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One of the key challenges facing distribution network operators today is the expected
increase in electric vehicles. The increased load from EV charging will result in distribution
assets becoming “thermally overloaded” due to higher operating temperatures. In addition
to the issue of increased load, we have a limited understanding of the behavior and
performance of the distribution assets and their potential to accept the increased load. It
has been well acknowledged that EVs increase the network loading level, leading to a
reduced system reliability performance. These results have not been quantified in a realistic
case study, including actual cable rating and design properties. To address this gap, this
paper proposes a novel methodology in the existing power network reliability evaluation
framework, which quantifies the impact of different EV penetration levels on distribution
network reliability, and the thermal performance of distribution cables. Novel approaches
using smart switching technology and emergency uprating are proposed to reduce the
peak power demand caused by EVs, in order to reinforce the reliability of the grid and to
boost the maximum allowable EV penetration in the distribution networks. The
methodology was applied using a case study on the modified EV-integrated RBTS
(Roy Billinton Test System) bus four distribution network. The results showed that the
negative impact of EVs on network performance can bemitigated by the implementation of
smart switching technology. The peak demand under contingencies can also be accepted
by the cables though emergency uprating. The frequency and duration of EV demand
interruption was also significantly reduced. Thus, a higher EV penetration can be
accommodated.
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INTRODUCTION

The rapid development of electric vehicles (EV) has caused heavy stress to conventional power grids.
The peak power demand caused by EV charging requires a more flexible and intelligent network,
posing a great challenge for future smart grids. As the rapid development of EVs, distribution
network operators (DNOs) will be responsible for upgrading their existing network to supply the EV
charging points. Therefore, utilities are investigating innovative solutions to reinforce their existing
distribution networks to satisfy the increasing demand of EVs (Akmal et al., 2014).

However, most existing urban distribution networks are designed solely based on a typical
residential load cycle, without consideration for massive EV connections and random EV charging
patterns (Green et al., 2011; Health Systems in Transition, 2013). Most existing distribution networks
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are more than 30 years old in the United Kingdom, which is
operating close to the thermal limit after years of demand growth.
DNOs initially planned to replace and upgrade most of their
network within the next 20 years, gradually due to budget
constraints (Report and Closedown, 2016). However, the
expected EV market share will be more than 40% by 2030,
and certain geographical clusters will have a higher
penetration of EVs (Hadley and Tsvetkova, 2009). Therefore,
DNOs are forced to develop economic solutions to enhance the
network capacity for increased EV integration over the next
5–10 years.

The impact of EV charging at distribution networks, including
component overloading, feeder congestion and undue faults.
Different aspects of the impact, such as energy loss, voltage
profiles, the reduced lifetime of the network components, the
thermal loading of cables and transformers, are considered in
some studies (Green et al., 2010; Fernandez et al., 2011). However,
limited work has been published to quantify the impacts on the
feeder cables in the presence of EV charging.

Controlled smart charging techniques or Vehicle-to-Grid
(V2G) technology aids the power grid by reducing the peak
load and transmission congestion, minimizing their effect on the
distribution system assets, and reducing investments in the
network reinforcements (Verzijlbergh et al., 2012; Aravinthan
and Jewell, 2015; Mehta et al., 2018). However, similar to
distributed generation (DG), DNOs would have no control
over the location of future EV charging points or stations, and
no direct control over the period and frequency of EV charging
(Fernandez et al., 2011). How to schedule the charging for each
EV based on their battery state and their availability for charging
is a key question. Consequently, uncontrolled stochastic EV
charging would be more common for most situations in the
early future.

Several literature describing new business models for the
successful integration of EVs into the distribution network
have been published (Denholm, 2006; Fernandez et al., 2011).
Public aggregated charging points and charging stations
infrastructures, called “aggregators,” can be developed by
intermediate service providers, while distributed charging
infrastructures will still be installed at each household.
Compared to distributed EVs, EV aggregators can be
coordinated by DNOs to provide an ancillary service at the
appropriate large-scale power system level. However, limited
literature has considered the existence of both aggregated and
distributed charging in relation to distribution network
operations and planning.

During normal operations, medium voltage radial distribution
circuits reserve around 50% of their total capacity for emergency
operations. The reserved capacity can be utilized to accommodate
more EVs. However, in a restructured network during emergency
restoration, distribution lines may operate close to their capacity
limits or even overloaded due to the increased load of EV
charging. The utilization of the emergency rating on the
distribution cables provides more network flexibility and
reduces the interruption of EV charging demands during
emergency restoration. Automated switches are becoming a
key component in electric distribution systems (U. S.

Department of Energy, 2012). These smart switch devices can
also be utilized in an EV-integrated distribution network, to
perform corrective EV load shedding actions in response to
sensing an overload condition, or by receiving control signals
from the network operator. However, no existing literature has
considered employing emergency uprating or smart switching to
solve the problem of feeder congestion due to EV connections.

This paper utilized the proposed power network reliability
framework integrating cable design and aging (Kopsidas and Liu,
2018) to evaluate the impact of EV charging on increased thermal
loading and the thermal aging of feeder cable circuits, as well as
the overall distribution network reliability. The aim of this
methodology is to achieve a better prediction of the network’s
reliability and distribution cable performance when a high
penetration of EVs is integrated into the existing distribution
network. Another aim of this study was to evaluate the potential
of utilizing emergency uprating or smart switching to enable a
higher penetration of EVs connected to the electric grid for
charging.

PROPOSED METHODOLOGICAL
APPROACH

Overview of the Proposed Methodology
To quantify the impact of electric vehicle charging on the
behavior and performance of the distribution assets, as well as
the overall distribution network reliability, the proposed
sequential Monte Carlo based network reliability evaluation
framework was integrated with asset failure and repair
modeling, EV charging and demand restoration modeling, and
distribution network power restoration modeling. The outline of
the proposed methodology has been shown in Figure 1.

FIGURE 1 |Methodological flowchart for evaluating the EV impact in the
distribution network.
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The methodology initially started by generating a time-to-fail
(TTF) and time-to-repair (TTR) for each asset considering the
characteristics of the internal and external fault categories. The
health score for each asset determined the internal failure rate for
the distribution assets using the United Kingdom DNO common
network asset indices methodology, which is further explained in
section “Asset Failure and Repair Modeling.”

For the distribution networks integrated with EVs, new load
profiles need to be constructed by adding different EV charging
profiles to the original household loads. EV charging profiles for
residential and non-residential EV parks were modeled
according to the EV arrival pattern and charging duration
pattern, both of which follow normal distribution to consider
the randomness of EV charging demand. The detailed modeling
of EV charging profiles is described in section “EV Charging
Modeling.”

Themethodology was used to perform the inner SMC-loop for
the time step analysis, and the outer SMC-loop for the annual
analysis. Within each time step analysis, the methodology
captured whether there was any asset failure, and any
customer without supply. A network reconfiguration algorithm
was then used to restore supply to as many customers as possible
using switching actions. Once the restoration is established,
distribution cables on the neighboring feeder usually operate
close to their capacity limits and in some occasions could be
temporarily overloaded. To avoid overloading, the EV charging
demand needs to be shed, thus three operational modes under
different contingencies were designed for aggregated EV charging
parks: Pre-restoration EV-off mode, Post-overload EV-off mode
and Smart switch mode. The detailed description of the three
models has been provided in section “Network Restoration
Modeling.”

In the restructured distribution network, emergency ratings
could be employed to allow for increased loading during
emergency restoration. This study considered the three
different underground cable (UGC) ratings (normal rating
Inormal, cyclic rating Icyclic, and emergency rating Ieme) to
indicate the impact of emergency rating employment on
network reliability, EV interruption reduction, and cable aging.

If some of the EV charging demand was interrupted during
any network contingencies, the EV battery will continue to be
charged until it is full after the interruption finishes, thus the
interrupted EV charging demand needs to be restored. The
detailed modeling of the EV charging demand restoration
procedure has been described in section “EV Demand
Restoration Modeling.”

This study introduced an EDNS (EV Demand Not Satisfied,
MWh/yr) index that represents that the charging demand of the
EVs might not be fully satisfied since less energy can be charged
into the batteries during a period of emergency dispatching.
Although all interrupted EV charging demands will be
restored after the contingency, the EDNS index indicates the
quality of the EV charging service. The frequency and duration of
the EV charging demand interruption was captured for every EV
charging point using the EFEI (Expected Frequency of EV
charging demand Interruption, occ./yr) and EDEI (Expected
Duration of EV charging demand Interruption, hrs/yr) index.

Themathematical equations for EDNS, EFEI and EDEI have been
stated in Eq. 1, Eq. 2, and Eq. 3, where SysDNSY is the EV
charging demand not satisfied during the system contingency in
year Y, DEIP,Y is the duration of EV demand interruption at EV
charging point P, in year Y, FEIP,Y is the frequency of the EV
demand interruption at EV charging point P, in year Y.

EDNS � ∑NY

Y�1
SysDNSY/NY (1)

EDEIP � ∑NY

Y�1
DEIP,Y/NY (2)

EFEIP � ∑NY

i�1
FEIP,Y/NY (3)

Asset Failure and Repair Modeling
Since most cable failure is caused by digging activities instead of
internal failures, this study considers there to be two types of
failures for feeder cables; failures caused by external human
activities and failures caused by internal aging reasons.
Overhead lines (OHLs) and transformers consider there to be
two types of outage: internal failure and external maintenance
outage.

The internal failure rates λinternal for the distribution assets
were computed based on United Kingdom DNO Common
Network Asset Indices Methodology (Health and Criticality,
2017). A health score (HS) between 0.5 and 10 is allocated to
each network component. The smallest HS � 0.5 and the largest
HS � 10 represents a component in very good and in a very poor
condition respectively. The health score of a new component
initializes at HS � 0.5 and increases along with time due to aging.
A third order polynomial relates failure rates to the health
scores, as shown in Eq. 4, where H is a variable equal to the
Health Score unless H ≤ 4 then H � 4 to ensure that the failure
rates are not initially too low, K and C are the constants that are
defined for each type of asset in (Health and Criticality, 2017).
The constants for different distribution assets have been stated
in Table 1.

λinternal � K × [1 + (C ×H) + (C ×H)2
2!

+ (C ×H)3
3!

] (4)

Considering the randomness of the internal failures, an
exponential distribution was used to calculate the time-to-fail
TTFinternal and time-to-repair TTRinternal values, as shown in Eq.
5, Eq. 6, using the internal failure rate λinternal and mean repair
duration Dinternal with an unavailability U which is randomly

TABLE 1 | Reliability parameters of the distribution assets in the modified RBTS.

Parameters 11 kV UGCs 33 kV OHLs 33/11 kV transformers

K 0.000658 0.001006 0.000454
C 1.087 1.087 1.087
λinternal [occ./yr] Eq. 4 Eq. 4 Eq. 4
Dinternal [hrs/occ.] 30 8 15
λexternal [occ./yr] 0.05 0.5 1.0
Dexternal [hrs/occ.] 10 8 120
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generated from a uniform distribution U (0,1) (Billinton and Li,
1994).

TTFinternal � −(1/λinternal)lnU (5)

TTRinternal � −Dinternal lnU (6)

As provided in Table 1, the external failure rates for the UGCs
and maintenance outage rates for OHLs and transformers were
set to be constant throughout the asset lifetime. The mean repair
durations for the internal and external failures of the distribution
assets have been provided in (Allan et al., 1991).

For cable external failures and maintenance outages, time to
failure, TTFexternal, was generated in Eq. 7 using an exponential
distribution. The time to repair TTRexternal was calculated in Eq. 8
for the asset subject to a normal distribution Nor with a standard
deviation SD � 25%.

TTFexternal � −(1/λexternal)lnU (7)

TTRexternal � Nor(Dexternal, SD) (8)

SD � 25% is a reasonable assumption that could be redefined as
further data becomes available. Using normal distribution limits,
the extent to which repair durations vary dramatically from the
average (Clements and Mancarella, 2018).

Electric Vehicle Charging and Restoration
Modeling
Electric Vehicle Charging Modeling
Under an uncontrolled charging strategy, an EV will consume
charging power after it is parked until its battery is fully charged.
In this study, the EV charging pattern was modeled by the EV
arrival pattern and charging duration pattern. The charging
duration was related to the power consumption in the last
drive, namely the charging power of EV battery. Each
individual EV was assumed to have a 50 kW capacity and a

charging speed of 1.44 kW/h (120 V 12 A), using the example of
the “Tesla Model 3.” It is assumed that EVs are always charged
with a constant power draw that is equal to the charging speed.

Figure 2 illustrates the average number of EVs to arrive,
N_EVavg(tΔt), for every 100 EV charging slots in residential
areas (distributed or aggregated parking) and non-residential
areas (commercial or industrial parking lot) during weekdays
and weekends (Wu et al., 2011). The average charging power
consumption profile for every 100 EV charging slots has been
calculated and displayed in Figure 2.

Considering the randomness of the EV arrival pattern
changes, the actual simulated number of arrived EVs,
N_EVP(tΔt) in parking lot P, at time tΔt, was calculated in Eq.
9, subject to a normal distribution Nor with a standard deviation
SD � 20%, whereN_EVSPwas the number of EV charging slots in
parking space P, and N_EVavg(tΔt) was the number of EVs to
arrive per 100 EV charging slots at time tΔt.

N_EVP(tΔt) � Nor(N_EVSP·gN_EVavg(tΔt), SD) (9)

The actual simulated charging power consumption P_EVP(tΔt) at
parking lot P, at time tΔt, is calculated in Eq. 10, where Pcharging is
the EV charging speed, D_EVP(tΔt) is the charging duration of
EVs parked in parking lot P, at time tΔt.

P_EVP(tΔt) � Pcharging × ∑D_EVP(tΔt )

h�0
N_EVP(tΔt − h) (10)

Electric Vehicle Demand Restoration Modeling
EV charging in EV parking lots can be interrupted deliberately by
the network operator due to circuit overloading under emergency
contingency conditions. The interrupted EV batteries will
continue to be charged until they are full, thus EV charging
demand needs to be restored once the network contingency ends
and the service is back online. The EV demand restoration

FIGURE 2 | EV arrival pattern and average charging power demand pattern.
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modeling and constraint criteria have been described by the
following Eq. 11, Eq. 12.

The new EV charging demand P_EVP,new(tΔt) of parking lot P
at tΔt during the restoration period is the sum of the original EV
charging demand P_EVP (tΔt) and the restored EV charging
demand P_EVP,res(tΔt), as expressed by Eq. 11.

P_EVP,new(tΔt) � P_EVP(tΔt) + P_EVP,res(tΔt) (11)

The restored EV charging demand P_EVP,res(tΔt), can be
calculated by Eq. 12, where P_EVP,int,total is the total
interrupted EV charging demand, N_EVP,int,total is the total
number of interrupted EVs, N_EVP,res is the number of EVs
which were fully restored, t0 is the time when the restoration
started. This equation indicates that the restored EV charging
demand is constrained by the EV charging speed, the number of
EVs that still needed to be restored, and the total demand that still
needs to be restored.

P_EVP,res(tΔt) �min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P_EVP,int,total −∑tΔt

t�t0
P_EVP,res(t)

Pcharging ×(N_EVP,int,total −∑tΔt
t�t0

N_EVP,res(t))
(12)

Network Restoration Modeling
In distribution networks, transformers, lines (OHLs and cables),
busbars and breakers may incur a failure or undergo scheduled
maintenance. In response to both, suitable network restoration

actions should be taken to restore service to as many affected
customers in the out-of-service areas as possible using both
switching actions and cable emergency loading. The affected
area around the fault point can be divided into repaired,
upstream and downstream areas by the switches, as illustrated
in Figure 3. The traditional procedure for power restoration in a
typical two-feeder open-ring network includes: 1) protection
response; 2) upstream restoration; 3) downstream restoration;
4) repairing process.

After power restoration is established for a distribution
network with EV connection in Figure 3, distribution cables
in the neighboring feeder usually operate close to their capacity
limits and in some occasions, could be temporarily overloaded. If
network constraints such as line capacity constraints cannot be
met, alternative actions will be undertaken to satisfy the
constraints, such as utilizing the emergency ratings of feeder
cables, or abandoning an increased load from aggregated EV
(AEV) charging using a smart switch (SS). This study considered
three EV operating modes for restructuring distribution networks
with an EV connection under the following network
contingencies: Pre-restoration EV-switch mode, Post-overload
EV-switch mode and Smart EV-switch mode.

1) Pre-restoration EV-switch mode

Pre-restoration EV-switch mode switches off all aggregated
EV charging parks connected to the neighboring feeder before the
restoration is established. EV charging parks stay disconnected
until the repair is finished and the network returns to its pre-
contingency structure. For example in Figure 3, two AEV parks

FIGURE 3 | An example of power restoration in a two-legged ring network with or without EV connection.
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on feeder two and one AEV park in the restored downstream area
will be disconnected. This scheme provides a conservative
approach for distribution networks with EV parks that are
equipped without smart switches.

2) Post-overload EV-switch mode

Post-overload EV-switch mode switches off all aggregated EV
charging parks connected to the neighboring feeder once any
distribution cable on the neighboring feeder is overloaded. It
keeps them disconnected until the repair finishes. In principal,
this scheme sheds all charging demand from the AEV parks to
prevent the cables from further overloading, thermal aging and
damage. This mode requires the smart switch devices for EV
parks to be opened in response to the monitoring signal
indicating cable overloading.

3) Smart EV-switch mode

The Smart EV-switch mode aims to meet as many EV
charging demands as possible at the minimum cost. Its
objective function and constraints have been stated in Eq. 13,
where ocss,P is a binary operation variable indicating whether the
smart switch ss at EV park P is closed (�0) or open (�1); costEV is
the cost of EV interruption in £/MVA; costPL is the cost of the
power losses in £/MVA; Ploss,i(tΔt) is power losses of cable i at time
tΔt; costENS is the cost of non-delivered demand in £/MVA and
ENS(tΔt) is the customer energy not supplied in MVA.

Cost(tΔt) � ∑
P∈NP

ocSS,P · [costEV ·P EVP(tΔt)]+ ∑
i∈NUGC

costPL ·Ploss,i(tΔt)
+costENS ·ENS(tΔt)

subject to : −Smax,i≤Si≤Smax,i,Vmin,bus≤Vbus≤Vmax,bus (13)

The only decision variables are operational variables ocss,P, which
allow the smart switches to be opened or closed in real time by
receiving control signals from other locations. The optimization
allows the network operator to decide whether one or more EV
charging parks should be disconnected to prevent cable overloading,
to satisfy as many EV charging demands as possible, and to
minimize the cost of power losses and non-delivered energy.

CASE STUDY FORMATION

This methodology utilizes the original RTBS bus four network as a
realistic example of an existing distribution network in an urban
area. The original test network consists of seven feeders (F1–F7), 38
load points (LP1–LP38), disconnecting switches on both sides for
each feeder cable and four tie-switches. Disconnecting switches are
positioned before and after each load bus on each feeder, to allow
for each load bus to be isolated from a fault. The tie-switches (TS1-
TS4) are normally open, while all other switches are closed when in
a state of normal operation. Only one circuit breaker is equipped at
the top of each feeder. The default peak load of the network is the
actual 40MW and 13MVar. The hourly chronological load profile
as described in (Grigg et al., 1999) is used to describe the load
profile for this network.

Selection of the Feeder Cables
The RBTS bus four network does not provide thermal limits and
circuit design data, therefore the size and current rating of each
feeder cable (numbered with C) was carefully selected to ensure
that all existing demands can still be fully supplied under the N-1
condition through backfeeding from the normal open points.
Four types of single-core un-armored XLPE cables with copper
conductors were used in the study. Table 2 shows the selected
cable design data, normal and cyclic current rating for each
corresponding feeder cable. The cables were assumed to be
laid in a trefoil formation (touching) and directly buried in
the ground at a depth of 0.8 m. The XLPE cables and soil
thermal parameters used in this study have been listed in Table 3.

The cable’s normal current ratings, Inormal, as shown in Table 2
were calculated at a maximum core temperature of 90°C, 0.9 km/W
soil thermal resistivity, and 1.6 J/m3K × 106 J/m3K volume specific
heat, which are the default values in ENA P17 (ENA, 2004). The
summer (Nov-Apr) and winter (May-Oct) ratings were calculated
using a soil temperature of 15 and 10°C respectively, and cyclic
ratings, Icyclic, that were 1.13 times the corresponding normal rating
based on a cyclic loading factor (Electrical, 2009). For the 11 kV
cables forming a two-legged ring network, an emergency rating that
is more liberal than the cyclic rating, may be used for the design of
such networks. As indicated in (Health Systems in Transition, 2013),
distribution utilities allow for an emergency rating, Ieme, which is
effectively 110% of the appropriate summer and winter cyclic
ratings, to be used in their 11kV UGCs as provided in Table 2.

Modifications of the RBTSBus four Network
Some modifications have been applied to the RBTS bus four
network to simulate a realistic scenario that aggregates the EV
park lots and the distributed residential EV charging piles that are
both available in the distribution network. The modified RBTS
network has been shown in Figure 4.

In Figure 4, distributed residential EVs are connected to each
residential load point. Four aggregated residential EV parks are
connected directly to four 11 kV buses; bus 5, 23, 36, and 60. The
aggregated residential EV (AREV) park on each feeder consists of X%
of the total residential EV parking slots, while the distributed residential
EV (DREV) charging facilities within each household own the rest.

This study assumes that two individual households exist in each
residential customer as defined in the original RBTS bus four
network. Each household is assumed to own an average of 1.5
vehicles, thus the total number of residential vehicles was 14,070.
The EV penetration level indicates the proportion of the number of
EVs compared to the number of total household vehicles in the area.

As shown in Figure 4, four commercial car parks with 1,000
parking slots were integrated into terminal buses 10, 28, 41, and 65,
with commercial customers. Three industrial car parks with 2,000
parking slots were integrated into terminal buses 15, 46, and 52 on
three short feeders with a small number of users. Commercial and
industrial parking lots provide parking spaces and EV charging
mainly for workers in offices and factories. The EV penetration level
defines the proportion of EV charging slots to the total number of
parking slots in all commercial and industrial parking lots.

In this study, it is assumed that X% � 50%, means that half of
the EVs are charged at AREV parks, while the other half are
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FIGURE 4 | Single line diagram of the modified RBTS bus four distribution network.

TABLE 2 | The cable electrical properties modeled in the RBTS bus four network.

Cable type Size mm2 R90 Ω/km X Ω/km Summer Winter Feeder cable number

Inormal Icyclic Ieme Inormal Icyclic Ieme

A 300 0.062 0.098 683 772 849 706 798 878 1,6,9,14,19,22,25
B 240 0.077 0.101 608 687 756 629 711 782 2,7,10,15,20,23,26
C 185 0.100 0.105 525 593 653 544 615 676 3,8,11,16,21,24,27
D 150 0.124 0.108 467 528 580 484 547 602 4,5,12,13,17,18,28,29

TABLE 3 | Thermal parameters in XLPE cables and soil.

Material Thermal resistivity ρtherm [mK/W] Volume specific heat Ctherm [J/(m3K)]

Copper (conductor) 0 3.45 × 106

XLPE (dielectric) 3.5 2.4 × 106

Copper wire (screen) 0 3.45 × 106

PE (jacket) 3.5 2.4 × 106

Soil (surroundings) 0.9 1.6 × 106
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charged at DREV slots located at residential load points. The EV
penetration level is PEV%, which means that the PEV% of all
parking slots were EV charging slots. Thus, the number of EV
charging slots on each bus has been shown in Table 4.

A smart switch device was equipped for each EV park lot to
perform smart switching actions if required. No control can be
applied to individual EVs to provide smart charging and no
vehicle-to-grid (V2G) mode was available.

Modeled Scenarios
The scenarios have been described in Table 5. All scenarios
consider a health score HS � 10 for all distribution network assets
to model an aged distribution network.

Sc-1 does not apply any of the EV-switch modes, where the EV
charging demand is the same type of load as normal loads
(residential, commercial, and industrial). It is not considered to
be a special demand that requires unique EV-switch actions under
emergency operations. Sc-2 is the most conservative scenario using
the pre-restoration EV-switch mode, which switches off the EV
parks before the restoration is established. Sc-3 implements the
post-overload EV-switch mode, which allows for the EVs to
continue to be charged until overload occurs, and then the EV
parks are switched off until the contingency ends. Sc-3 applies the
smart EV-switch mode by implementing smart switching,
monitoring and control devices, to allow the EV parks to be
switched on or off in real-time. The optimal EV switching
solution was determined to minimize the total cost of EV
charging interruption, power losses and non-delivered demand.

IMPACT OF ELECTRIC VEHICLES ON
NETWORK AND CABLE PERFORMANCE

The impact of the EV integration on the network’s reliability and
cable aging can be indicated by the comparison between the base
case and Sc-1. Table 6 illustrates the amount of expected energy
not supplied (EENS), expected annual network losses (EANL),

expected equivalent network aging (EENA), and the expected EV
demand not supplied (EDNS) when the EV penetration level
increased from 0% in the base case up to 100% in Sc-1. It is worth
mentioning that the normal current rating, Inormal, was utilized in
all base cases and Sc-1 scenarios as in Table 6.

By increasing theEVpenetrationPEV%, a continuous increase of load
curtailment, power losses and cable agingwas observed. In particular, the
EENS rose from 85.55MWh in the base case with zero EV integration
and peaked at 229.70MWh at 100%EVpenetration. The frequency and
duration of the demand interruption also increased by almost three
times themaximumvalues of 3.45 occ./yr and19.77 h/yr. This indicates a
significantly reduced network reliability performance when more EVs
are connected in the distribution networks.

The impact of the EV penetration on the feeder cable circuits
can be indicated by the increase of EANL and EENA. The
additional EV charging demand causes an increase in current
loading, and a rise of power losses within the circuits. Based on
the basic theory of “Losses � I2R,” the EANL was increased by
33.9% from 1362 to 1824 MWh, suggesting a 15.7% increase in
the general loading of the whole distribution network. This result
will become worse, considering the natural annual increase of the
residential demand of electric vehicles.

The network cable aging was almost doubled from 71.7 to
114.6 h/yr, when the EV penetration was increased to 100%. This
aging increase seems to be slow and tolerable for the cables,
considering that the expected annual aging is 8760 h/yr. The
reason for the aging output is because no emergency and cyclic
loading is allowed, thus the cables operate at quite low temperatures
at which negligible aging occurs. Sc-1, with the utilization of Inormal,
tends to sacrifice the demand when network loading constraints are
met, rather than utilize emergency loading to provide extra flexibility
and loadability to the network. Consequently, more load curtailment
is made but less aging occurs.

IMPACT OF SMART SWITCHING ON
ELECTRIC VEHICLE PENETRATION

Various EV-switch modes were considered in this methodology to
provide DNOs with a smarter alternative option to address the EV
issues during network contingencies. Table 7 Error! Reference
source not found. illustrates the amount of expected energy not
supplied (EENS), the expected EV demand not supplied (EDNS),
the expected duration of EV demand interruption (EDEDI) and
the expected equivalent network aging (EENA) across different EV
penetrations PEV% from 0 to 100%when various EV-switchmodes

TABLE 4 | | Number of EV charging slots on each bus at PEV% penetration level.

Type Number of EVs charging slots, N_EVSP Bus no

Distributed residential EV charging piles 330 × PEV% 2, 4, 6, 8, 20, 22, 24, 32, 34, 35, 37, 57, 59, 61
300 × PEV% 9, 25, 27, 38, 40, 62, 64, 66

Aggregated residential parking lots 1620 × PEV% 5
1590 × PEV% 23
1920 × PEV% 36, 60

Aggregated commercial parking lots 1000 × PEV% 10, 28, 41, 65
Aggregated industrial parking lots 2000 × PEV% 15, 46, 52

TABLE 5 | Modeling Scenarios of EV impact on the distribution network.

Scenarios EV penetration Scenario description

Base case No EV integrated
Sc-1 PEV% No EV-switch mode
Sc-2 PEV% Pre-restoration EV-switch mode
Sc-3 PEV% Post-overload EV-switch mode
Sc-4 PEV% Smart EV-switch mode
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were utilized. Normal current rating, Inormal, was still utilized in all
scenarios within Table 7.

Sc-1 achieved the highest load curtailment out of the four
scenarios, indicating that the worst network performance was
obtained when no EV-switch mode was considered. This is
because EV charging demand was the same load type as regular
demand, thus load curtailment occurred in both EV and regular
demand, and there was no clear priority between these two.

As suggested from the EDNS and EDEDI results, Sc-2
obtained significantly more interruption in relation to the EV
charging demand (highest among scenarios), including the
amount (EDNS) and the duration (EDEDI) of the interrupted
EV demand. This was because Sc-2 disconnected all aggregated
EV charging lots before restoration was established, thus the EV
charging in the EV park lots was interrupted during all the
contingencies, resulting in a huge EDNS and EDEDI.

It is suggested from the EENA results that Sc-3 received
significantly more cable aging, which was almost 70 times more

than the other three scenarios. Meanwhile, Sc-3 achieved the best
reliability performance by obtaining the lowest EENS of 79.7MWh.
Sc-3 disconnected the aggregated EV charging lots when any feeder
circuit was overloaded. Compared to Sc-2, Sc-3 fully utilizes the
loadability of the cable circuit to satisfy demands before any overload
condition occurs, thus the lowest load curtailment was achieved in
Sc-3. However, such an operating scheme requires smart switching
and associated control devices, to operate the correct switching
action in response to the overload signals. Meanwhile, Sc-3 tends to
operate the cable circuits at their maximum allowable rating, thus
muchmore cable aging is generated compared to the other scenarios.
As a result, the EENS in Sc-3 was reduced to the lowest, at the cost of
significantly increased aging. This increased aging may force utilities
to perform more frequent condition checks and maintenance and
replace heavily loaded and most-aged cables. Thus, this increased
aging cost and its related maintenance costs may lead Sc-3 to being
considered less cost-worthy.

Sc-4 achievedmore EENS than Sc-3, but less than Sc-1 and Sc-2.
The second lowest EDNS and EDEDI was obtained by Sc-4, which
was only higher than Sc-1. Meanwhile, Sc-4 maintains the cable
aging (EENA) to an acceptable level, similar to Sc-1 and Sc-2. This
result shows that Sc-4 achieved a relatively low load of curtailment
and less frequent EV demand interruption at the cost of tolerable
aging. If the utility applies a maximum EENS of 100MWh as their
main criterion to constraint the connection of more EVs, Sc-4
allows for a 60% penetration of EVs, which is 40% more when
compared to Sc-1. By setting the EV demand interruption
performance as a criterion, a projection of allowable EV
penetration can be estimated based on the EDNS or EDEDI. In
this case, Sc-4 generates a smaller amount and lower frequency of
EV demand interruptions than Sc-2 and Sc-3, thus a higher EV
penetration can be enabled using the smart EV-switching mode.

Sc-4 applies a cost optimization tool to achieve the minimum
overall operating costs, indicating its significant economic advantage
against other operating modes. However, the smart EV-switching
mode requires that smart switches are equipped for each EV park
under central control and optimization, thus the initial equipment
installation cost has not been considered in the total cost computation.

IMPACT OF EMERGENCY UPRATING ON
ELECTRIC VEHICLE PENETRATION AND
CABLE AGING
Emergency uprating allows the feeder cables to operate at a higher
current rating in the restructured distribution network after

TABLE 7 | The output of EENS, EDNS, EDEDI and EENA in Sc-1, Sc-2, Sc-3 and
Sc-4 across different EV penetration levels.

Scenarios EV penetration PEV%

EENS MWh/yr 0% 20% 40% 60% 80% 100%

Sc-1 85.55 101.87 123.47 151.54 186.8 229.7
Sc-2 85.55 92.16 99.42 107.32 116.02 125.56
Sc-3 85.55 53.11 58.74 64.97 71.95 79.70
Sc-4 85.55 89.79 94.52 99.74 105.62 112.18

EDNS MWh/yr 0% 20% 40% 60% 80% 100%

Sc-1 0 0.76 1.57 2.45 3.51 4.86
Sc-2 0 591.3 1182 1773 2365 2956
Sc-3 0 21.14 57.32 112.2 183.3 268.6
Sc-4 0 15.69 38.53 69.33 108.9 157.8

EDEDI hrs/yr 0% 20% 40% 60% 80% 100%

Sc-1 0 0.79 0.85 0.87 1.00 1.11
Sc-2 0 286.9 288.3 288.3 288.3 288.3
Sc-3 0 10.23 13.80 17.96 22.01 25.77
Sc-4 0 5.96 7.13 8.38 9.72 11.13

EENA hrs/yr 0% 20% 40% 60% 80% 100%

Sc-1 71.74 76.07 83.88 92.73 102.9 114.5
Sc-2 71.74 73.66 78.65 84.37 90.93 98.57
Sc-3 71.74 13,022 16,906 25,071 37,490 71,280
Sc-4 71.74 76.19 83.92 92.68 102.5 113.7

TABLE 6 | Network performance indices of the base case and Sc-1

Scenarios BC Sc-1

PEV% 0% 20% 40% 60% 80% 100%

Indices EENS, MWh/yr 85.55 101.87 123.47 151.54 186.80 229.70
SAIFI, occ./yr 1.28 1.52 1.93 2.37 2.91 3.45
SAIDI, hrs/yr 8.21 9.29 11.40 13.87 16.64 19.77
EANL, MWh/yr 1362 1398 1498 1602 1711 1824
EENA, hrs/yr 71.7 76.1 83.9 92.7 102.9 114.6
EDNS, MWh/yr 0.00 0.76 1.57 2.45 3.51 4.86
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contingencies. It provides more network flexibility and loadability
to supply the network demand and EV demand under emergency
operations. Figure 5 shows the amount of load curtailment
(EENS), the equivalent network cable aging (EENA), the
system average interruption duration (SAIDI) and the
frequency (SAIFI) of Sc-4 when normal (Inormal), cyclic (Icyclic)
and emergency (Ieme) ratings are utilized respectively.

As shown in Figure 5, the significant reduction of EENS, SAIDI
and SAIFI was observed when increasing the cable rating from
Inormal to Icyclic and Ieme, suggesting an effective improvement of the
overall network reliability performance. The reduction seems to be
very constant across all different EV penetration levels. For
example, a constant reduction of over 40MWh/yr in EENS was
observed when the cable rating increased from Inormal to Ieme. This
improved network performance was because the increased
current rating provided more loadability and flexibility during

contingencies, thus more network demand, including regular and
EV demand, can be supplied under looser loading constraints. As a
result, the negative impact of the EV penetration on the network
can be significantly mitigated by the implementation of emergency
uprating.

The benefits of emergency uprating can be further indicated by
the amount of interrupted EV demand (EDNS) and the expected
duration of the EV demand interruption (EDEDI) as in Figure 6.
Although the EDNS increased exponentially along with the EV
penetration PEV% becoming higher, an effective reduction of
EDNS from 158 to 55MWh/yr was achieved at PEV � 100% by
uprating Inormal to Ieme. The EDEDI output showed an almost
linear rise when the PEV% increased, and emergency uprating
significantly decreased the increasing rate of EDEDI. In
particular, the EV interruption duration was reduced by 64%
from 11 to 4 h/yr when Ieme was utilized.

FIGURE 5 | EENS, EENA, SAIDI and SAIFI output of Sc-4 when utilizing normal, cyclic and emergency ratings.

FIGURE 6 | EDNS and EDEDI output of Sc-4 when utilizing normal, cyclic and emergency ratings.
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The increased load from EV charging will result in the
distribution circuits being loaded close to their limits. The
network performance worsens, mainly due to the loading
constraints of the circuits. From the results, it was indicated
that the distribution cables do have the ability to accept additional
EV charging demands under emergency loading conditions. The
ability stems from the UGCs’ inherent characteristics (i.e. thermal
inertia) that allow cycling or emergency currents for a limited
period.

The potential risks of ‘thermal overloading’, and thus, aging can
be demonstrated by the EENS result in Figure 5. This shows that the
emergency uprating leads to increased cable aging, particularly when
the PEV% increases. As discussed before, the current rating increase
leads to an exponential growth of thermal aging, therefore the
network aging caused by emergency rating is much higher than
that of normal or cyclic rating. The EENA is 766 h/yr at PEV � 100%
when Ieme is used, while it is 228 h/yr for Icyclic and 114 h/yr for Inormal.
The growth rate of EENA along with the increase of PEV% is also
significantly larger for the emergency rating case.

CONCLUSION

This paper applied the proposed network reliability evaluation
framework to evaluate the impact of electric vehicles integration
on a distribution network and the related assets. Two solutions,
smart switching and emergency uprating, were proposed to
mitigate the negative impact. The methods also enable a
higher EV penetration in the existing distribution networks
which helps to postpone network upgrades and reinforcements.

The proposed smart switching method requires smart
switches and network automation devices (monitoring,
optimization, and control) to connect/disconnect the
aggregated EV charging park in real time during
contingencies. It provides an optimization tool to minimize
the cost of cable aging, power losses, load curtailment and EV
interruption under the network loading and voltage constraints.

Emergency uprating provides utilities with a simple and direct
method to uprate their distribution cables to emergency rating
levels under contingency operations. This allows operators to
unlock the emergency loadability of UGCs temporarily to loosen
the loading constraint and to transmit more power according to
demands. However, emergency uprating may lead to both the
“current” and “thermal” overloading of cables, and therefore
produce increased cable aging. The potential network benefits

and cable aging risks can be quantified through the proposed
methodology.

The case study on the modified RBTS bus four network has
shown that the network reliability performance significantly worsens
when a high penetration of EVs is considered.When EV penetration
PEV � 100%, the load curtailment was increased by 160% from 85.5
to 229.7MWh/yr. The smart EV-switching method applied cost
optimization to achieve a balance between load curtailment, cable
aging and EV demand interruption. Thus, the smart switching
method reduces the load curtailment by half while maintaining
cable aging and EV charging interruption at an acceptable level.
Emergency uprating also provides an effective way to improve
network performance at the cost of increased cable aging.
Compared to normal rating, emergency rating reduces by half
the amount of load curtailment and interrupted EV charging
demand. The emergency uprating method could be too risky
when a higher current rating is considered.

The proposed methodology allows utilities to determine the
optimum emergency rating and operating strategy for their
distribution networks with a high penetration of EV
connections. Further work is required to design a more
advanced network reconfiguration tool to adapt the increasing
penetration of EVs.
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GLOSSARY

costENS Cost of non-delivered demand in £/MVA

costEV Cost of EV interruption in £/MVA

costPL Cost of the power losses in £/MVA

D_EVP(tΔt) Charging duration of EVs parked in parking lot P, at time tΔt

DEIP,Y Duration of EV demand interruption at EV charging point P in
year Y

Dexternal Duration of external failure

Dinternal Duration of internal failure

EANL Expected annual network losses, MWh/yr

EDEI Expected Duration of EV charging demand Interruption, hrs/yr

EDNS EV Demand Not Satisfied, MWh/yr

EENA Expected equivalent network aging, hrs/yr

EENS Expected energy not supplied, MWh/yr

EFEI Expected Frequency of EV charging demand Interruptio, occ./yr

ENS(tΔt) Customer energy not supplied in MVA

FEIP,Y Frequency of EV demand interruption at EV charging point P in
year Y

Icyclic Cyclic rating, A

Ieme Emergency rating, A

Inormal Normal rating, A

N_EVavg(tΔt) Average number of EVs to arrive per 100 EV charging slots
at time tΔt

N_EVP(tΔt) Actual simulated number of arrived EVs in parking lot P at
time tΔt

N_EVP,int,total Total number of interrupted EVs

N_EVP,res The number of EVs which were fully restored

N_EVSP Number of EV charging slots in parking space P

NY Number of simulation years

ocss,P Variable indicating whether smart switch ss at EV park P is closed(0) or
open(1)

P EV charging point number

P_EVP (tΔt) Original EV charging demand of parking lot P at tΔt

P_EVP(tΔt) Charging power consumption at parking lot P, at time tΔt

P_EVP,int,total Total interrupted EV charging demand

P_EVP,new(tΔt) New EV charging demand of parking lot P at tΔt during the
restoration period

P_EVP,res(tΔt) Restored EV charging demand of parking lot P at tΔt

Pcharging EV charging speed

PEV EV penetration level, %

Ploss,i(tΔt) Power losses of cable i at time tΔt

SysDNSY EV charging demand not satisfied during the system contingency
in year Y

t0 The time when the restoration started

TTFexternal Time to failure for external failures

TTFinternal Time to failure for internal failures

TTRexternal Time to repair for external failures

TTRinternal Time to repair for internal failures

Y Year number

λinternal Internal failure rates
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