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Accurate and reliable photovoltaic (PV) cell parameter identification is critical to
simulation analysis, maximum output power harvest, and optimal control of PV systems.
However, inherent high-nonlinear and multi-modal characteristics usually result in thorny
obstacles to hinder conventional optimization methods to obtain a fast and satisfactory
performance. In this study, a novel bio-inspired grouped beetle antennae search (GBAS)
algorithm is devised to effectively identify unknown parameters of three different PV
models, i.e., single diode model (SDM), double diode model (DDM), and triple diode
model (TDM). Compared against beetle antennae search (BAS) algorithm, optimization
efficiency of GBAS algorithm is markedly enhanced based on a cooperative searching
group that consists of multiple individuals rather than a single beetle. Besides, a dynamic
balance mechanism between local exploitation and global exploration is designed to
increase the probability for a higher quality optimum. Comprehensive case studies
demonstrate that GBAS algorithm can outperform other advanced meta-heuristic
algorithms in both optimization precision and stability for estimating PV cell parameters,
e.g., standard deviation (SD) of root mean square error (RMSE) obtained by GBAS
algorithm is 64.34% smaller than the best value obtained by other algorithms in SDM,
61.86% smaller than that in DDM.

Keywords: parameter estimation, PV cell, grouped beetle antennae search, optimization strategy, metaheuristic
algorithm

INTRODUCTION

In the past few decades, excessive utilization of natural resources causes rapid fossil fuels depletion
(Sun et al., 2020) and serious environmental degradation (Song et al., 2018), which inevitably
accelerates ecological destruction and global energy crisis (Yang et al., 2018b). Hence, energy
revolution and transformation have become essential and imperative for social and economic
development (Peng et al., 2020), which is also in line with global sustainable development strategy
(Song et al., 2020). Obviously, exploitation and utilization of new energy resources and renewable
energy (Yang et al., 2018a), such as solar (Zhang et al., 2019) and wind (Li et al., 2019), are extremely
critical which has aroused widespread attentions worldwide (Zhang et al., 2020). Particularly, solar
energy is deemed as one of the most effective alternatives (Yang et al., 2016; He et al., 2017).

Photovoltaic (PV) system is widely used for solar energy applications which own elegant
merits, e.g., inexhaustible in supply, wide distribution, and pollution-free. Particularly, measured
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current-voltage (I-V) data based precise PV modeling is
extremely critical to dynamic behavior analysis of PV system.
Thus far, various PV models have been devised, among which
two types of equivalent circuit models are most widely applied
(Chin et al., 2015), i.e., single diode model (SDM) (Humada
et al., 2016) and double diode model (DDM) (Abbassi et al.,
2018). Meanwhile, other more complicated models, e.g., triple
diode model (TDM) (Khanna et al., 2015) is barely investigated in
recent reported literatures due to their huge computation burden
resulted from a larger number of unknown parameters. However,
more complicated physical behavior of PV systems is more likely
to be more efficiently studied based on these models. Hence,
three types of PV models, i.e., SDM, DDM, and TDM are all
investigated in this study for a comprehensive evaluation of PV
cell parameter identification.

Note that a reliable PV cell modeling mainly relies on an
accurate identification of relevant model electrical parameters.
In general, PV cell parameter identification is essential for
performance analysis, optimal design (Youssef et al., 2017), real-
time control, and maximum power point tracking (MPPT) of PV
systems (Chaibi et al., 2019; Yang et al., 2019b). Nevertheless,
the following two shortcomings make parameter identification
difficult to achieve stable and satisfactory results in practical
applications: (i) the parameters provided by manufacturer are
unavailable and only tested under standard test condition (STC),
while the practical operation condition is far from STC which
might change the output characteristics of PV cells and (ii) these
parameters are time-varying due to degradation and faults of PV
cells (Gomes et al., 2017).

Until now, numerous methods have been developed to
solve such high-nonlinear and multi-modal obstacle, which are
categorized into three groups, i.e., analytical methods (Chan
and Phang, 1987; Saleem and Karmalkar, 2009), deterministic
techniques, and meta-heuristic algorithms. In general, analytical
methods are based on some key points on I-V curves provided
by manufacturer and a series of mathematical equations,
which are characterized by simplicity and fast computation but
relatively low accuracy (Wolf and Benda, 2013; Batzelis and
Papathanassiou, 2016). Meanwhile, deterministic approaches and
meta-heuristic algorithms can handle PV parameter estimation
with some reference points of given I-V curves. However,
deterministic techniques, such as least squares (Newton-based
method) (Li et al., 2017) and iterative curve fitting (Villalva et al.,
2009) are extremely strict with model characteristics. Moreover,
they are highly sensitive to initial operation conditions, while
inherent high-nonlinearity and multi-modality of PV systems
always leads to premature convergence. Nevertheless, meta-
heuristic algorithms can effectively avoid the shortcomings of
the above two methods since they normally possess advantages
of easy implementation (Zhang et al., 2021), high efficiency
(Mahdavi et al., 2015), insensitivity to initial condition and
gradient information (Roeva and Fidanova, 2018), etc. Hence,
they are deemed as the most promising and efficient tools for PV
cell parameter extraction.

Thus far, they have been widely adopted in PV cell
parameter identification in recent years (Yang et al., 2020).
For instance, genetic algorithm (GA) (Jervase et al., 2001),

differential evolution (DE) (Ishaque and Salam, 2011), particle
swarm optimization (PSO) (Ye et al., 2009), artificial bee colony
(ABC) (Oliva et al., 2014; Yang et al., 2019a), bird mating
optimizer (BMO) (Askarzadeh and Rezazadeh, 2013), whale
optimization algorithm (WOA) (Elazab et al., 2018; Dasu et al.,
2019), backtracking search algorithm (BSA) (Yu et al., 2018),
month flame optimizer (MFO) (Allam et al., 2016), gray wolf
optimization (GWO) (Yang et al., 2017; Nayak et al., 2019),
biogeography-based optimization (BBO) (Niu et al., 2014), flower
pollination algorithm (FPA) (Alam et al., 2015; Shang et al.,
2018), harmony search (HS) (Askarzadeh and Rezazadeh, 2012),
multiswarm spiral leader particle swarm optimization (MSLPSO)
algorithm (Nunes et al., 2020), slime mold algorithm (SMA)
(Mostafa et al., 2020) and so forth (Muangkote et al., 2019), along
with their numerous hybrid/variants.

Inspiringly, beetle antennae search (BAS) algorithm is
a recently developed biology-based meta-heuristic algorithm
(Jiang and Li, 2018), which basically replicates the searching
mechanism of long-horn beetles. Besides, the basic functioning
mechanism of beetle’s antennae and its random walking behavior
are all considered in optimization principles of BAS. Note
that such strategy owns the superiorities of simple structure
and easy implementation, while its convergence and local
minimum avoidance have been verified via two typical test
functions. However, the effectiveness and accuracy of original
BAS algorithm are still worthy to be further improved.

Hence, a powerful grouped BAS (GBAS) algorithm (Hao
et al., 2020) is employed in this paper for PV cell parameter
identification, whose contributions/novelties can be summarized
as follows:

• GBAS algorithm can improve the optimization efficiency
with a cooperative group of multiple beetles instead of
a single beetle, while it also can acquire a high-quality
optimum by a dynamic balance between local exploitation
and global exploration;
• Practical performance of GBAS is comprehensively

validated by SDM, DDM, and TDM, respectively;
• Comprehensive case studies verify that GBAS algorithm

outperforms other meta-heuristic algorithms in both
solution optimization accuracy and stability.

The rest of this paper is organized as follows: The problem
formulation of PV cell models and applied objective function
are illustrated in section “PV Cell Modeling and Problem
Formulation.” The main optimization principle of the proposed
GBAS algorithm is elaborated in section “Grouped Beetle
Antennae Search (GBAS) Algorithm.” Case studies results and
detailed statistical analysis on various PV cell models are shown
and analyzed in section “Case Studies.” Lastly, conclusions are
given in section “Conclusion.”

PV CELL MODELING AND PROBLEM
FORMULATION

The first step to study the characteristics of PV cells, or to develop
a more accurate prediction and optimization of PV systems
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operation, is to establish an appropriate PV cell model. Then, PV
cell parameters can be reliably extracted to more accurately depict
the output I-V and power-voltage (P-V) characteristics for better
analysis of PV cells. The most widely applied equivalent circuit
models are SDM, DDM, and TDM.

Mathematical Modeling
In general, the main these structures of the three models are quite
similar, thus a comprehensive summary is provided in Table 1 for
more detailed demonstration.

As demonstrated in Table 1, IL and VL represent PV cell
output current and output voltage, respectively; Ish means shunt
resistor current Rsh; while thermal voltage VT is defined as

VT =
KT
q

(1)

where T represents cell temperature; K = 1.38× 10−23 J/K
denotes Boltzmann constant; and q = 1.6× 10−19C means
electron charge, respectively.

Other variables can be referred in Nomenclature.

Objective Function
The main purpose of parameter identification is to find a group of
proper parameters that can effectively minimize errors between
experimental and simulated data, which can be quantitatively
evaluated through objective functions. Here, RMSE is chosen as
the objective function, as follows

RMSE (x) =

√√√√ 1
N

N∑
k=1

(f (VL, IL, x))2 (2)

TABLE 1 | Summary on three photovoltaic (PV) cell models.

Diode model Model drawing Output I-V equation Extracted
parameters

Features

D

Id

Iph

Ish

V
Rsh

Rs

IL IL = Iph

−I0

[
exp

(
VL + ILRs

aVT

)
−1
]

−
VL + ILRs

Rsh

SDM (Zagrouba
et al., 2010)

Iph, I0, Rs, Rsh,
and a

(a) Simplest control structure
and easy implementation

(Chen and Yu, 2019);
(b) Limited accuracy compared

to DDM and TDM
(Barukčić et al., 2015).

Iph

Id1 Id2 Ish
Rsh

Rs

V
D1 D2

IL IL = Iph

−I01

[
exp

(
q (VL + ILRs)

a1VT

)
− 1

]
−I02

[
exp

(
q (VL + ILRs)

a2VT

)
− 1

]
−

VL + ILRs

Rsh

DDM
(Ishaque et al., 2011)

Iph, I01, I02, Rs,
Rsh, a1, and a2

(a) High accuracy under STC
(Easwarakhanthan et al., 1986);

(b) Simple implementation
(Ram et al., 2018);

(c) Medium complexity
(Ram et al., 2018).

D3

IL = Iph

−I01

[
exp

(
q (VL + ILRs)

a1VT

)
− 1

]
−I02

[
exp

(
q (VL + ILRs)

a2VT

)
− 1

]
−I03

[
exp

(
q (VL + ILRs)

a3VT

)
− 1

]
−

VL + ILRs

Rsh

TDM
(Khanna et al., 2015;
Abbassi et al., 2018)

Iph, I01, I02, I03,
Rs, Rsh, a1, a2,

and a3

(a) Highest accuracy and
efficiency to investigate

complicated PV systems
behaviors

(Khanna et al., 2015);
(b) Slightly high complexity and

implementation cost (Kamali
et al., 2016).

TABLE 2 | Error functions of three different models.

Model Error function Solution vector

SDM fSDM (VL, IL, x) = Iph − I0

[
exp

(
VL + ILRs

aVt

)
− 1

]
−

VL + ILRs

Rsh
− IL x = {Iph,I0,Rs, }Rsh, a

DDM fDDM (VL, IL, x) = Iph − I01

[
exp

(
q (VL + ILRs)

a1Vt

)
− 1

]
− I02

[
exp

(
q (VL + ILRs)

a2Vt

)
− 1

]
−

VL + ILRs

Rsh
− IL x = {Iph,I01,I02, Rs,Rsh,a1,a2}

TDM fTDM (VL, IL, x) = Iph − I01

[
exp

(
q (VL + ILRs)

a1Vt

)
− 1

]
− I02

[
exp

(
q (VL + ILRs)

a2Vt

)
− 1

]
− I03

[
exp

(
q (VL + ILRs)

a3Vt

)
− 1

]
−

VL + ILRs

Rsh
− IL

x = {Iph,I01,I02,I03, Rs,Rsh,a1,a2,a3}
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TABLE 3 | Parameters of grouped beetle antennae search (GBAS) for parameter
identification of photovoltaic (PV) cell.

Parameters Range Value

C C > 0 1.5

ωmax 0.5 < ωmax < 1 0.95

ωmin 0 < ωmin < 0.5 0.05

dmax dmax > 0 5

δmax 0 < δmax < 1 0.9

tmax tmax > 0 5,000

n n > 0 30

where x represents solution vector which contains the parameters
need to be identified and N denotes number of experimental
data, respectively.

For a more explicit and comprehensive illustration, the error
functions f (VL, IL, x) for different PV models are summarized
in Table 1.

Based on Table 2, for the sake of minimizing the error between
experimental data and simulated data, RMSE (x) needs to be
minimized by optimizing solution vector x. Note that objective
function value is inversely proportional to the solution quality.

GROUPED BEETLE ANTENNAE SEARCH
(GBAS) ALGORITHM

This section presents the main inspiration, and the optimization
principle of the proposed GBAS algorithm.

Optimization Mechanism
GBAS algorithm is mainly inspired by the special and efficient
food searching mechanism of long-horn beetles that depends on
their antennae to sense an odor from food sources. Compared
with only one single searching agent based BAS algorithm, GBAS
utilizes a searching group that consists many individuals to
enlarge the searching extent and ensure more potential high
quality solutions can be detected. The whole searching can
be divided into two stages, i.e., searching and detecting, while
the weights during the two process are adaptively adjusted to
avoid local optimums. Thus, a proper trade-off between local
exploitation and global exploration can be achieved, upon which
the optimization efficiency and accuracy can be greatly achieved,
while more details of this algorithm can be referred to literature
(Hao et al., 2020) for interested readers.

Design of GBAS for PV Cell Parameter
Identification
The detailed optimization structure of GBAS algorithm for PV
cell parameter identification is illustrated in this section.

Optimization Variables
As shown in Table 2, optimization variables are different
in various equivalent circuit models for PV cell. To achieve
an efficient parameter identification of PV cell, optimization
variables are limited within their lower and upper bounds, as
follows:

xmin
j ≤ x

j
≤ xmax

j , j = 1, 2, . . . , J (3)

Rs

IshIdIph

IPV

VPV

+

-

Rsh

Rs

IshId1Iph

IPV

VPV

+

-

Id2

Rsh

Rs

IshId1Iph

IPV

VPV

+

-

Id2 Id3

Rsh
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FIGURE 1 | Application process of grouped beetle antennae search (GBAS) for parameter identification of photovoltaic (PV) cell.
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TABLE 4 | Benchmark experimental I-V dataset.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13

VL −0.2057 −0.1291 −0.0588 0.0057 0.0646 0.1185 0.1678 0.2132 0.2545 0.2924 0.3269 0.3585 0.3873

IL 0.7640 0.7620 0.7605 0.7605 0.7600 0.7590 0.7570 0.7570 0.7555 0.7540 0.7505 0.7465 0.7385

Item 14 15 16 17 18 19 20 21 22 23 24 25 26

VL 0.4137 0.4373 0.4590 0.4784 0.4960 0.5119 0.5265 0.5398 0.5521 0.5633 0.5736 0.5833 0.5900

IL 0.7280 0.7065 0.6755 0.6320 0.5730 0.4990 0.4130 0.3165 0.2120 0.1035 −0.010 −0.123 −0.210

TABLE 5 | Parameters bounds of different photovoltaic (PV) cell models.

Parameter SDM/DDM/TDM

Lower bound Upper bound

Iph(A) 0 1

I0, I01, I02, I03(µA) 0 1

Rs(�) 0 0.5

Rsh(�) 0 100

a1, a2, a3 0 2

where xj denotes the jth optimization variable; xmin
j and

xmax
j represents the lower and upper bounds of the jth

optimization variable; while J is the number of optimization
variables, respectively.

If a beetle violates constraint (3), its position will be reset
randomly within their lower and upper bounds by

xj = xmin
j + r2

(
xmax
j − xmin

j

)
(4)

where r2 means a random value ranging from 0 to 1.

Parameter Setting
Seven parameters of GBAS algorithm, including C, ωmax, ωmin,
dmax, δmax, tmax, and n, should be carefully set for parameter
identification of PV cell. Note that maximum iteration number
tmax and population size n are two most important parameters.
Generally speaking, a larger tmax or n will increase the probability
to acquire optimal solutions with higher quality, but also result
in longer computation time. To ensure GBAS can locate a high-
quality optimum in a high convergence rate, they are determined
via trial-and-error, as tabulated in Table 3.

TABLE 7 | Model parameters identified by various algorithms for single
diode model (SDM).

Algorithm Iph(A) I0(µA) Rs(�) Rsh(�) a RMSE Rank

ABC 0.7599 0.4306 0.0351 70.7212 1.5106 1.1915E–03 7

BSA 0.7609 0.3155 0.0364 51.3636 1.4788 9.9292E–04 3

GWO 0.7609 0.3960 0.0356 57.7907 1.5019 1.0787E–03 6

MFO 0.7607 0.3615 0.0359 56.9751 1.4926 1.0092E–03 5

PSO 0.7607 0.3182 0.0364 53.5992 1.4796 9.8662E–04 2

WOA 0.7610 0.3240 0.0362 50.2320 1.4815 1.0070E–03 4

BAS 0.7700 0.5664 0.0375 67.0461 1.5390 8.3468E–03 8

GBAS 0.7607 0.3247 0.0363 53.7669 1.4817 9.861E–04 1

Application Process
The application process of GBAS algorithm for parameter
identification of PV cell is illustrated in Figure 1. Historical
data of output voltage and current determined from different
PV cells will be regarded as the inputs of GBAS, which is
converted into objective function by Eq. (2). Then, according to a
specific equivalent circuit model, GBAS can execute optimization
procedure based on Table 3. Finally, GBAS output the identified
parameters of PV cell.

CASE STUDIES

In this section, three different kinds of PV models, i.e., SDM,
DDM, and TDM are adopted for parameter identification based
on GBAS algorithm. For this purpose, a total of 26 pairs of
benchmark experimental I-V dataset are utilized for a fair
simulation and comparison (Kamali et al., 2016), which are
extracted from a 57 mm diameter R.T.C. France solar cell under

TABLE 6 | Statistical results of root mean square error (RMSE) obtained by various algorithms for single diode model (SDM).

Algorithm RMSE

Min. Median Mean Max. SD Sig.

ABC 1.1915E–03 1.5983E–03 1.5738E–03 1.8032E–03 1.5675E–04 +

BSA 9.9292E–04 2.2381E–03 6.3615E–03 3.8151E–02 9.6855E–03 +

GWO 1.0787E–03 2.5662E–03 8.5826E–03 3.8157E–02 1.3465E–02 +

MFO 1.0092E–03 2.2845E–03 6.6942E–03 3.8151E–02 1.2560E–02 +

PSO 9.8662E–04 2.1149E–03 1.9462E–03 2.5806E–03 5.0841E–04 +

WOA 1.0070E–03 4.9664E–03 2.2592E–02 2.2286E–01 5.2876E–02 +

BAS 8.3468E–03 3.4603E–02 3.5239E–02 6.7343E–02 1.2964E–02 +

GBAS 9.8610E–04 1.0371E–03 1.0640E–03 1.2990E–03 7.5240E–05

Frontiers in Energy Research | www.frontiersin.org 5 April 2021 | Volume 9 | Article 675925

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-675925 April 22, 2021 Time: 14:53 # 6

Sun et al. PV Cell Parameter Estimation

A B

C

D

FIGURE 2 | Identification results obtained by grouped beetle antennae search (GBAS) algorithm for SDM: (A) I-V curve; (B) P-V curve; (C) boxplot of RMSE; (D)
convergence graph.
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TABLE 8 | Statistical results of root mean square error (RMSE) obtained by various algorithms for double diode model (DDM).

Algorithm RMSE

Min. Median Mean Max. SD Sig.

ABC 1.1773E–03 1.5708E–03 1.5912E–03 2.0258E–03 2.1602E–04 +

BSA 9.8592E–04 1.5191E–03 2.1906E–03 1.1525E–02 2.1542E–03 +

GWO 1.0031E–03 2.0547E–03 4.6647E–03 3.8152E–02 9.1613E–03 +

MFO 9.8444E–04 1.7950E–03 1.9188E–03 2.9249E–03 5.3192E–04 +

PSO 9.9333E–04 1.6163E–03 1.8196E–03 3.1263E–03 6.7792E–04 +

WOA 1.1342E–03 3.0642E–03 5.0451E–03 4.2018E–02 9.6293E–03 +

BAS 1.0665E–02 3.3901E–02 3.2488E–02 5.7557E–02 1.2245E–02 +

GBAS 9.8594E–04 1.0448E–03 1.0720E–03 1.3229E–03 8.2371E–05

TABLE 9 | Model parameters identified by various algorithms for double diode model (DDM).

Algorithm Iph(A) I01(µA) Rs(�) Rsh(�) a1 I02(µA) a2 RMSE Rank

ABC 0.7604 0.5450 0.0372 52.0978 1.8104 0.1511 1.4196 1.1915E–03 7

BSA 0.7607 0.1748 0.0365 53.6545 1.9999 0.2936 1.4728 9.8512E–04 2

GWO 0.7608 0.1106 0.0364 56.7057 1.4123 0.4655 1.6585 1.0031E–03 5

MFO 0.7607 0.2949 0.0364 54.3816 1.4735 0.2160 2.000 9.8444E–04 1

PSO 0.7608 0.3564 0.0368 52.4937 2.0000 0.2540 1.4597 9.9333E–04 4

WOA 0.7603 0.5333 0.0358 71.7116 1.6921 0.1502 1.4360 1.1342E–03 6

BAS 0.7745 0.3412 0.0382 55.7934 1.4911 0.5034 1.9143 1.0665E–02 8

GBAS 0.7608 0.2376 0.0366 53.4190 1.4570 0.2602 1.7954 9.8594E–04 3

conditions ofG= 1,000 W/m2 andT= 33◦C (T= 33◦C is the cell
temperature), as shown in Table 4. This dataset is widely applied
to validate algorithms for PV cell parameters identification in
prior studies (El-Naggar et al., 2012; Gong and Cai, 2013; Oliva
et al., 2017; Yu et al., 2017; Chen et al., 2018). Due to the
benchmark I-V dataset used for case studies are only determined
under conditions of G = 1,000 W/m2 and T = 33◦C, thus there
is only one single fitted I-V curve.

GBAS algorithm is in comparison with other seven meta-
heuristic algorithms, e.g., PSO (Oliva et al., 2014), ABC (Yang
et al., 2019a), WOA (Elazab et al., 2018), BSA (Dasu et al.,
2019), MFO (Yu et al., 2018), GWO (Yang et al., 2017), and
BAS algorithm. Particularly, their maximum iteration number
is designed to be the same, i.e., 50,000, while all approaches are
executed in 30 independent runs to acquire statistical results.
Besides, population size of each algorithm is designed to be
30, 50, and 70 for SDM, DDM, and TDM, respectively. Note
that parameters bounds of different PV cell models is illustrated
in Table 5.

In particular, the best simulation results of eight methods are
highlighted in bold. All case studies are undertaken by MATLAB
2019a through a personal computer with IntelR CoreTMi7 CPU
at 2.0 GHz and 32 GB of RAM.

Results Discussion on SDM
The statistical results acquired by each algorithm for SDM, such
as minimum, median, mean, maximum, and standard deviation
(SD) of RMSE are demonstrated in Table 4. Note that RMSE
can explicitly quantify solution accuracy, while SD of RMSE

indicates algorithm reliability. Symbols “+,” “−,” and “=” mean
the experimental performance of GBAS algorithm is better than,
worse than, or similar to that of its competitors, respectively.

Table 6 explicitly illustrates that simulation results of GBAS
algorithm outperform other algorithms in terms of minimum,
median, mean, maximum and SD of RMSE, upon which GBAS
algorithm is verified to achieve the highest optimization accuracy.
Particularly, median and SD values of RMSE obtained by GBAS
algorithm are 97.00 and 99.42% lower than that of BAS algorithm,
which verifies cooperative group can astonishingly improve
searching efficiency and convergence stability of GBAS algorithm.
Besides, the proper balance between local exploitation and global
exploration can avoid low-quality optimum stagnation.

Moreover, optimal parameters identification results obtained
by various algorithms, along with their RMSE are presented in
Table 7, among which GBAS algorithm can acquire minimum
RMSE, followed by PSO, BSA, WOA, MFO, GWO, ABC,
and BAS algorithm.

The identification results are shown in Figure 2. The output
I-V and P-V curves based on optimal parameters identified by
GBAS algorithm are depicted in Figures 2A,B. Obviously, the
model curves acquired by GBAS algorithm are highly consistent
with actual data, which also reveals its superior performance for
PV cell parameter identification.

Figure 2C presents boxplot of various algorithms for SDM,
which demonstrates distribution of simulation results based on
various algorithms in 30 runs. One can readily observe that
RMSE obtained by GBAS algorithm can distribute within the
smallest range with minimal lower and upper bounds among all
algorithms. This verifies that GBAS algorithm can simultaneously
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FIGURE 3 | Identification results obtained by grouped beetle antennae search (GBAS) algorithm for double diode model (DDM): (A) I-V curve; (B) P-V curve; (C)
boxplot of RMSE; (D) convergence graph.
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TABLE 10 | Statistical results of root mean square error (RMSE) obtained by various algorithms for triple diode model (TDM).

Algorithm RMSE

Min. Median Mean Max. SD Sig.

ABC 1.1656E–03 1.6491E–03 1.6164E–03 1.9484E–03 2.0904E–04 +

BSA 9.8410E–04 1.2671E–03 1.5012E–03 5.0039E–03 8.0729E–04 +

GWO 1.0125E–03 1.6959E–03 3.8259E–03 3.2771E–02 7.7960E–03 +

MFO 9.9054E–04 2.1265E–03 2.0886E–03 3.5509E–03 7.0063E–04 +

PSO 9.8634E–04 1.4949E–03 1.8829E–03 3.8209E–03 7.8566E–04 +

WOA 1.2060E–03 4.2454E–03 9.7443E–03 4.2789E–02 1.2459E–02 +

BAS 1.2146E–02 3.5046E–02 3.3053E–02 5.9392E–02 1.3223E–02 +

GBAS 9.8882E–04 1.1237E–03 1.1232E–03 1.6124E–03 1.2964E–04

TABLE 11 | Model parameters identified by various algorithms for triple diode model (TDM).

Algorithm Iph(A) I01(µA) Rs(�) Rsh(�) a1 I02(µA) a2 I03(µA) a3 RMSE Rank

ABC 0.7615 0.2446 0.0364 44.8763 1.4618 0.3504 1.5620 0.2663 1.9265 1.1656E–03 6

BSA 0.7607 0.0741 0.0365 54.1062 1.9999 0.2747 1.4673 0.2268 1.9691 9.8410E–04 1

GWO 0.7606 0.0442 0.0365 59.8501 1.4329 0.0189 1.3326 0.4895 1.6082 1.0125E–03 5

MFO 0.7607 0.0019 0.0363 54.9651 1.0000 0.3408 1.4873 0.0001 2.0000 9.9054E–04 4

PSO 0.7607 1.0000 0.0370 56.7914 2.0000 0.0564 1.4569 0.1374 1.4313 9.8634E–04 2

WOA 0.7598 0.3709 0.0364 76.7663 1.5757 0.0289 1.8577 0.0779 1.4071 1.2060E–03 7

BAS 0.7675 0.7381 0.0334 82.4121 1.7219 0.8315 1.6465 0.3362 1.7123 1.2146E–02 8

GBAS 0.7607 0.0231 0.0363 55.5354 1.9933 0.1729 1.7794 0.2746 1.4697 9.8882E–04 3

improve convergence stability and enhance searching ability.
Besides, Figure 2D provides convergence graphs of various eight
algorithms, among which BSA algorithm is difficult to acquire a
high-quality optimal solution based on a single individual based
global search. In contrast, GBAS algorithm can gradually find a
better solution as it can properly balance local exploitation and
global exploration via cooperative group.

Results Discussion on DDM
Statistical results of each algorithm for DDM are tabulated in
Table 8, which illustrates that GBAS algorithm can obtain the
optimal performance in median, mean, maximum and SD of
RMSE. Although MFO can achieve minimum RMSE, minimum
RMSE value obtained by MFO is only 0.15% lower than that of
GBAS algorithm. Particularly, mean RMSE and SD obtained by
GBAS algorithm are 44.13 and 84.51% lower than those obtained
by MFO, respectively. Therefore, GBAS algorithm realizes the
most desirable performance when both accuracy and reliability
are taken into consideration for DDM.

Table 9 illustrates the best model parameters and RMSE
obtained by various strategies for DDM. Among which MFO
obtains the best RMSE, followed by BSA, GBAS, PSO, GWO,
WOA, ABC, and BAS algorithm.

The identification results are shown in Figure 3. Figures 3A,B
demonstrate the output I-V and P-V curves acquired by GBAS
algorithm and actual data, upon which it can be seen that model
curve obtained by GBAS algorithm highly matches actual data.
Boxplot of different algorithms is depicted in Figure 3C, upon
which one can easily find that RMSE obtained by GBAS algorithm
has the smallest distribution range and upper/lower bounds

compared with others, which indicates that GBAS algorithm has
accurate searching ability in PV parameter identification and
stable global searching ability.

In particular, Figure 3D provides convergence graphs of
all algorithms. The results show that PSO can rapidly obtain
an elegant solution in initial stage, but it is easy to produce
premature convergence and difficult to find global optimum. In
contrast, GBAS algorithm owns a high convergence rate and can
avoid local optimum stagnation.

Results Discussion on TDM
For TDM, statistical results of each algorithm are tabulated
in Table 10, upon which GBAS algorithm still performs quite
satisfactory, which can obtain the best results in median, mean,
maximum and SD of RMSE. Although BSA algorithm obtains
the minimum RMSE, it performs worse than GBAS in other
performance indices. For example, RMSE median and SD
obtained by GBAS algorithm are 31.86 and 37.98% lower than
those of ABC (second best), respectively. In addition, GBAS
algorithm also performs well in the accuracy of PV cell parameter
identification. Minimum RMSE obtained by GBAS algorithm
is only 0.4% larger than that of BSA algorithm. Hence, GBAS
algorithm owns the most satisfactory performance for TDM.

The best parameters identification results based on various
algorithms for TDM is demonstrated in Table 11. Apparently,
BSA algorithm achieves the best RMSE, followed by PSO, GBAS
algorithm, MFO, GWO, ABC, and BAS.

The identification results are shown in Figure 4. Figures 4A,B
demonstrate the output I-V and P-V curves acquired by GBAS
algorithm and actual data, which can efficiently verify the
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FIGURE 4 | Identification results obtained by grouped beetle antennae search (GBAS) algorithm for triple diode model (TDM): (A) I-V curve; (B) P-V curve; (C)
boxplot of RMSE; (D) convergence graph.
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FIGURE 5 | Radar graphs of various algorithms: (A) single diode model (SDM), (B) double diode model (DDM), and (C) triple diode model (TDM).

precision of identified PV cell parameters. Figure 4C shows
boxplot of different algorithms while. One can observe that GBAS
algorithm is highly competitive in solution precision and stability
compared with others.

At last, Figure 4D provides convergence graphs of all
algorithms, which shows that GBAS algorithm can realize
a proper trade-off between local exploitation and global
exploration to find the best solution. In contrast, others are easily
to fall into a local optimum.

Statistical Results and Analysis
Note that SD of RMSE indicates parameter identification
reliability, upon which GBAS algorithm can achieve more
desirable performance than other competitors for SDM, DDM,
and TDM. Moreover, SD of RMSE obtained by GBAS algorithm
is much smaller than others for all models, which can effectively
verify the outstanding reliability of GBAS algorithm. For
example, SD of RMSE obtained by GBAS algorithm is 64.34%
smaller than the best value obtained by other algorithms in SDM,
61.86% smaller than that in DDM.

In addition, the distribution of results acquired by various
methods over 30 independent runs for SDM, DDM, and

TDM are clearly shown in Figures 2–4, respectively. In each
model, RMSE obtained by GBAS algorithm has the minimum
upper and lower limits and the smallest range. Moreover,
solution distribution also illustrates the superior performance
of GBAS algorithm. Besides, Figure 5 provides radar charts of
various algorithms, while the best ranking is assigned with 8
points and then decreased by 1 point in turn. Note that the
marking and ranking basis of different algorithms is based on
a comprehensive and overall comparison of their performance
in PV cell parameter identification, i.e., optimization accuracy,
optimization efficiency, convergence stability, and convergence
speed. Based on the radar graphs, it can be explicitly and
comprehensively illustrated that GBAS algorithm is much better
than other algorithms.

CONCLUSION

A powerful bio-inspired GBAS algorithm is adopted in this
paper for accurate and efficient parameter estimation of different
PV cell diode models, which contains the following three
contributions/novelties:

Frontiers in Energy Research | www.frontiersin.org 11 April 2021 | Volume 9 | Article 675925

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-09-675925 April 22, 2021 Time: 14:53 # 12

Sun et al. PV Cell Parameter Estimation

• Compared with BAS algorithm, GBAS algorithm can
effectively enhance global optimum searching efficiency
via a cooperative group of multiple beetles instead of a
single beetle. Besides, it also can acquire a high-quality
optimum via a dynamic and proper balance between local
exploitation and global exploration;
• GBAS algorithm is utilized in parameter identification of

SDM, DDM, and TDM, upon which its effectiveness and
feasibility have been validated. The SD of RMSE obtained
by GBAS for SDM is 52.00, 99.22, 99.44, 99.40, 85.20, 99.86,
and 99.42% lower to that of ABC, BSA, GWO, MFO, PSO,
WOA, and BAS, respectively. Besides, under the DDM, the
SD of RMSE of GBAS is 61.87, 96.18, 99.10, 84.51, 87.85,
99.14, and 99.33% lower to that of ABC, BSA, GWO, MFO,
PSO, WOA, and BAS, respectively;
• Case studies demonstrate that GBAS algorithm can

effectively enhance optimization accuracy and stability
compared with other meta-heuristic algorithms.

Future researches on the proposed algorithm can mainly focus
on optimization accuracy and convergence speed enhancement
due to these two indices of the proposed GBAS algorithm still can
be further improved. Based on this, GBAS can be verified for on-
line parameter estimation to validate its practical response speed
and optimization ability, which is quite useful and necessary in
practical engineering applications.

It is noteworthy that the PV cell parameters provided by
manufacturers or experiments are usually tested under STC,
while the practical operation conditions can barely maintain at
STC. Hence, for the sake of verifying the practical performance
of the proposed GBAS, the experiments require to be carried
out under various operation conditions. Besides, GBAS can also
be combined with corresponding reliable control strategies to
achieve reliable PV cell fault diagnosis, which can considerably
enhance operation stability and reliability of PV systems.
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NOMENCLATURE

Variables GBAS Grouped beetle antennae search

a, a1, a2, a3 Diode’s ideality factors GWO Gray wolf optimization

Id, Id1, Id2, Diode’s currents (A) HS Harmony search

I
ph

Photocurrent (A) I-V Current-voltage

I0, I01, I02, I03 Diode’s reverse saturation currents (A) MDDM Modified double diode model

Rs Series resistor (�) MFO Month flame optimizer

Rsh shunt resistor (�) MPPT Maximum power point tracking

Abbreviations PSO Particle swarm optimization

ABC Artificial bee colony PV Photovoltaic

BAS Beetle antennae search P-V Power-voltage

BBO Biogeography based optimization RMSE Root mean square error

BMO Bird mating optimization SD Standard deviation

BSA Backtracking search algorithm SDM Single diode model

DDM Double diode model STC Standard test condition

DE Differential evolution T Temperature, ◦C

E.P. Extracted parameters TDM Triple diode model

FPA Flower pollination algorithm TLBO Teaching learning based optimization

G Irradiation, W/m2 WCA Water cycle algorithm

GA Genetic algorithm WOA Whale optimization algorithm
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