed in Table 4. The total times for the
burnup calculation for the two methods were similar, around
0.022 min.

The results in Table 4 show that removing the MC transport
calculation in the decay step greatly reduces the computational
time while keeping the accuracy with the transport calculational
time of the third step (the decay step) reduced to zero.
The differences in the transport calculational times for the
first two steps may be caused by performance fluctuations of
the CPUs. In step 1 and 2, the power was not zero and the
MC transport must be performed to get the equivalent decay
constant and the equivalent branching ratio in Eq. 4, no matter
with or without the optimization. Thus, the random number
histories in the two methods were the same. In step 3, the
power was zero. The optimized method skipped MC transport
while the method without optimization did not skip MC
transport. From there, the random number histories of the
two methods began to differ. Thus, step 1 and 2 in Table 4
exhibit exactly the same kinf values while the k-eigenvaluesFIGURE 4 | Decay Chain Method algorithm.

TABLE 2 | Physical properties for the first verification example.

Parameter Values

Fuel pellet radius (cm) 0.4096
Cladding inner radius (cm) 0.4178
Cladding outer radius (cm) 0.475
Pin pitch (cm) 1.26
Fuel density (g/cm3) 10.2
Fuel temperature (K) 300
Active zone length (cm) 365
Cladding density (g/cm3) 6.55
Cladding temperature (K) 300
Coolant density (g/cm3) 0.997
Coolant temperature (K) 300
Specific power (W/gU) 30
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TABLE 3 | Atomic densities and differences between different algorithms of top 50 isotopes.

Isotope Result of method 1 Diff

Method 0 (%) Method 2 (%) Method 3 (%) DCM (%)

O16 8.752149E + 00 0.00 0.00 0.00 0.00
U238 4.241390E + 00 0.00 0.00 0.00 0.00
U235 1.296685E-01 0.00 0.00 0.00 0.00
Pu239 1.232065E-03 0.00 0.00 0.00 0.00
U236 5.509233E-04 0.00 0.00 0.00 0.00
Xe136 3.088715E-04 0.00 0.00 0.00 0.00
Xe134 2.170062E-04 0.00 0.00 0.00 0.00
Ba138 1.873708E-04 0.00 0.00 0.00 0.00
Mo100 1.784622E-04 0.00 0.00 0.00 0.00
La139 1.780991E-04 0.00 0.00 0.00 0.00
Zr94 1.756463E-04 0.00 0.00 0.00 0.00
Cs137 1.751578E-04 0.00 0.00 0.00 0.00
Zr96 1.748626E-04 0.00 0.00 0.00 0.00
Zr93 1.735987E-04 0.00 0.00 0.00 0.00
Mo97 1.701211E-04 0.00 0.00 0.00 0.00
Cs133 1.678730E-04 0.00 0.00 0.00 0.00
Mo98 1.658189E-04 0.00 0.00 0.00 0.00
Tc99 1.650308E-04 0.00 0.00 0.00 0.00
Zr92 1.636118E-04 0.00 0.00 0.00 0.00
Ce142 1.558455E-04 0.00 0.00 0.00 0.00
Sr90 1.510969E-04 0.00 0.00 0.00 0.00
Ru101 1.463620E-04 0.00 0.00 0.00 0.00
Zr95 1.448967E-04 0.00 0.00 0.00 0.00
Ce144 1.409281E-04 0.00 0.00 0.00 0.00
Xe132 1.284438E-04 0.00 0.00 0.00 0.00
Y91 1.265764E-04 0.00 0.00 0.00 0.00
Ru102 1.261620E-04 0.00 0.00 0.00 0.00
Ce141 1.100999E-04 0.00 0.00 0.00 0.00
Nd145 1.066297E-04 0.00 0.00 0.00 0.00
Ce140 1.001431E-04 0.00 0.00 0.00 0.00
Sr88 9.620730E-05 0.00 0.00 0.00 0.00
Nd143 9.308946E-05 0.00 0.00 0.00 0.00
Sr89 9.280958E-05 0.00 0.00 0.00 0.00
Nd146 8.345890E-05 0.00 0.00 0.00 0.00
Xe131 7.134935E-05 0.00 0.00 0.00 0.00
Rb87 7.060260E-05 0.00 0.00 0.00 0.00
Ru103 6.769937E-05 0.00 0.00 0.00 0.00
Pr143 6.696147E-05 0.00 0.00 0.00 0.00
Ru104 6.291337E-05 0.00 0.00 0.00 0.00
Ba140 5.977340E-05 0.00 0.00 0.00 0.00
Pr141 5.640113E-05 0.00 0.00 0.00 0.00
Cs135 5.480513E-05 0.00 0.00 0.00 0.00
Kr86 5.306824E-05 0.00 0.00 0.00 0.00
Te130 5.097829E-05 0.00 0.00 0.00 0.00
Nd148 4.846193E-05 0.00 0.00 0.00 0.00
Pm147 4.184363E-05 0.00 0.00 0.00 0.00
Pd105 3.591163E-05 0.00 0.00 0.00 0.00
Zr91 3.234819E-05 0.00 0.00 0.00 0.00

TABLE 4 | K-eigenvalues and wall-clock times for the various burnup steps.

Step Power (W/gU) Step time
(days)

Without optimization optimized Optimized

With MC
transport?

kinf Transport calculational
time (min)

With MC
transport?

kinf Transport calculational
time (min)

1 30 5 Yes 1.393946 76.80 Yes 1.393946 79.98
2 30 15 Yes 1.338657 110.17 Yes 1.338657 115.27
3 0 10 Yes 1.332696 94.74 No None 0.00
4 30 20 Yes 1.388104 110.40 Yes 1.388480 111.61
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predicted by the two methods in the fourth step differ by
37.6 pcm with a standard deviation of 18.7 pcm. The
difference is no more than two standard deviations, which can
be explained by differences in the random number histories.

Accuracy and Efficiency of the
Transmutation Trajectory Analysis and
Chebyshev Rational Approximation
Methods for the Decay Calculation
The accuracies of the TTA and CRAM methods for decay
calculations were studied by simulating the decay of
Uranium-233. The decay constant of Uranium-233 is 1.3797
× 10−13 1/s. The original Uranium-233 density was 1. As shown
in Table 5, for normal cases, CRAM and TTA are at the same
accuracy level. For decay problems where the neutron flux is
zero, TTA is an exact method while CRAM inevitably involves
some approximation. In some extreme cases, the error caused by
the approximation may be serious. For example, if we extended
the decay time to 10 million years, TTA still gave accurate
results while the relative error in the CRAM results was
more than 77%. We know that a 10 million years’ decay
seems a bit impractical, but this extreme case was
deliberately designed to verify the robustness of the two
methods. The relative error shown in Table 5 indicates that
the TTA method is as accurate as the CRAM method in normal
cases while the former is more accurate than the latter if the
decay time was extremely long. Thus, TTA should be the first
choice for decay problems.

The single pin-cell model was again used to study the
influence of the other optimization methods on the efficiency
using the same power history, the number of neutrons and cycle
conditions as before. The initial nuclide densities were the same
as the top 300 nuclide densities at the end of step 2 in the first
example. As shown in Table 3, the atomic densities for the top

50 nuclides predicted using Methods 1, 2, 3 and DCM all
differed by less than 0.001% with the decay step calculational
time listed in Table 6. As we know, the calculational time
fluctuates because of the fluctuation of the CPU. To reduce
the fluctuation, we re-calculated the single pin-cell problem
more than 20 times to get the average calculation time as well as
its standard deviation.

Efficiencies of Transmutation Trajectory
Analysis and Decay Chain Method
The efficiencies of TTA and DCM as the number of decay
regions increased were predicted for a single pin divided into 1
to 1,000,000 regions. The initial nuclide densities were the
same as the top 300 nuclide densities at the end of step 2 in the
first example. We re-calculated problem 5–20 times until the
relative standard deviations of the average calculational time
reduce to less than 3%. The decay calculational times for the
various examples in Figure 5 show that both algorithms have
linear complexity. The DCM needs 0.0050 min while TTA
needs just 0.0001 min for the one region example since the
DEPTH module is called 300 times in DCM but just once in
TTA. The DCM calculational times increase to 0.0051 and
0.0052 min for 100 and 1,000 regions. Thus, the calculational
time for all the decay chains is around 0.005 min with
negligible time for the vector operations in each region.

TABLE 5 | Uranium-233 density for various decay times and relative errors.

Decay time (years) Analytical
density of U233

Relative error

TTA (%) CRAM (%)

10,000 9.573942 × 10−01 0.00 0.00
100,000 6.470057 × 10−01 0.00 0.00
1,000,000 1.285526 × 10−02 0.00 0.00
2,000,000 1.652578 × 10−04 0.00 0.00
10,000,000 1.232563 × 10−19 0.00 77.45

TABLE 6 | Decay step calculational times using the various methods.

Method Burnup calculational time of decay step and its standard deviation

Predictor step/min Corrector step/min Total/min

0 0.00022 ± 0.00001 0.00022 ± 0.00001 0.00044 ± 0.00001
1 0.00022 ± 0.00001 0.00022 ± 0.00001 0.00044 ± 0.00001
2 0.00014 ± 0.00001 0.00014 ± 0.00001 0.00028 ± 0.00001
3 0.00014 ± 0.00001 None 0.00014 ± 0.00001
DCM 0.00504 ± 0.00015 None 0.00504 ± 0.00015

FIGURE 5 | Decay calculational times for various numbers of regions.
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The TTA calculational times exceed those of DCM for more
than 100 regions with the gap increasing greatly with the
increasing number of regions. The time ratio for the two
algorithms stabilizes at around 60 for more than 10,000
regions.

The DCM calculational times are 0.13 min for 100,000 regions
and 0.99 min for 1,000,000 regions. Thus, the calculational time
for the vector operations in each region is around 1.0 × 10−6 min.
For 50,000 regions, the calculational time for the vector
operations for all the regions is 0.05 min, close to the decay
chain calculational time. The vector operations then cost more
and more computational time as the number of decay regions
increases while decay chain solution time remains unchanged.
Thus, the time cost for the DCM calculations gradually changes
from constant to linear for more than 10,000 regions. The DCM
time is initially constant because the decay chain calculations for
all the mother nuclides are independent of the number of regions.
The linear increase in the time is then due to the vector operations
calculational time being proportional to the number of decay
regions.

Decay Part of Virtual Environment for
Reactor Applications Problem 10
DCM has been used to simulate the VERA core physics
benchmark Problem 10 (Godfrey, 2014). Problem 10
simulates the fuel assembly shuffle involving the refueling
outage between two fuel cycles. The isotopic decay of the
burned fuel is important when predicting the startup
reactivity of the following cycle. Problem 10 simulations
using the RMC code are still ongoing (Liang et al., 2016; Liu
et al., 2016) but the decay part can be easily simulated using the
present model. A simplified example is calculated to study the

efficiencies of the different methods. The VERA benchmark
problem 10 specifications were taken from Godfrey (2014).
The detailed geometry for the full VERA core is shown in
Figure 6 which was simulated in RMC. The power history
was simplified to three burnup steps as shown in Table 7,
i.e., 10 + 10 days of burning and 30 days of wait. Control bank
D was withdrawn at 210 steps. Hydraulic and thermal
feedback were not taken into consideration. The active
core was divided into ten axial segments to give a total of
509,520 burn-up regions. The simulations were run with 100
inactive generations, 500 total generations, and 1,000,000
particles per generation. The calculations were implemented
on the TANSUO100 high-performance computer. Each node
on TANSUO100 had two Intel Xeon X5670 CPUs with six
cores, and each core has 2.10 giga-Hertz of frequency and
12 mega-byte of cache memory. A total of 10 nodes, i.e., 120
cores, were used with 120 MPI parallel processes in each
calculation. We re-calculated the problem 5 times to reduce
the relative standard deviations of the average calculational
time. The calculational times for MC transports range around
370 core × hours.

The results in Table 8 show that the optimization methods
greatly reduce the calculational time for the decay step. The use of
the TTA solver rather than the CRAM solver reduced the
calculational time for the decay step by almost 40% with the
analytical solution of the TTAmethod giving better accuracy than
the CRAM calculation. The removal of the predictor-corrector
step nearly halved the calculational time. Finally and most
importantly, DCM reduced the calculational time by more
than 98%.

FIGURE 6 | The geometry of the full VERA core. (A) Radial view (B) Axial view.

TABLE 7 | Power history of simplified VERA problem 10.

Step Power (W/gU) Time (days)

1 30.00 10.00
2 30.00 10.00
3 0.00 30.00

TABLE 8 | Decay step calculational times using various methods.

Method Decay step calculational
times (core × minutes)

1 (without the MC transport) 74.98 ± 1.83
2 (using TTA) 46.18 ± 1.19
3 (starting point strategy) 23.15 ± 0.61
DCM 0.33 ± 0.01
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LIMITATIONS

The decay chain method can greatly reduce the calculational time
for decay steps if the number of fuel regions is very large.
However, the decay chain method also has its limitations.
First, DCM costs more calculational time than the traditional
TTA method if the number of the fuel regions are less than 100.
This limitation is acceptable because DCM aims at offering an
alternative in some cases rather than completely replace TTA.
Users can choose the right method according to the number of
fuel regions to play to the strengths of both methods. Second,
DCM is only applicable to decay problems where the neutron flux
is zero, and is not applicable to burn-up problems where the
neutron flux is not zero. The reason is that the neutron flux varies
from fuel regions to regions and the transmutation rules vary in
different fuel regions even for the same mother nuclide.

CONCLUSION

Burn-up-decay and burnup-decay-burnup problems are
common, important problems in reactor simulations. An
efficient decay calculation method, the Decay Chain Method,
was developed and validated in this study by optimizing the decay
calculations in a burn-up mode calculation in the RMC code.

Unlike traditional methods that solve the Bateman equation
cell by cell, the Decay Chain Method first calculates all the decay
nuclide chains for each mother nuclide and then calculates the
changes in the atomic densities in each cell using solution vector
operations. The Decay Chain Method improves the
computational efficiency of large decay problems by avoiding
repetitively solving the decay equations. In burn-up-decay and
burnup-decay-burnup problems, the decay steps are treated as
special burn-up steps where the power is 0. Several optimization
methods are then used to reduce the computational time cost
during the decay steps. The DEPTH module is then only called

once for each mother nuclide, which greatly reduces the
calculational time. The time complexity of the DCM method
changes from constant to linear for more than 10,000 regions.
The efficiency is significantly increased with the DCM using only
one-sixtieth of the time of traditional methods for more than
10,000 regions. In problems with few regions, the DCM is slightly
slower than the traditional methods, but this is still acceptable
because small decay problems require very short calculational
times. A simplified analysis of VERA Problem 10 involving
509,520 burn-up regions shows that the decay step
calculational time is reduced by more than 98%, from 74.98 to
0.33 min with no change in the accuracy.

This work provides a framework for simulating the refueling
outage of VERA Problem 10. Future work will consider how to
accelerate the full simulation of Problem 10.
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