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There has been a growing presence of electric vehicles in many countries including
Thailand, where many forms of incentives have been provided to build integrated
infrastructure, and to encourage drivers to switch to electric vehicles (EVs). Because
the immediate entry of EVs unavoidably can alter household load profiles, reinforcement on
the existing system based on traditional planning may not be sufficient and can introduce
over or under capital and operating expenditure over the time horizon. Therefore, if
distribution systems are unreadily prepared for such an uptake, three obvious
problems can be expected: 1) voltage regulation, 2) overloads of the distribution
feeders and the distribution transformers, and 3) high energy loss. In this paper, an
activity-based, time-sequential Monte Carlo Simulation algorithm was comprehensively
developed for uncontrollable and smart charging, given annually updated information of EV
locations and number of EVs, their energy consumption, hourly average vehicle speed,
number of daily trips, travel distance per trip, size of EV batteries, time to arrive home and
time to leave home. Minimizing the annual sum of investment and operating costs over a
planning period could then be sequentially solved by a Particle Swarm Optimization (PSO)
algorithm. The results from a practical 122-bus, 24 kV/400 V distribution system with
different scenarios of uncontrollable and smart charging show that the sequential
optimization embedded with deterministic decision can help improve customer voltage
profile, keep feeder and transformer loading within acceptable operating limits and offer
significant cost savings from energy loss. As far as a large number of low-voltage networks,
and the associated large sum of cost savings are concerned, the proposed planning
framework is practical to be applied and expected to be served as a new guideline for
future implementation in Thailand.

Keywords: electric vehicles, load profile simulation, particle swarm optimization, Monte Carlo simulation, low-
voltage distribution system planning

INTRODUCTION

Many countries around the world have been implemented numerous financial and nonfinancial
policies to promote widespread adoption of electric vehicles (EVs) and sets strict rules for auto
manufacturers to support clean technology into the market (Al-Alawi and Bradley, 2013). The rapid
growth of the use of EVs is mainly driven by rising gas prices, environmental pollution, and fossil fuel
exhaustion. Because the main source of EVs is rechargeable batteries, urgent development of many
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peripherals and supporting technology for EVs has been made
(Tie and Tan, 2013). The main benefits of the link between
electricity and transportation sectors through EVs include, for
example, more efficient use of power plants and power grid
infrastructure, less dependence on fossil fuels, carbon footprint
reduction, and energy efficiency enhancement.

In Thailand, electric cars are receiving a lot of attention from
public, private and public sectors. An EV policy was first
introduced in 2016 (EPPO, 2016) and only state agencies
began small-scale projects such as prototype charging outlets
and EV facility management platforms. The government has
established the National Electric Vehicle Policy Committee
(NEVPC) to better drive the policy forward. In March 2020,
the NEVPC announced an EV roadmap to help the domestic car
industry manufacture 1.2 million units in 10 years. Among recent
developments is a move by the Energy Regulatory Commission
(ERC) to apply more appropriate charging rates for EVs. Other
state agencies including Electricity Generating Authority of
Thailand (EGAT), Metropolitan Electricity Authority (MEA)
and Provincial Electricity Authority (PEA) have been active in
the development of electric ferries, buses, motorcycles, three-
wheeled vehicles and electric charging stations. A proposal to
impose a higher excise tax on oil-powered vehicles as part of
efforts to promote EVs and reduce air pollution has been under
discussion and review (Bangkok Post, 2020).

Although EVs has introduced many advantages to the
economy and society, they are mainly composed of batteries
and need recharging. They can be treated like conventional
electrical loads, but the power system can be terribly affected by
their high-power consumption due to the tendency of drivers to
charge at the time when the electricity grid already has high
loads (Moon and Kim, 2017). Because residential loads supplied
by a distribution transformer do not generally change much
over time, conventional planning criteria with some reserve
margin on the transformer can sufficiently accommodate future
increasing use of household appliances. For an existing low-
voltage network delivered by a distribution transformer,
customers are supplied in a radial scheme and therefore a
sudden increase in EVs can contribute negative effects on the
system. Obvious examples are voltage drop, and transformer
and feeder overload when the grid with high loads is connected
to uncontrolled EV charging loads (Apostolaki-Iosifidou et al.,
2019).

High penetration of EVs accelerates the need for system
investment in capacity expansion and network reinforcement
to support the infrastructure of EV applications and therefore
directly affects utilities’ investment and operational costs. The
main question for this issue to be addressed is when and how the
low-voltage network should be reinforced in a systematic, optimal
manner. Conventional planning in electric distribution systems
may not be practical enough because increased loads from EVs
are random in nature. That is, it is quite difficult to predict the
number of EVs and their corresponding locations that would
enter the system each year. Consequently, such a traditional
layout that has been used by electric power utilities may lead
to overinvestment for an underestimated number of EVs or
underinvestment for an overestimated number of EVs.

The main contribution of this paper is dedicated to optimal
planning of low-voltage distribution, where EV loads as part of
residential energy consumption are located. The proposed
planning model involves two main stages: load forecast and
resource optimization to meet the load forecast while
respecting network operational constraints. In the load forecast
model, the reinforcement of existing low-voltage network to
accommodate the increased EV loads can be efficiently
achieved by yearly sequential decision making, given annually
updated information of the EV locations and the amount of the
loads to be served by the system. Two EV charging consumption
models are comprehensively developed using Monte Carlo
Simulation: uncontrollable charging (also known as dump
charging) and smart charging. Load curves can be generated,
given probability distribution functions obtained from car user
surveys, and reports from local and international agencies. The
amounts of loads for these two charging schemes will be later
combined with the household loads of conventional appliances to
form the final load profiles.

The parameters required in the load simulation include
number of daily trips, distance per trip, sizes of battery,
average car velocity, arrival time at home, and departure time
from home. The mechanism of uncontrollable charging assumes
that car owner recharges their EVs as soon as they have arrived
home. With the help of modern sensors and actuators and
communications links, smart charging mechanism with direct
load control become feasible. The algorithm of smart charging is
based on the concept given in (Quiros-Tortos et al., 2018) for My
Electricity Avenue (MEA) project in the United Kingdom (UK).
The EV management solution for smart charging uses the EV
charging time as a proxy of the unknown State of Charge (SoC) to
determine the most suitable EVs that should be disconnected
when the system is stressed and reconnected when the system is
healthy. The concept of “First Out and First In” has been
introduced, indicating that disconnections occur first on
customers with higher charging times because it is assumed
that their EVs have reached a higher SoC. Reconnections, on
the other hand, occur first on EVs that have been disconnected for
longer times (e.g., those who disconnected first will be
reconnected first). Note, however, that whenever there are
newcomers in any time slots (e.g., half hour), who have never
been charged before, they will be prioritized over those ready for
reconnection regardless of how long they have been waiting for.

The resource optimization model minimizes the yearly total
cost arising from equipment, installation and demolition costs,
and the cost of energy loss over a planning horizon. The model is
formulated as a nonlinear combinatorial optimization problem,
where decision variables are the sizes and the locations of
distribution and capacitors, subject to constraints on power
balance of three phase unbalanced network, bus voltage limits,
and thermal loading of distribution transformers and feeders.
This combinatorial optimization problem can be efficiently
solved by Particle Swarm Optimization (PSO). The obtained
solution to this problem can chronologically upgrade the
system by indicating when, where and what size distribution
transformers should be added, and capacitors should be added/
replaced over the planning period. The proposed method was
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tested on a practical 122 bus, 24 kV/400 V distribution system
with analysis and discussion.

The remainder of the paper is organized as follows. RelatedWork
reviews the details of EV load modeling, EV charging strategies,
distribution system planning, and evolutionary algorithms. Electric
Vehicle Model provides the data sources and the procedure used for
the proposed EV load model. In Problem Description, the objective
function and the constraints are formulated. This section also
explains the framework of a three-phase unbalanced power flow
model. In Proposed Sequential Optimization, the proposed
optimization procedure is presented. Case Study details the test
system. Results and Discussion for the test system are given, looking
first at EV load profile simulations, and then considering low-voltage
distribution planning. Conclusion summarizes the main
contribution of the paper.

RELATED WORKS

EV Load Modeling
A variety of methods for EV load modeling have been proposed,
and because the use of EV loads is random in nature, probabilistic
models have been deemed the most suitable way to capture
their uncertainty. Two groups of models can be derived:
analytical techniques and stochastic simulation. The former
represents the system by mathematical models, which are
often simplified for complex systems, and evaluate the
parameters of interest using mathematical solutions. The latter
mimics the random behavior of a real system and estimates
the parameters of interest by a series of experiments (Billinton
and Allan, 1992).

A comprehensive collection of primary and secondary data for
EV usage patterns was reported (Shi Y. et al., 2020). Three main
groups of data set were graphically represented: traveling
characteristics, charging characteristics, and electricity
consumption. The data in the first group included, for
example, single-trip distance daily distance traveled, duration
per trip, number of trips per day, travel start time, and travel
speed in the morning and evening rush hour. Weekly charging
frequency, and charging start time were in the second group. The
last one contained electricity consumption such as charging
duration, travel distance since last charge, battery state of
charge before/after travelling.

The charging patterns of four types of EV were investigated
(Shi Z. et al., 2020): bus, state-financed vehicle taxi private vehicle.
Four random parameters were used inMonte Carlo Simulation to
generate load profiles: initial charging time, charging duration,
daily charging frequency, and initial state of charge. The
simulation results revealed that it was likely that the peak
demand from EVs would coincide with that of the system.
Because personal vehicles accounting for about 80%
contributed to the system demand, coordinated charging
would be necessary in the future for the system operator to
maintain system reliability and stability.

The article by (Crozier et al., 2021) sought to detect diversity
more accurately in individual consumer behavior for a better
and more accurate estimates of charging loads. The model

combines readily available travel survey data with high-
resolution data from an EV trial, using clustering and
conditional probabilities. It was shown that peak demand
could be 50% overestimated compared to existing methods,
indicating reinforcements in the distribution system could be
deferred. The result emphasized the importance of using locally
representative vehicle usage data but doing so came with a cost of
collection.

To be specific, some rules for EV charging were established
with stochastic parameters. The most common parameters are
the initial and final charging times. Additional conditions may
also be considered; for example, charging will occur as soon as
EVs reach homes, offices or destinations. In addition, there can be
more complex conditions, such as the amount of remaining
energy enough for the journey or the shortest distance to the
nearest charging location.

EV Charging Strategies
Although there have been numerous academic documents on EV
charging strategies with different techniques, the purpose of those
works was to minimize the effects of increased loads from EVs.
For example, smart charging was introduced by (Crozier et al.,
2020) to mitigate the impact of EVs on transmission and
distribution systems using a conditional probability-based
method to model uncontrolled charging demand, and convex
optimization to model smart charging. Test results with Great
Britain’s power system highlighted the importance of smart
charging strategies that could eliminate the need for additional
generation infrastructure even with 100% EV adoption. Without
smart charging, the existing distribution networks would have
required a 28% upgrade for uncontrollable charging compared to
only 9% for smart charging.

Two different management strategies were suggested in
(Solanke et al., 2020) for load management to mitigate the
impact of EVs and renewable energy integration: decentralized
and centralized charging. The former was simpler and more
straightforward for reducing variability and stability issues but
requires the accuracy of the EV travel pattern. The latter,
although more complex in computation and less customer-
stratified, reduces load variance, voltage variations and power
losses. It was found that centralized coordination was more
compelling in solving EV integration issues and renewables
could help improve the hosting capacity of EVs and reduce
power losses.

Several controlled charging–discharging techniques were
thoroughly discussed in detail in (Borray et al., 2021),
classified as a controlled charge–discharge method, intelligent
charging–discharging method, bi-directional charge–discharge
method, and multistage hierarchical controlled
charge–discharge method. The performance for each method
was dictated by the system performance described in forms of
overloading, deteriorating power quality and power loss. Among
these methods. multistage hierarchical controlled
charging–discharging outperformed the others and could be
applied to future V2G integration, which could help to avoid
excessive charging costs, improve power quality, and enhance the
power factor.
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Day-ahead EV scheduling in low voltage networks was
another form of controllable charging for cost minimization
subject to a linearized power flow constraint (Hussain et al.,
2021). Mobility behaviors such as daily trip distances, arrival and
departure times were considered and represented by probability
distributions. These stochastic parameters were used to hedge
risks against the cost of charging, network overloading, voltage
violation, and charging reliability. A test on an LV network
stressed the impact of uncertainty addressing aspects of risk
throughout optimization process. To be specific, coming up
with a lot of conservative estimates of initial battery charge
levels would increase the reliability and technical feasibility of
optimized schedules.

A Linear Programming (LP)-based optimization method for
a decentralized charging was described in (Sun et al., 2020). A
combination of photovoltaic and EV batteries was served as an
extra resource for voltage regulation. A bilevel optimization was
formulated, subject to a constraint on an energy balance of
connected EVs. A new energy-bound model was proposed, in
which the optimization process aimed to maximize power
delivered to all EVs for a given period while minimizing
their charging rate. The voltage and feeder loading
constraints were satisfied by a network sensitivity analysis
technique. The simulation test from a real LV feeder
demonstrated the effectiveness of the charging strategy for
energy planning studies.

From loadmanagement point of view, great attention has been
paid towards coordinate charging that plays a vital role in
addressing the issue of thermal loading and voltage violation.
The proper strategy to manage EV loads is coordinated (or smart)
charging in both central and distributed patterns. That is, their
efforts are to improve the load factor, which resulted in greater
utilization of existing assets and delay investment in the power
system.

Distribution System Planning
A different number of methodologies for solving traditional
distribution planning have been proposed in the literature.
Wide adoption of EVs has changed the traditional way of
distribution expansion planning, and new models and
strategies to address this problem needs to be developed to
obtain proper system reinforcement options. For example, the
most recent, comprehensive review was given in (Abdi-Siab and
Lesani, 2020). This paper presented a bilevel model with different
objective functions for distribution expansion planning with
plug-in EVs. The upper-level model considered the total
annual investment costs plus the expected annual production
and maintenance costs. The lower problem tried to minimize the
cost of energy purchased from the main grid to arrive at the daily
optimal schedule. By using primal-dual formulation, this bilevel
optimization was recast as a Mixed-Integer Linear Programming
problem, which was efficiently solved by standard solvers. The
test results of a 24-node distribution system showed that the
proposed smart charging strategy provided lower investment
costs than a dump charging strategy. In addition, the two-tier
problems provided a better optimal solution than that obtained
from the original problem when it was separately solved.

An integrated expansion planning framework was formulated
as a mixed-purpose nonlinear programming (Fan et al., 2020).
The objective function was to minimize the net present value of
the investment subject to feeder routing, substation alterations
and construction while maximizing the utilization of proposed
charging stations. To account for the uncertainties of distributed
generation like wind and solar and load like charging demand of
EVs, Two-Stage Stochastic Programming was employed and
solved by a Multiobjective Tchebycheff Decomposition-Based
Evolutionary Algorithm. A test on a modified 54 bus
distribution network and 25 transportation node system
showed the main strength of the framework that could handle
the uncertainty for some parameters. However, the effectiveness
of the method heavily relied on large historical databases of load
and weather data at small temporal resolution, together with
distribution system and traffic flow information.

A distribution expansion planning problem was solved by an
adaptive robust optimization approach (Baringo et al., 2020). The
objective function was to minimize the sum of both investment
and operation costs. The decision variables involved the
construction of renewable generating units, storage units, and
charging stations for EVs. The problem was reformulated into
two-stage stochastic models, where the uncertainty parameters
could be incorporated. The short-term uncertainty included the
demand, the production of stochastic units, and the price of
electricity while the long-term uncertainty involved the future
peak demands, the future value of electricity exchanged with the
transmission grid, and the number of EVs. A case study based on
a 69-node distribution network revealed the effectiveness of this
technique. Because the problem was a stage-wise treatment,
relationship between decision variables in the optimal solution
could be revealed such as the revenues from selling electricity to
the EVs, the degree of independence from the transmission
system, and the role played by the investment budget availability.

From the aforementioned literature review, the distribution
system planning problem is normally established by single-or
multi-stage optimization models over a fixed time horizon and
solved, given specific assumptions, with the aid of heuristic
approaches or traditional optimization techniques. The
objective function is usually minimization of one or more cost
terms related to capital investments, energy losses, reliability and
operation and maintenance, whilst constraints on thermal and
voltage limits, full connectivity and radial configuration, as well as
individual equipment capabilities define the feasible solution
space. Because network reinforcement in LV networks can be
achieved with shorter lead time than in MV networks, and some
of the assumptions especially the number of EVs would not be
valid as expected when time elapses. Therefore, sequential
planning would be more attractive and reduce risk of
uncertainty for overinvestment or underinvestment.

Evolutionary Algorithms
Because solving for optimal solutions in distribution planning
problems involves a mixed integer optimization, which can be
solved by heuristic approaches or conventional optimization
techniques, numerous conventional techniques have been
designed to solve a wide range of optimization problems, such
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as Linear Programming, Integer Programing, Nonlinear
Programming. However, when applied to real world problems,
they may suffer frommany problems such as: difficulties to find a
global solution; risk of divergence; difficulties in handling
constraints, requirement of first or second order derivatives
(Gavrilas, 2010). To overcome these drawbacks, metaheuristic
techniques have been evolved and developed to arrive at a good
solution, primarily using searching strategies in forms of
exchange values of decision variables in systematic or random
fashion (Winston and Venkataramanan, 2002). Such intelligent
searching strategies play a vital role and can be based on
evolutionary principles.

Particle Swarm Optimization (PSO) is an example of efficient
searching techniques and was originally introduced by Ebarhart
and Kennedy in 1995 (Lazinica, 2009). Since then, it has been
successfully applied in many research and application areas
including power systems. PSO is a population-based search
algorithm that originally intended to simulate the movement
of social behavior of organisms in a bird flock. Each individual
within the swarm is represented by a vector in multidimensional
search space. The movement of these particles in the search-
space is given by simple mathematical formula over the
particle’s position and velocity. Each particle’s movement is
influenced by its local best-known position and guided toward
the global best-known positions in the search-space. This
updated position is expected to move the swarm toward the
best solutions.

Optimizing the charging and discharging behaviors of EVs
with security and economy issues of the grid operation was
addressed in (Yang et al., 2014). Solved by an Improved
Particle Swarm Optimization (IPSO) algorithm based on
genetic variation and simulated annealing, the EV charging
model included optimal power flow, statistic characteristics of
EVs, EV owners’ degree of satisfaction, and the power grid cost.
The performance of the proposed charging strategy was
illustrated by a 10-bus distribution system. Some interesting
results were presented: significance in operational cost
reduction, decrease in the gap between peak-to-valley
difference, active power loss reduction and less frequencies for
adjustment of the on-load tap change. It was also claimed that
better performance on the global search capability was
successfully obtained.

Firefly algorithm is another swarm-based metaheuristic
algorithm with a random search mechanism and was
introduced by (Yang, 2008). The algorithm mimics how
fireflies interact using their flashing lights. The movement of
the solution is dependent on 1) the attractiveness directly
proportional to its brightness, or light intensity, that decreases
through distance based on inverse square law, 2) the step length of
the local search, and 3) the random vector of appropriate
dimension randomly generated from a uniform distribution.
Because the search quality heavily relies on parameter setting,
there have been different modified versions to improve
performance. Described in (Tilahun et al., 2019), continuous
optimization problems were reviewed with a critical analysis
and modifications with a comparative study forty benchmark
problems with different dimensions based on ten base functions.

In (Hamed et at., 2018), a hybrid method called FAPSOTVAC
(a combination of Firefly Algorithm and Time Varying
Acceleration based Particle Swarm Optimization) was
proposed to solve dynamic economic dispatch problem to
minimize the total fuel cost considering all practical
constraints. It was an extension of static economic dispatch by
including highly complex and nonlinear constraints of generating
units such as valve point effect, prohibited zones, ramp rate limits
and total power losses. The robustness of the proposed hybrid
method was validated on power systems with 10 and 30
generating units. The simulation results proved the efficiency
of the FAPSOTVAC in terms of solution quality and convergence
characteristics.

Proposed by Holland (Holland, 1975), an evolutionary
algorithm solves problems by employing processes that mimic
biological evolution, such as reproduction, mutation and
recombination (Cognizant, 2020). Genetic Algorithm (GA) is a
well-known example of this Darwinian-like natural selection
process and is based on the principle that stronger candidate
solutions with high fitness values will survive and become parents
for next generation while weaker ones tend to be eliminated. The
candidate selection will be re-evaluated via the biological
mechanism until an optimal solution has been found.

As automated LV network planning based on a GA was
developed (Wruk et al., 2021) to yield the optimal
reinforcement strategy with a minimum sum of the capital
and operational expenditures. Such costs were caused by
additional lines, substation upgrades and line voltage
regulators. The simulation tested on Norwegian low voltage
networks with different penetration rates of EVs of the status
quo EV mix in Norway in 2018 indicated that the further
integration of electric mobility in rural networks would lead to
transformer overloads and voltage constraints.

The above examples of algorithms use different searching
mechanisms with different levels of exploration and
exploitation. Given the fact that no single search algorithm
can fit all problems, combining two or more algorithms can
improve solution quality or computation efficiency.
Hybridization is an attractive option for a particular problem
and also offers another research area that has been studied
extensively, with the primary objective to compensate for the
weaknesses of one algorithm by the strengths of the others.

ELECTRIC VEHICLE MODEL

It was reported in (IEA, 2020) that about 80–90% of EV drivers
tended to charge their cars at their residence in the evening or late
at night because of convenience and cost efficiency whereas the
rest (10–20%) charged their EVs at workplaces, shopping malls,
charging stations. The main advantage of home charging is cost
savings over the course of a year and the associated energy
consumption can be less than using an air conditioner (Office
of Energy Efficiency and Renewable Energy, 2020). Electric
vehicle supply equipment (EVSE) level 1 and level 2 are
commonly used for EVs with on-board devices that convert
alternating current (AC) to direct current (DC) for batteries
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(Weston, 2016). Level 1 is for overnight or all-day charging at
work (8–10 h) using a standard house plug. Level 2 chargers are
generally the preferred option for home and workplace
installations and suitable in public locations where cars mostly
park for one or more hours, which lets EV owners top up their
charge while shopping or working. Level 2 charging uses a
dedicated circuit like those used for washing machines and
clothes driers. In both cases, single-phase home charging of
EVs can cause unbalanced loads and may cause the violation
of bus voltage and transformer and feeder loading.

EV load profiles of interest are those of home charging. To
simulate a load profile with a resolution of half-hour resulting
from home charging, an activity-based Monte Carlo Simulation
algorithm was developed to capture the random behavior of each
EV. It is assumed that 90% of EV users are charged every day at
their residential areas after returning from work, and the other
10% are charged at their workplaces. Two types of data set are
required. The deterministic data consist of the number of EVs,
their energy consumption (0.2368 kWh/km) (KMUTT and
MTEC, 2015), and hourly average vehicle speed (Longdo,
2016). The following probabilistic parameters obtained from
surveys, research report and literature include number of daily

trips [National Household Travel Survey of United States
(Federal Highway Administration, 2017)], travel distance per
trip (KMUTNB, 2020), size of EV batteries [Electric Vehicle
Association of Thailand, 2020 (EVAT, 2020)], time to arrive
home (Leou et al., 2014), and time to leave home (Leou et al.,
2014).

Figure 1A shows the hourly average vehicle speed over time
used to analyze arrival time at home and departure time from the
office. Lower speeds have been observed in daytime while car
drivers are able to pick up higher speeds in nighttime. Morning
and evening rush hours occupy the lowest speeds during the day.
The hourly average speed parameter is used to calculate arrival
time at and the departure time from workplaces, in conjunction
with random parameters of departure time from home, arrival
times at home and travel distance per trip. Most people take two
trips in a day accounting for almost 30%, as shown in Figure 1B.
The distance traveled per trip is quite spread, ranging from 1 to
60 km (Figure 1C) and a journey below 20 km is most likely for
Bangkokians. Given the information registered at Department of
Land Transport, the Thailand EV market has seen a most used
battery size of 44.5 kWh (Figure 1D), followed by 11.8 and
80 kWh respectively. The frequency distributions of departure

FIGURE 1 | Data sets used in Monte Carlo-based load profile simulation.
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time from home (Figure 1E) and arrival time at home
(Figure 1F) can be expected as people tend to leave their
homes for work relatively concentrated between 3.00 and 8.00
am. while returning to their homes with a wide range of time but
most likely between 5.00 and 7.00 pm.

The simulation of uncontrollable charging is straightforward.
That is, as soon as EV owners have arrived home, their cars can
start recharging. In such a case, the system allows every EV car to
have an equal opportunity to access the grid and obviously can
turn stressful if there are many EVs being charged
simultaneously. Therefore, limiting the amount of power that
users can consume at the same time and allocating a time slot for
each car to be charged at different times offer an attractive
alternative to uncontrollable charging. This allocation process
is called smart charging with direct control. Its simulation
requires a predefined upper limit that the total load cannot
exceed. This upper limit can be set, for example, as a
percentage of the distribution transformer (e.g., 80% of kVA
rating).

The principle of the smart charging algorithm follows that of
the uncontrollable charging model with a new added stage for EV
allocation process in each period of half hour. In each period, the
number of EVs that need recharging is compared with available
charging slots. If their total demand is less than or equal to the
available capacity, every EV is allowed to access the grid. On the
other hand, if it is not the case, the criterion of “First Out First in”
previously described is adopted based on the concept from My
Electricity Avenue (Quiros-Tortos et al., 2018). “First Out”
indicate that customers with higher charging times (assuming
that they already have a high SoC) will be disconnected before
those with lower ones.

For example, in a timeslot, the first EV has been charged for
3 h and the second EV for only 1 h. If there is the third EV that has
come in and never been charged before, it will take over the first
EV position. On the other hand, higher priority is given to those
with lower previous charging durations for reconnection. As an
example, in a timeslot where there are first and fourth EVs, having
been waiting for 3 and 2 h respectively for reconnection, the
algorithm will place the first EV in this timeslot. Note, however,
that if there is a newcomer from, say, the fifth EV that has never
been charged before and there is only one time slot available in
this period, the fifth will have a higher priority over the first.
Because of the priority of newcomers, there may be a case that
they have higher SoCs than the existing cars. Let assume that the
system can accommodate only one EV at any time slot of half
hour. if an EV (called EV1) having been charged for 2 h has a SoC
of 40%, and another EV (called EV2) arrives with an SoC of 60%,
EV2 will be given a priority and allowed to charge its battery. At
this stage, the SoCs of the two EVs does not follow our established
assumption. Therefore, the developed algorithm has added a
remedial action by only allowing EV2 being charged for 2 h
before being disconnected. EV1 will occupy the place for the next
half hour before being taken over by EV2 again for the next time
slot. Both cars will be alternately charged until their batteries are
full or either of them leave home for next day.With this process, it
is likely that both cars will have their batteries full before their
journeys.

Because peak demands play an important role in distribution
planning, of interest is an EV representative peak load profile for
1 day with 48 half hours (48 time slots) in each planning year. The
simulation procedure to obtain the peak demand in each period is
given by the following steps:

Step 1: Set year � 1.
Step 2: Obtain deterministic input data (e.g., maximum

number of EVs (Max no. EV), maximum number
of iterations (Max Iterations), energy consumption,
hourly average car speed and stochastic input
data (e.g., number of daily trips, travel distance
per trip), and define charging management
scheme (e.g., uncontrollable charging or smart
charging).

Step 3: Set iteration � 1.
Step 4: Generate uniform random numbers to obtain the

five stochastic parameters of each EV.
Step 5: Determine the status of each EV in each time slot.
Step 6: If an EV in any time slot is running, calculate energy

consumption and its remaining SoC. If the EV is
parking, check whether its SoC is not full; flag this
EV for the need of recharging.

Step 7: Perform recharging for each EV according to one of
the charging management schemes (uncontrollable
or smart)

Step 8: Combine all one half-hourly load profiles for 5
consecutive weekdays of all EVs to obtain an
aggregated one half-hourly load profile for 5
consecutive weekdays.

Step 9: Compare the peak demand in each half hour among
five weekdays (Monday to Friday equivalent to
240 time slots) to find the one with the highest
power demand in each half hour, giving an
aggregated one half-hourly load profile for one
weekday.

Step 10: Set iteration � iteration +1; and repeat Steps 3–10.
Step 11: If iteration � Max iteration (e.g., 100), compare the

peak demand in each half hour among each
iteration to find the one with the highest power
demand in each half hour. This eventually gives the
one half-hourly load profile for one weekday that
represents the worst possible scenario of this year
(that is year 1). The final half-hourly load profile will
be used in the optimization process for low-voltage
distribution planning.

Step 12: Set year � year +1; repeat Steps 2–12 or stop if the final
planning year has been reached.The comprehensively
detailed algorithm for load profile simulation by
Monte Carlo is shown in Figure 2.

PROBLEM DESCRIPTION

Objective Function
Given a system configuration of year q and the corresponding
load profile obtained by the procedure in Electric Vehicle Model,
the objective function is given by
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FIGURE 2 | Detail of activity-based EV load profile simulation.
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Minimize TC � ∑
q�Np

⎧⎨⎩zTR, q(CTR.Eq + CTR.Ins) + ∑
i∈Nb

(zC.Ins,qi (CC.Eq

+ CC.Ins) + zC.De,qi CC.De) + ⎡⎢⎢⎣CE ×⎛⎝Pabc,q
TR

− ∑
i∈Nb

Pabc,q
load,i

⎞⎠⎤⎥⎥⎦⎫⎬⎭,

(1)

CC.Eq � Cost of capacitors, $
CC.De � Cost of capacitor demolition, $
CC.Ins � Cost of capacitor installation, $
CTR.Eq � Cost of distribution transformers, $
CTR.Ins � Cost of distribution transformer installation, $
CE � Volume-weighted average cost of energy, $
Np � Planning period, years
Pabc,q
load,i � Demand power of each phase (a, b, c) of bus i in

year q, kW
Pabc,q
TR � Power imported by distribution transformers in

year q, kW
TCq � Total cost in year q, $
zC,qi � Binary decision on capacitor installation in year q, (0/1)
zC.De,qi � Binary decision on capacitor demolition in year q,
(0/1)
zTR,q � Binary decision on distribution transformer installation
in year q, (0/1)

The objective function in Eq. 1 combines the annual cost of
equipment (distribution transformers and capacitors), the annual
cost of equipment installation, the annual cost of equipment
demolition and the annual cost of energy loss.

Constraints
The above objective function is subject to the following
constraints.

Distribution transformer loading

Stri ≤ S
tr, max
i i ∈ {1, 2, 3, . . . ,Ntr}. (2)

Voltage magnitude at bus

Vρ,min ≤Vρ
i ≤V

ρ,max i ∈ {1, 2, 3, . . . ,Nb}. (3)

Current limit in feeders∣∣∣∣∣Iρg ∣∣∣∣∣≤ Iρ,max g ∈ {1, 2, 3, . . . ,Nl}. (4)

Three phase power balance, which will be described in Eqs 5, 6
where

Stri � kVA loading of distribution transformer i
Str, max
i � kVA rating of distribution transformer i
ρ � Phase index, which is {a, b, c}
Vρ
i � Voltage magnitude of phase ρ at bus i

Vρ,min
i � Lower bound of voltage magnitude of phase ρ at bus i

Vρ,max
i �Upper bound of voltage magnitude of phase ρ at bus i

Iρg � Current flow of phase ρ in feeder g
Iρ,max � Conductor rating of phase ρ
Ntr � Number of distribution transformers
Nb � Number of buses
Nl � Number of feeders

Transformer loading in kVA must be less than the kVA
rating of the distribution transformer given in Eq. 2. Voltage
magnitude at each bus is limited by Eq. 3 and current flow in
each feeder in the system cannot exceed the feeder rating,
given in Eq. 4.

Three Phase Unbalanced Power Flow
Equations 2–4 are verified by a three phase unbalanced power
flow calculation. Because loads in distribution systems are mostly
of the single-phase type fed from single-phase feeders and the
systems exhibits a high degree of unbalance and need to be
analyzed by three phase power flow. Figure 3 shows a generic
three-phase diagram of a distribution line connected between
buses k and m and the equivalent circuit of a distribution line in
an unbalance three-phase system. The parameters Ra, Rb and Rc

represent line resistance, La, Lb and Ld self inductance and Lab, Lbc
and Lca mutual inductance. In the three-phase power flow
analysis, both buses have two variables: current injection and
bus voltage in each phase.

The equation of active power and reaction power injected at
bus k and bus m from Figure 3 can be derived from the following
complex power expression in Eq. 5 (Acha et al., 2004).

[ Sabck

Sabcm

] � [Pabc
k + jQabc

k

Pabc
m + jQabc

m

] � [Vabc
k Iabck

Vabc
m Iabcm

], (5)

where

Sabck , Sabcm � Three phase apparent power at bus k and m
Pabc
k , Pabc

m � Three phase active power at bus k and m
Qabc

k ,Qabc
m � Three phase reactive power at bus k and m

Vabc
k ,Vabc

m � Three phase voltage at bus k and m
Iabck , Iabcm � Three phase current at bus k and m

Equation 5 represents the apparent power balance between
supply and demand for all the three phases of each bus and
can be separated as Eq. 6 for the real part known as active

FIGURE 3 | Three phase power distribution system.
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power and as Eq. 7 for the imaginary part known as
reactive power.

The two separate equations for the active power and the
reactive power being injected into phases a, b and c at bus k
are derived by

Pρ
k � Vρ

k

⎧⎪⎨⎪⎩ ∑
i�k,m

∑
j�a,b,c

Vj
i[Gρj

ki cos(θρk − θji) + Bρj
ki sin(θρk − θji)]⎫⎪⎬⎪⎭

i � {1, 2, . . . ,Nb}, (6)

Qρ
k � Vρ

k

⎧⎪⎨⎪⎩ ∑
i�k,m

∑
j�a,b,c

Vj
i[Gρj

ki sin(θρk − θji) − Bρj
ki cos(θρk − θji)]⎫⎪⎬⎪⎭

i � {1, 2, . . . , Nb}, (7)

where

i � Bus index, which is {k, m}
ρ, j � Phase index, which is {a, b, c}
Pρ
k ,Q

ρ
k � Active power and reactive power of phase ρ at bus k

Vρ
k � Voltage magnitude of phase ρ at bus k

Vj
i � Voltage magnitude of phase j at bus i

Gρj
ki � Conductance between phase ρ of bus k and phase j bus i

Bρj
ki � Susceptance between phase ρ of bus k and phase j bus i

θρk � Voltage angle of phase ρ at bus k
θji � Voltage angle of phase j at bus i
Nb � Number of buses

The problem of unbalanced three-phase power flow can
be linearized and solved using the method of iterative
Newton-Raphson. The power, the mismatch, and the
variable become a vector with a size of 3 × 1 and the
value in Jacobian will become a matrix of 3 × 3,
calculated from Eq. 8, the left-hand side of which
represents the mismatch vector of active and reactive
powers and the right one is the correction vector of
phase voltage and magnitude voltage. In each
iteration, the Jacobian matrix and the mismatch vector
are updated, and the process is repeated until the value of
the mismatch vectors is less than a given tolerance (e.g.,
0.001).

[ ΔPρ
l

ΔQρ
l
](h)

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
zPρ

l

zθρj

zPρ
l

zVρ
j
Vρ

j

zQρ
l

zθρj

zQρ
l

zVρ
j
Vρ

j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(h)

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δθρj
ΔVρ

j

Vρ
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(h)

, (8)

where

l, j � Bus index, which is {k,m}
h � number of iterations

The mismatch vector of active and reactive powers takes the
following form:

ΔPρ
l � [ΔPa

k ΔPb
k ΔPc

k ΔPa
m ΔPb

m ΔPc
m]T (9)

ΔQρ
l � [ΔQa

k ΔQb
k ΔQc

k ΔQa
m ΔQb

m ΔQc
m]T . (10)

The correction vector of phase voltage and magnitude voltage
takes the following form:

Δθρl � [Δθak Δθbk Δθck Δθam Δθbm Δθcm]T (11)

ΔVρ
j

Vρ
j

� [ΔVa
k

Va
k

ΔVb
k

Vb
k

ΔVc
k

Vc
k

ΔVa
m

Va
m

ΔVb
m

Vb
m

ΔVc
m

Vc
m

]T

. (12)

The elements in the Jacobian matrix of Eq. 8 are calculated by
taking the partial derivative of Eqs 6, 7 respect to the state
variables of phase voltage, Δθρl , and magnitude voltage, ΔVρ

j .
They are mathematically given

zPρ
l

zθρj
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zPa
l

zθaj

zPa
l

zθbj

zPa
l

zθcj

zPb
l

zθaj

zPb
l

zθbj

zPb
l

zθcj

zPc
l

zθaj

zPc
l

zθbj

zPc
l

zθcj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

zPρ
l

zVρ
j

Vρ
j �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zPa
l

zVa
j

Va
j

zPa
l

zVb
j

Vb
j

zPa
l

zVc
j

Vc
j

zPb
l

zVa
j

Va
j

zPb
l

zVb
j

Vb
j

zPb
l

zVc
j

Vc
j

zPc
l

zVa
j

Va
j

zPc
l

zVb
j

Vb
j

zPc
l

zVc
j

Vc
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

zQρ
l

zθρj
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zQa
l

zθaj

zQa
l

zθbj

zQa
l

zθcj

zQb
l

zθaj

zQb
l

zθbj

zQb
l

zθcj

zQc
l

zθaj

zQc
l

zθbj

zQc
l

zθcj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

zQρ
l

zVρ
j

Vρ
j �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zQa
l

zVa
j

Va
j

zQa
l

zVb
j

Vb
j

zQa
l

zVc
j

Vc
j

zQb
l

zVa
j

Va
j

zQb
l

zVb
j

Vb
j

zQb
l

zVc
j

Vc
j

zQc
l

zVa
j

Va
j

zQc
l

zVb
j

Vb
j

zQc
l

zVc
j

Vc
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

The initial conditions for the voltage angle of phases a, b and c
are assigned as 0, −2π

3 and −2π
3 respectively.

Iρg � (Vρ
k,g − Vρ

i,g)yρki,g , (17)

where

yρki,g � Line admittance phase ρ between bus k and bus i of line g
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PROPOSED SEQUENTIAL OPTIMIZATION

The objective function and constraints described in Problem
Description can be minimized and satisfied by two main
resources: capacitors and distribution transformers. The use of
capacitors is one common method to solve the voltage drop
problem (i.e., customer voltage level must stay with the limits
given by Eq. 3. For capacitor installation planning, the number of
capacitors, their positions and sizes need to be determined. It is
possible that the capacitors that were installed in previous years is
demolished if placing new capacitors in the current year reduces
the overall system cost.

Alleviating the effects of transformer and feeder overloading
can only be achieved by adding new distribution transformers;
that is, Eqs 2, 4 must be satisfied. Note that adding a new
distribution transformer indirectly helps improve voltage
profiles of customer load points because the original network
is broken into shortened subnetworks. The question is: at what
time will these new distribution transformers be added to the
system with the identification of their optimal locations and sizes?
Unlike capacitors, new distribution transformers are much more

expensive and therefore after having been installed, they will
continue to be used for many years. Hence, the planning of this
stage involves comparison between the costs associated with
acquiring new transformers and their installation, and the cost
of energy loss after the year of installation onwards. The
combination between the capacitor and distribution
transformer problems, where the decision variables are integer
variables, can be efficiently solved by a Particle Swarm
Optimization (PSO) algorithm. As already discussed, PSO is a
metaheuristic that can find a near optimal or optimal solution
from search spaces of candidate solutions. PSO is attractive in
that it does not use the gradient, which means it does not require
that the optimization problem be differentiable as is required by
classic optimization methods. Furthermore, it is computationally
efficient from real coding.

For the optimization problem given in Problem Description,
each particle swarm represents the size of distribution
transformers and their positions in the distribution
transformer subproblem and the size of capacitors and their
positions in the capacitor subproblem. The fitness value of
particle is evaluated to determine the best position of each

FIGURE 4 | Proposed optimization procedure for capacitor and distribution transformer subproblems.
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particle and also the best position explored so far (Abido, 2002).
The velocities of all particles are updated from the current
iteration to the next iteration by an inertia weight (e.g., w �
0.9) and two learning factors (e.g., c1 � 2, c2 � 2). During the
iteration process, the unbalance three-phase power flow
algorithm is performed to obtain the system bus voltage and
the energy loss. The objective function of each particle swarm is
calculated with consideration of the constraint functions (Eqs
2–4, 6, 7). If there is any violation of one of the constraints, a
penalty (e.g., a large positive number) will be applied.

The optimization procedure for capacitor and distribution
transformer subproblems, which are given in detail in Figure 4, is
of the following three cases:

Case 1: If the voltage constraint of all buses is satisfied, do the
following steps:

a) Calculate the cost of energy loss;
b) Perform the PSO algorithm to obtain the sizes and locations

of capacitors and then calculate the sum of the installation
cost of capacitors and the cost of energy loss;

c) Compare the total cost of (a) and (b) and choose the lower
one as an optimal solution.

Case 2: If the voltage constraint is violated on any buses, and
the system peak load is less than or equal to a percentage of a
distribution transformer rating (e.g., 80%), do the following
steps:

d) Perform the PSO algorithm based on the original
network to obtain the sizes and locations of
capacitors and then calculate the sum of the
installation cost of capacitors, the cost of energy loss
and the cost of demolition for the capacitors installed in
the previous years.

e) Perform the PSO algorithm based on the resulting
network of (c) of Case 1 to obtain the sizes and
locations of capacitors and then calculate the sum of
the installation cost and the cost of energy loss.

f) Compare the total cost of (d) and (e) and choose the
lower one as an optimal solution.

Case 3: If the voltage constraint is violated on any buses and
the system peak load is greater than a percentage of the
distribution transformer rating, do the following steps:

g) Perform the PSO algorithm based on the original
network to obtain the sizes and locations of
distribution transformers and then calculate the sum
of the installation cost of transformers, the cost of
energy loss, and the cost of demolition of the
capacitors installed in the previous years.

h) Perform the PSO algorithm based on the resulting
network of (f) of Case 2 to obtain the sizes and
locations of capacitors and then calculate the sum of
installation cost and the cost of energy loss.

i) Compare the total cost of (g) and (h) and choose the
lower one as an optimal solution.

CASE STUDY

The practical low-voltage distribution system used for testing the
proposed optimization algorithm consists of 122 buses (or load
points) supplied by a distribution transformer of 500 kVA with a
power factor of 0.9. This system with 13 feeders is supplied from a
24 kV/400 V distribution transformer located at bus 1. There are
in total 120 customers (or 120 load points) connected to the buses
shown in the single line diagram of Figure 5. In each year over a
10-years planning horizon, it is assumed that 6 EV loads will be
coming into the system at six different buses; Therefore, there are
a total of 60 EVs to be added to the following 60 buses over the
course of the planning period: 4, 5, 6, 7, 10, 13, 17, 18, 19, 21, 23,
24, 25, 26, 28, 29, 32, 33, 38, 39, 40, 41, 45, 46, 47, 50, 52, 53, 54, 55,
56, 60, 65, 67, 68, 75, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 93, 94,
100, 103, 104, 105, 106, 109, 112, 113, 116, 117, 119 and 120. Each
EV has a charging power of 3.7 kW with different sizes of kWh as
given by Figure 1D.

The system base voltage and power are 240 V and 500 kVA,
respectively. The impedance of the feeders is 0.342 + j0.0854Ω/
km and the shunt capacitances of the feeders are neglected. The
upper and lower bounds of bus voltage magnitude are 0.95 and
1.05 per unit respectively. The ampere feeder loading is limited at
400 A. Obtained from a power flow result, the initial energy loss
of the system is 136.17 kWh/day. With the volume-weighted
average cost of energy is at 2.84 Baht/kWh (approximately
0.094 $/kWh) of the wholesale electricity market, the total cost
of loss is 12.86 $/day or about 4,696 $/year.

Table 1 shows the available size and price of capacitors with
associated installation costs. The wage for capacitor installation
and demolition is assumed the same. The available size and price
of distribution transformers for new installation are shown in
Table 2.

RESULTS AND DISCUSSION

EV Load Profile Simulation
It is assumed that a 48-half-hourly load profile of each of the
individual households for weekdays remains the same over
10 years. The accumulated half-hourly load curve of 120
customers without EVs seen by the transformer located at bus
1 has a total daily energy consumption of 317 kW, 6001.42 kWh.
Monte Carlo Simulations of 1,000 iterations for each year were
performed using the data in Figure 1 and the algorithm in
Figure 2 to generate a representative of half-hourly load
curve, which would be added to the yearly base load curve to
form the yearly total load.

Figure 6 shows ten representative daily load curves for
uncontrollable charging. Each of the curves represents the
worst scenario of peak load in each year. The system load
keeps increasing because new 6 EVs are added annually. The
maximum load in the first year is about 333 kW, while that in the
last year is about 444 kW. Note that the load profiles between
8.00–10.00 a.m. over the 10 years of Figure 6 are not changed
because during these periods, people tend to charge their batteries
at workplaces and therefore these amounts of loads were not
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included in the household load profiles. The load factor
gradually decreases from 0.793 in the first year to 0.733 in
the final year.

Figure 7 shows a simulation of the total system load of the
smart charging with direct control. It is obviously seen that the
maximum load in the system can be kept below 360 kW,
especially during late evening. The smart charging with direct

control increases the percentage utilization of distribution
transformers, while the final SoCs of all the EVs remain the
same as for both uncontrollable and smart charging. The load
factor rises from 0.793 in the first year to 0.862 in the last. The
smart charging managed to control sequence of charging
developed algorithm of Figure 2 can lead to better utilization
of existing networks, thus being able to accommodate a high

FIGURE 5 | Low-voltage distribution system with 122 buses with EV loads.

TABLE 1 | Size, price, installation and demolition cost of three-phase capacitor.

Rating (kVAr) Equipment cost ($) Installation cost ($) Demolition cost ($) Total ($)

2.5 278.61 514.42 514.42 793.02
5.0 368.16 514.42 514.42 882.58
7.5 457.71 514.42 514.42 972.13
10.0 557.21 514.42 514.42 1,071.63
12.5 686.57 514.42 514.42 1,200.99
15.0 786.07 514.42 514.42 1,300.49
20.0 1,084.58 514.42 514.42 1,599.00
25.0 1,323.38 514.42 514.42 1,837.80
30.0 1,601.99 514.42 514.42 2,116.41
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TABLE 2 | Size, price and installation cost of distribution transformer.

Rating (kVA) Equipment cost
($)

Installation cost
($)

Total ($) R (%) X (%)

45 3,698.18 1,402.28 5,100.46 2.73 1.97
75 7,105.01 1,414.42 8,519.43 2.42 2.10
112.5 7,157.10 1,425.24 8,582.34 2.56 3.69
150 15,854.06 1,455.12 17,309.18 1.23 4.00
225 19,424.54 1,511.84 20,936.38 1.19 4.00
300 19,282.26 1,853.27 21,135.52 1.14 4.00
500 24,500.83 2,438.53 26,939.36 1.04 4.00
750 34,228.86 2,439.83 36,668.68 0.94 5.10
1,000 34,351.58 2,439.83 36,791.40 0.89 5.10
1,500 52,371.48 2,440.92 54,812.39 0.83 5.10

FIGURE 6 | Power demand as a function of time for uncontrollable charging over 10 years.

FIGURE 7 | Power demand as a function of time for smart charging with direct control over 10 years.
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penetration of EVs on existing residential networks with little or
no need for upgrading network infrastructure.

Note that the load factor of the load curves in the first 3 years is
the same as that of uncontrollable charging because the peak
demand in the smart charging scenario still stays below 360 kW.
Load shifting is obvious seen in Figure 7 as the smart charging
managed to move energy from evening till midnight to some
periods after midnight. In fact, this system can still host up to
152 EVs from a test run without violating the distribution
transformer rating while the EV users can recharge their
batteries as much as possible, depending on their arrival time
at home. In other words, the total energy of each year between
uncontrollable and smart chargings is the same. The load profiles
in Figures 6, 7 provide very useful information for system
planners for resource optimization in the planning stage to
appropriately respond to increase usage of EVs.

Low-Voltage Distribution System Planning
Four different planning scenarios are of interest, one with existing
planning criteria and the other three are proposed:

1) Uncontrollable charging with conventional planning
(existing), which has long been applied in electric power
utilities in Thailand: According to planning criteria, if the
loading of a distribution transformer exceeds 80% of its rated
capacity, a replacement of the existing transformer with a
larger capacity is required on the same location. With
reference to Figure 6, a 750 kVA transformer (one step
higher size than the existing one) with a specification given
in Table 2 is needed in Year 3 because the system peak load
has exceeded 360 kW during 4–11 pm. In addition, if the
voltage of any customer load points along an LV feeder drops
below 0.95 p.u., a capacitor with an appropriate size shall be
installed at the first load point along that feeder that has a
voltage drop problem. The maximum allowable size of
capacitors to be installed is limited by the voltage upper
bound given in Eq. 3. The process is repeated until the
voltage drop problem for all the downstream customers
from the first load point has been solved.

2) Uncontrollable charging with PSO-based planning for
capacitor and distribution transformer placement: This
scenario is similar to the first one except that instead of
replacing the existing distribution transformer with a lager
one at the same location, a second transformer can be located
at the most suitable location. Its appropriate size and location
of the transformer are identified by the developed PSO. The
PSO also helps to determine the most appropriate location
and the size of capacitors if the system has seen voltage drop.

3) Smart charging with PSO-based planning for capacitor
placement: Because the smart charging is introduced in this
scenario and can keep the system load to stay below the
transformer rating (see Figure 2), installing a new distribution
transformer is not required and only the voltage drop problem
needs to be deal with the PSO.

4) Smart charging with deterministic decision and PSO-based
planning for capacitor and distribution transformer
placement: This last scenario is investigated because energy

loss is involved. Although the smart charging with direct
control can improve the utilization of distribution
transformers, a trade-off analysis between with and without
a new distribution transformer is worthwhile. To be specific, it
is interesting to compare the total cost of one transformer
supplying a long network with two transformers delivering
two or more shorter subnetworks that are separated from the
original one.

The optimal planning schedule over the planning horizon of
10 years for the first two scenarios is shown in Table 3 and for the
others in Table 4. The developed PSO was simulated with 30
iterations and 30 particles in Scenarios 2–4. The analysis and the
discussion of the results of each scenario are given as follows.

In Scenario 1, the system has encountered a voltage drop
problem since the first year, and capacitors were added in Years 1,
2, 4, 7, 8 and 10. The more entry of EV loads, the more capacitors
were required. Because the peak load in the third year surpassed
80% of the transformer rating, the existing transformer was then
replaced by a 750 kVA in the third year with an equipment cost of
$36,668.68. The cumulative total cost was $228,677, about 76% of
which was contributed by the energy loss. The total capacitors of
592.5 kVAr were added into the system with no removal of the
already-installed capacitors.

In Scenario 2, PSO for Volt/Var control helped identify
capacitor and distribution transformer replacement. The
capacitors installed in Year 1 were removed in Year 3 with a
demolition cost of $1,028.84 and a new 225 kVA distribution
transformer was needed at Bus 16 in Year 3. The cumulative total
cost of this scenario was $122,766. Adding the transformer of
225 kVA at Bus 16 in Year 3 broke the existing network into two
subnetworks (designated as subnetworks 11 and 12 in Table 3);
one supplied by the existing transformer and the others by the
new one. As a result, the overall coverage length of the two
subnetworks was shorter. The system has seen capacitors installed
in six different years (i.e., 1, 2, 4, 5, and 6, and 8).

In Scenario 3, transformer addition is unnecessary due to the
implementation of the smart charging with direct control, which
shows the merit of smart charging. Therefore, only installing
capacitors of 645 kVA to mitigate the voltage drop problem was
required in six different years (i.e., 1, 3, 4, 6, 7 and 8), giving the
cumulative total cost of $157,307. It is remarkably interesting to
note that this scenario has a greater total cost than the second
scenarios by $34,540 despite a high utilization of the transformer.

In Scenario 4, which is an extension of Scenario 3 by including
a deterministic decision into the planning period. Table 4 shows
that the insertion of a new transformer of 225 kVA at Bus 16 was
required in Year 5 and two subnetworks were formed. The
capacitors of 90 kVAr installed in Year 1 and of 75 kVAr
installed in Year 5 needed demolition and a new set of
capacitors of 225 kVAr came in Years 6 and 8 for Subnetwork
11. This scenario has a cumulative total cost of $117,562.

Figure 8 shows the cumulative total cost over 10 years for the
four scenarios. Comparing the conventional planning (Scenario
1) with sequential planning (Scenarios 2–4), the cumulative total
cost of each year for Scenario 1 is highest from the first year to the
last. This shows the main advantage of sequential planning. The
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TABLE 3 | Optimal planning schedule for scenarios 1 and 2.

Year Added EV load Scenario* Peak load Sub system Added capacitor Cost
of capacitor
installation

($)

Cost
of capacitor
demolition

($)

Added transformer Cost
of transformer
installation

($)

Energy
loss
($)

Minimum
voltage
(p.u.)

Phase A Phase B Phase C kVA Bus Size
(kVAR)

Bus Size
(kVA)

1 21,54 13,28 83,94 1 388.26 1 115 3 × 15 1,300.49 — — — — 9,295.94 0.9513
2 388.26 1 20 3 × 7.5 972.13 — — — — 7,691.13 0.9558

109 3 × 25 1,837.80
2 41,78 19,39 53,106 1 395.88 1 26 3 × 10 1,071.63 — — — — 9,448.75 0.9556

115 3 × 15 1,300.49
117 3 × 10 1,071.63

2 395.88 1 48 3 × 12.5 1,200.99 — — — — 7,828.91 0.9501
3 60,100 7,113 23,120 1 417.98 1 — — — — 1 750 36,668.68 9,112.33 0.9539

2 320.45 11 — — — — 1 500 20,936.38 4,657.79 0.9546
97.53 12 — — — 1,028.83 16 225 1,984.27 0.9776

4 60,100 7,113 23,120 1 433.48 1 119 3 × 30 2,116.41 — — — — 16,242.64 0.9501
120 3 × 10 1,071.63

2 322.99 11 37 3 × 12.5 1,200.99 — — — — 4,770.98 0.9539
110.49 12 — — — — — 2,422.25 0.974

5 6,24 33,52 46,80 1 435.92 1 — — — — — — — 16,407.35 0.9552
2 325.43 11 6 3 × 15 1,300.49 — — — — 4,974.11 0.9521

27 3 × 12.5 1,200.99 — —

68 3 × 12.5 1,200.99 — —

74 3 × 7.5 972.13 — —

110.49 12 — — — — — — — 2,431.57 0.9725
6 38,104 82,119 29,40 1 451.31 1 — — — — — — — 16,732.09 0.9528

2 337.13 11 75 3 × 12.5 1,200.99 — — — — 5,428.41 0.9511
114.18 12 — — — — — 2,578.32 0.9713

7 47,68 10,105 17,89 1 464.29 1 26 3 × 2.5 739.02 — — — — 21,335.00 0.9505
109 3 × 10 1,071.63 — — — —

2 340.22 11 — — — — — — — 5,645.52 0.9507
124.07 12 — — — — — 2,650.23 0.9739

8 75,112 4,93 103,117 1 472.93 1 25 3 × 25 1,837.80 — — — — 22,532.75 0.9506
47 3 × 10 1,071.63
117 3 × 10 1,071.63

2 347.22 11 50 3 × 7.5 972.13 — — — — 7,973.69 0.9521
54 3 × 12.5 1,200.99 — —

125.71 12 — — — — — 2,857.27 0.9702
9 18,50 45,55 67,109 1 483.54 1 — — — — — — — 25,386.04 0.9505

2 357.38 11 — — — — — — — 8,570.31 0.9532
126.16 12 — — — — — 2,916.51 0.9692

10 32,92 88,116 5,26 1 518.30 1 47 3 × 30 2,116.41 — — — — 27,532.31 0.9502
109 3 × 10 1,071.63
118 3 × 10 1,071.63

2 372.13 11 — — — — — — — 8,963.67 0.9504
146.17 12 — — — — — 3,196.00 0.9652

Scenario*
1. Uncontrollable charging with conventional planning (existing).
2. Uncontrollable charging with PSO-based planning for capacitor and distribution transformer placement.
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TABLE 4 | Optimal planning schedule for scenarios 3 and 4.

Year Added EV load Scenario* Peak load Sub system Added capacitor Cost
of capacitor
installation

($)

Cost
of capacitor
demolition

($)

Added transformer Cost
of transformer
installation

($)

Energy
loss
($)

Minimum
voltage
(p.u.)

Phase A Phase B Phase C kVA Bus Size
(kVAR)

Bus Size
(kVA)

1 21,54 13,28 83,94 3 388.26 1 68 3 × 5 882.58 — — — — 7,380.45 0.9554
112 3 × 30 2,116.41

4 388.26 1 68 3 × 5 882.58 — — — — 7,380.45 0.9554
112 3 × 30 2,116.41

2 41,78 19,39 53,106 3 392.29 1 — — — — — — — 8,083.98 0.9505
4 392.29 1 — — — — — — — 8,083.98 0.9505

3 60,100 7,113 23,120 3 395.89 1 91 3 × 20 1,599.00 — — — — 8,206.64 0.9503
4 395.89 1 91 3 × 20 1,599.00 — — — — 8,206.64 0.9503

4 60,100 7,113 23,120 3 398.82 1 50 3 × 12.5 1200.99 — — — — 8,571.08 0.9507
55 3 × 5 882.58
95 3 × 5 882.58
101 3 × 25 1,837.80

4 398.82 1 50 3 × 12.5 1200.99 — — — — 8,571.08 0.9507
55 3 × 5 882.58
95 3 × 5 882.58
101 3 × 25 1,837.80

5 6,24 33,52 46,80 3 412.72 1 — — — — — — — 10,154.83 0.9501
4 317.76 11 — — — — — — 20,936.38 4,360.72 0.9528

112.42 12 — — — 1,028.84 16 225 1,914.37 0.9798
6 38,104 82,119 29,40 3 412.72 1 110 3 × 10 1,071.63 — — — — 10,154.83 0.9501

4 321.87 11 59 3 × 15 1,300.49 — — — — 5,149.75 0.9523
120.64 12 — — — 1,955.39 0.9729

7 47,68 10,105 17,89 3 412.72 1 99 3 × 7.5 972.13 — — — — 19,631.07 0.9502
107 3 × 25 1,837.80

4 332.15 11 — — — — — — — 5,201.89 0.9516
128.86 12 — — — 2,247.12 0.9725

8 75,112 4,93 103,117 3 412.72 1 20 3 × 30 2,116.41 — — — — 20,618.45 0.9509
33 3 × 20 1,599.00
48 3 × 20 1,599.00

4 336.26 11 13 3 × 25 1,837.80 — — — — 6,519.59 0.9525
29 3 × 15 1,300.49
63 3 × 20 1,599.00

137.08 12 — — — 2,248.65 0.9716
9 18,50 45,55 67,109 3 412.72 1 — — — — — — — 20,817.80 0.9506

4 346.54 11 — — — — — — — 6,620.73 0.9512
141.19 12 — — — 2,259.31 0.9705

10 32,92 88,116 5,26 3 412.72 1 — — — — — — — 21,017.15 0.9502
4 412.72 11 — — — — — — — 6,706.54 0.9509

147.36 12 — — — 2,730.42 0.9634

Scenario*.
3. Smart charging with PSO-based planning for capacitor placement.
4. Smart charging with deterministic decision and PSO-based planning for capacitor and distribution transformer placement.
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figure also reveals that replacing the existing transformer
with a new one with a size of 750 kVA in year 3 sees a jump,
which eventually reaches $228,677 in the final year and
significantly higher than that of Scenario 4. If a size of
1,000 and 1,500 kVA had been selected instead of the
750 kVA, the accumulated total cost would have been
$221,887 and $225,421 respectively. Therefore, a
1,000 kVA transformer would have been a better choice for
the conventional planning concept. However, without the
exact knowledge of EV loads, it would have been difficult to
select an appropriate size of a new distribution transformer as
the costs of transformer replacement and energy losses
became involved in subsequent years after installation.

When comparing Scenarios 3 with 4, the total cumulative cost
of Scenario 3 is lower for the first 6 years, but after that,
continuing doing so seems to be uneconomically justified
because of higher accumulated energy losses originated from
the existing transformer and the feeders. The smart charging with
deterministic decision (Scenario 4) can fix this future blind
problem as a new 225 kVA transformer was added into the
system at bus 16 in the fifth year, at which the total load
surpassed 80% of the transformer kVA rating (i.e., 400 kVA).
This method not only offers a better asset management but also
yields lowest energy losses and give the lowest cumulative total
cost among the four scenarios. It is very interesting to note that
Bus 16 was selected by the PSO to place the new transformers in
Scenarios 2 and 4, implying that this bus is a strategic location
that provides a good balance of the total kW loading and the total
circuit length in each of the two subnetworks.

Without consideration of time values of money (i.e., zero
discount rate) for the sake of simplicity in comparison, the

difference in the cumulative total cost between the
uncontrollable charging of Scenario 1 and the smart charging
of Scenario 4 is $111,116 (about 3,357,121 THB) for this small-
sized LV network. For a moderate- or large-sized distribution
system with tens or hundreds of thousands of LV networks, cost
savings obtained from the proposed optimization model can
become extremely large.

Before the EV loads were gradually entered into the system,
the initial time-dependent bus voltage for some representative
buses located at the end of the feeders is shown in Figure 9A. In
general, two factors influence bus voltage levels: amounts of
loads during the day and bus location. Reduction in voltage
level will be accompanied by a rise in load current level in the
circuit and therefore the bus voltage profiles follow the
household baseload pattern without EVs (see Figure 6). Bus
118 has seen the lowest voltage magnitude because it is furthest
away from the supply point (i.e., Bus 1). Figure 9B confirms
that the planning schedule for the four scenarios can maintain
the bus voltage at the end of feeders above 0.95. Although the
conventional planning in Scenario 1 managed to solve the
voltage drop problem using a point-by-point technique, it
did not attempt to solve a system-wide voltage problem
while succeeding in reactive voltage control for loss
minimization as in the other three PSO-based scenarios.

The convergence report, as illustrative purpose, for Years 5
and 8 of Scenarios 2, 3, and 4, where the PSO was simulated, is
shown in Figure 10. The optimal results in these 2 years could be
found after four iterations. The statistical report for different
simulation runs of the PSO is shown in Table 5. The small
standard deviation compared to the mean of about 1–2% in each
scenario indicates the quality of the optimal solutions.

FIGURE 8 | Yearly cumulative total cost in 122 bus low-voltage distribution system.
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DISCUSSION

Based on the simulation results, integrating optimization over the
planning period has benefited greatly from lower total costs as can
be seen from Scenario 1 when compared with the PSO-based
scenarios. The use of smart charging may not guarantee a lower
total cost than uncontrollable charging (comparison between
Scenarios 2 and 3). The reason is that although the smart
charging with direct control can effectively delay investment in

low-voltage network reinforcement, it is possible that the smart
charging may fail to capture annual higher operating costs in later
years due to the accumulated cost of energy loss (comparison
between Scenarios 3 and 4). The smart charging by direct control
can limit the maximum allowable loading capability of a
distribution transformer and can dissipate the power generated
by EV consumption over time. Doing so significantly improves
the transformer utilization (i.e., better load factor) but causes an
increase in energy loss. To resolve this future blind problem, a

FIGURE 9 | Bus voltage in 122 bus LV distribution system.
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deterministic decision has been introduced considering that in any
year of the planning horizon, if the overall maximum peak demand
supplied by anyone of the distribution transformers in the system
exceeding a certain amount of transformer loading, for example
80%, of its capacity, the system requires adding new distribution
transformers in that year. Having the extra transformers will,
therefore, eventually lower the annual operating costs in terms of
energy loss, thus decreasing the cumulative total cost. The developed
combined sequential and deterministic techniques can introduce a
considerable cost-savings, while helping electric utilities to
accommodate extensive use of EVs from customers.

CONCLUSION

This research paper has presented a practical methodology for low-
voltage distribution system planning to support the extensive use of
EVs based on approaches of Monte Carlo Simulation and a
Sequential Planning algorithm using PSO. The proposed method
can be efficiently applied and implemented to accommodate gradual
or immediate increase of EV loads in the future. The great benefit of
the proposed activity-based Monte Carlo Simulation algorithm,
where the uncertainty of charging behavior of the EVs is
considered and incorporated with real probabilistic data, is that it
can capture the worst possible peak demand in each year caused by
existing EVs. Uncontrollable and smart charging are of interest. The
smart charging algorithm embedded in the Monte Carlo model
based on the concept of “First Out First in”with a priority constraint
was comprehensively developed. With this very useful
information of load curves, a PSO was developed to

optimally identify the optimal schedules of distribution
transformers and capacitors.

It is confirmed from the case study of a 122-node distribution
system with the four different scenarios that the developed PSO
can identify when, where and what size distribution transformers
should be added, and capacitors should be added/replaced.
Another key interesting finding in this research is that
although smart charging offers an effective solution in
delaying transformer installation/replacement time and
improve the utilization factor of distribution transformers, it
can cause the overall high accumulated energy loss over the
planning period. Such a future blind problem can be resolved by
the suggested deterministic decision. In addition, as far as high
uncertainty for long-term planning is concerned, the
conventional low-voltage distribution planning may lead to
overinvestment or underinvestment. Therefore, the method of
sequential decision proposed in this research offers more adaptive
solutions, taking advantage of short lead time for LV
reinforcement and can reasonably tackle uncertain penetration
levels of EV loads. The proposed method is strongly
recommended as a practical useful guideline for electric
utilities to support widespread EV adoption in the future.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
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FIGURE 10 | PSO convergence for the best total cost in Years 5 and 8.

TABLE 5 | Best solution, worst solution, mean and standard deviation for each planning scenario.

Planning scenario Best
solution ($)

Worst
solution ($)

Mean ($) Standard
deviation ($)

Scenario 2: Uncontrollable charging with PSO-based planning 120,495.78 125,720.66 122,961.75 2,442.32
Scenario 3: Smart charging with PSO-based planning for capacitor placement 155,600.26 159,651.80 157,286.82 1,759.61
Scenario 4: Smart charging with deterministic decision and PSObased planning for capacitor
and distribution transformer placement

115,717.68 119,470.13 117,717.05 1,389.80
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