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China has become the largest wind power installation market in the world, and on such
a large scale its wind power industry contributes to the sustainability of electricity
generation and reduction of carbon emissions, yet has problems such as wind
curtailment, insufficient wind power consumption, and regional disparities. Thus,
this research uses an epsilon-based measure (EBM) data envelopment analysis
(DEA) model to evaluate and compare wind power electricity generation efficiency
and CO2 emission reduction efficiency in the eastern, central, western, and
northeastern regions of China for the period 2013–2017. The empirical results
show that the nation’s overall wind power efficiency presents a significant upward
trend, in which the western and northeastern regions have increased the most, while
the east region has increased the least. Technical inefficiency is mainly due to
diseconomies of scale in China’s wind power industry. Moreover, CO2 emission
reduction in the four regions exhibits high efficiency, and the regions’ efficiencies
are very consistent with that of installed capacity efficiency. Finally, this study’s policy
implications are that industry development plans should be made according to local
conditions as well as cross-regional trade of wind power electricity and that the
upgrading of wind power generation capacity should be encouraged.
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INTRODUCTION

Electricity-related carbon emissions account for over 40% of global carbon emissions and are the
main contributor to global warming (Wei et al., 2020). Reducing the burning of fossil energy and
accelerating the utilization of renewable energy to reduce greenhouse gas emissions have thus
become a consensus of nearly all countries around the world. In 2014, global newly-added capacity
of renewable energy power generation exceeded newly-installed capacity of conventional energy
power generation for the first time, marking a structural change in the global power system
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(IRENA, 2018).1 Among various kinds of renewable energy
power generation, wind power has gradually attracted
people’s attention due to the huge amounts of available wind,
its high cost-effectiveness rate (Kaldellis, 2011; Dawn et al.,
2019), and its large potential for energy savings and emission
reduction (Yang and Chen 2013).

For the achievement of “carbon peak and carbon
neutralization” and sustainability of power production, China
is also actively developing its own renewable energy power
generation industry. Studies show that increasing the
proportion of renewable energy can help China adjust its
energy structure, ensure energy security, and reduce CO2

emissions (Li et al., 2013; Du et al., 2015). Because of the
country’s large wind energy reserves and wide distribution,
wind power generation has in fact been vigorously promoted.

China has since become the largest wind power installation
market in the world [Global Wind Energy Council (GWEC),
2021].2 In 2019, its wind power production was 405.30 billion
kWh, or the third largest source of domestic electricity (China
Electricity Statistical Yearbook, 2020).3 Although the
development of China’s wind power industry is soaring, the
problems of downtime and wind power curtailment in some
areas caused by the mismatch between wind energy resources and
wind power demand in different regions have also appeared (Tan
et al., 2016; Chen et al., 2017). According to data released by
China National Energy Administration, its average electricity
losses caused by wind curtailment from 2011 to 2019 were
25.8 billion kWh, or an average wind curtailment rate of 12%.
Wind curtailment directly benefits wind farms, but restricts the
installed scale of wind power, thus becoming a bottleneck for the
sustainable development of the domestic wind power industry
and carbon emission reduction (Bird et al., 2016; Yu et al., 2017;
Dong and Shi, 2019).

Some scholars have conducted research on the efficiency of
wind power in China at themacro-level (Fan et al., 2015; Liu et al.,
2015; Zhao and Zhen, 2019; Wang et al., 2020) or micro-level (Lu
et al., 2009; Wu et al., 2016; Zhang et al., 2017), but there are scant
existing studies involving regional comparisons. The differences
in the wind power industry’s efficiency in China’s different
regions with large disparities in natural and economic
conditions require further empirical validation. There are
other studies in the literature that have linked carbon
emissions with wind power electricity generation. As
emphasized by Wang et al. (2019), Li et al. (2020) and
Bahramian et al. (2021), wind power offers excellent emission
reduction potential.

This research thus evaluates electricity generation efficiency
and CO2 emission reduction efficiency of China’s regional wind
power industry. The huge wind power market in China has
brought considerable carbon emission reduction benefits, and
in order to analyze whether the regional supply and demand
mismatch affects regional power generation efficiency and carbon

emission reduction efficiency, a subregional comparative study
becomes very necessary. Our study therefore fills the gap in the
literature and presents policy implications not only on the
sustainable development of wind power, but also how to
achieve “carbon peak and carbon neutralization.” This
research divides China into four distinctive regions (eastern,
central, western, and northeastern) to enhance our
understanding on the efficiency of regional wind power
industries through efficiency evaluation and comparative
analysis. Our paper is also different from the previous
literature in that we creatively analyze the relationship
between installed capacity and CO2 emission reduction to
discuss the contribution of China’s wind power industry
investment to CO2 emission reduction. Based on the analysis
herein, we offer policy recommendations to improve electricity
generation efficiency and CO2 emission reduction efficiency in
each region and to promote the industry’s sustainable
development. In terms of methodology, we apply an epsilon-
basedmeasure (EBM) data envelopment analysis (DEA)model to
evaluate the efficiency of China’s wind power industry to avoid
the problem of underestimation or overestimation of the
calculated efficiency value and improvement space, which can
easily be caused by other DEA models. So far, no previous studies
have applied the same methods and samples used on this
research topic.

The rest of the paper runs as follows. Section 2 is the Literature
Review about the research methods and research objects. Section
3 covers the Research Method. Section 4 presents the empirical
Results and Discussions about the efficiency of China’s wind
power industry. Section 5 is Conclusions and Proposals.

LITERATURE REVIEW

Due to its practicality and simplicity, DEA is commonly used for
energy efficiency assessment in a wide range of fields. Wang et al.
(2013) proposed a new method based on the meta-frontier DEA
approach for measuring energy efficiency by considering the
technology gap and analyzed energy efficiency and the
technology gap in the east, central, and west regions of China.
Mou (2014) used the slacks-based measure (SBM) DEA model to
analyze the efficiency of China’s coal-fired power plants.
Munisamy and Arabi (2015) employed the SBM DEA model
to evaluate the productivity of 48 Iranian thermal power plants.
Camioto et al. (2016) utilized the SBM DEA model and window
analysis to calculate G7 and BRICS total-factor energy efficiency.
Ewertowska et al. (2017) combined the Banker-Charnes-Cooper
(BCC) DEA model with life cycle assessment and stochastic
modelling to evaluate the environmental efficiency of 11
power generation technologies. Sartori et al. (2017)
implemented DEA to evaluate the sustainable development
efficiency of Brazil’s power industry. Alsaleh et al. (2016) and
Alsaleh et al. (2017) applied the DEA model to measure the
efficiency of the bioenergy industry in the EU28 countries. Saglam
(2017) applied a two-stage DEA model based on Charnes-
Cooper-Rhodes (CCR) and BCC to evaluate the efficiency of
wind power generation in 39 states of the United States. Long

1Renewable Energy Statistics, 2015
2Global Wind Report 2021
3China Electricity Statistical Yearbook, 2020
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et al. (2018) measured the environmental efficiency of 192 thermal
power plants in the Yangtze River Delta of China based on the SBM
DEA model. Wu et al. (2018) employed the super efficiency DEA
model to measure the ecological efficiency of coal-fired power
plants in China. Akbari et al. (2020) evaluated the CCRDEAmodel
to evaluate the efficiency of 71 offshore wind farms in five countries
of northwest Europe. Mohsin et al. (2021) used the extension of the
SBM model to measure the energy economic-environmental
performance of 48 countries in five different regions. Zhu and
Lin (2021) adopted the non-radial directional distance function
(NDDF) to measure the energy efficiency of China’s mining
industry. We find that linear models such as CCR and BCC or
non-linear models such as SBM are mostly used in these research
studies, but linear and non-linear models may easily lead to
misestimation of the efficiency value as well as the room for
improvement of the research subjects.

The rapid growth of China’s wind power industry has
attracted many scholars to explore related issues in the
development of this industry. Liu et al. (2015) applied the
DEA model to analyze the efficiency of China’s wind power
industry from 2008 to 2012 and found that industry performance
is on the rise. Fan et al. (2015) compared China’s wind power
utilization level with other countries and noted that its total wind
power utilization level is equivalent to that of the United States.
Wu et al. (2016) analyzed the production efficiency of 42 large
wind farms in China and concluded that these wind farms are
operating at acceptable levels. Zhang et al. (2017) compared the
conditions of eight inland, coastal, and offshore wind power
plants and noted that the energy performances of inland and
coastal wind farms are similar, but there is a big difference in their
energy performances vs. offshore wind farms. Zhao and Zhen
(2019) concluded that China’s wind power industry from 2011 to
2015 exhibits inefficiency and believed that its wind power
industry is still in the early stages of development. Wang et al.
(2020) studied the efficiency of China’s wind energy industry
from 2014 to 2017, with results showing low efficiency. Dong and
Shi (2019) found through their research that the main factors
affecting the performance of wind power generation in China are
local power consumption capacity, the degree of economic
development, and the rate of wind curtailment. Lin and Luan
(2020) argued that the innovation efficiency of China’s wind
power industry is low, but the overall trend is rising. Zhang et al.
(2021a) discussed the main factors (generation proportion,
transmission structure, power self-sufficiency, generation
proportion, resource development, power consumption, and
resource utilization) affecting the significant decline in wind
power electricity generation in China. These studies all
examined China’s wind power development from many
perspectives, but few focused on comparing the efficiency of
the wind power industry in the country’s different regions. Sub-
regional research can thus help understand the specific situations
of wind power efficiency within the industry.

Some scholarly research on wind power also has focused on
energy savings and emission reduction. Tan et al. (2013) analyzed
the operating efficiency of the wind power manufacturing
industry from a macro-level perspective and believed that the
use of wind power can lower standard coal consumption and

effectively reduce emissions. Yang and Chen (2013) found that
wind power is competitive in terms of energy conservation and
emission reduction vs. other power generation systems. Yang
et al. (2017) conducted a quantitative study on the synergistic
effects of wind power penetration and energy efficiency in China.
From the perspective of the life cycle, Gao et al. (2019) found that
desert wind farms have the least impact on the environment,
followed by grassland and woodland wind farms. Wang et al.
(2019) calculated the environmental impact of the whole life cycle
of wind power electricity generation. Li et al. (2020) considered
that wind power electricity generation has greater emission
reduction potential compared to general coal-fired electricity
generation. Bahramian et al. (2021) discovered that wind
power electricity generation has reduced CO2 emissions in the
United States and Ontario, Canada via the replacement of
thermal power electricity generation. Scholars have also
analyzed the performance of wind power for energy savings
and emission reduction under various research methods, but
there is little analysis on the relationship between wind power
industry investment and carbon emission reduction.

A thorough literature review shows that most energy efficiency
research is based on linear models such as CCR and BCC or non-
linear models such as SBM. These two different types of models
may easily lead to the problem of underestimation or
overestimation of the calculated efficiency value and room for
improvement. Existing studies have analyzed China’s wind power
development from many perspectives, but scant studies compare
the efficiency of the wind power industry in its different regions,
making it difficult to understand the specific conditions of the
wind power industry throughout the country. Thus, this paper
fills the gap in the literature on this topic.

This study applies the EBM method to evaluate and compare
the wind power efficiency of four regions in China. The findings
herein should help make up for the inadequacy of previous
studies on a regional evaluation of wind power efficiency in
China. In addition, CO2 emission reduction is taken as one
output indicator and installed capacity is taken as one input
indicator in the EBM model to deconstruct the relationship
between wind power input and environmental benefits, which
past research has not yet discussed.

RESEARCH METHOD

DEA is a non-parametric technical efficiency analysis method based
on a relative comparison among evaluated objects (decision-making
units, DMUs). Charnes et al. (1978) developed the CCRDEAmodel
with a constant-returns-to-scale assumption, after which Banker
et al. (1984) extended it to a variable-returns-to-scale assumption
and proposed a BCC model that measures technical efficiency and
scale efficiency. However, both CCR and BCC are radial DEA
models in which all factors are reduced in the same proportion,
which makes the evaluated efficiency inconsistent with the actual
situation. Tone (2001) proposed non-radial estimation methods to
present SBM efficiency values of between 0 and 1. However, as SBM
is a non-radial DEAmodel, it fails to consider radial characteristics;
that is, it ignores those characteristics that have the same radial
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proportions. To address the shortcomings in both the radial and
non-radial models, Tone and Tsutsui (2010) proposed the EBM
DEA model, which is input-oriented, output-oriented, and non-
oriented. The EBMDEAmodel considers the differences in DMUs’
radial scale and non-radial slack variables at the same time. It makes
up for the defect of radial DEA models, which ignore non-radial
slacks, and non-radial DEA models, which ignore radial
characteristics. Thus, the EBM model not only effectively
calculates the efficiency of the evaluated unit, but also reflects
the difference between the radial and non-radial parts (He et al.,
2018; Li et al., 2018;Wu et al., 2019; Zeng andWei, 2021; Zhou and
Li, 2021). Although the EBM model has been applied to discuss
various areas’ efficiency, it is rarely seen in wind power industry
efficiency research.

This paper therefore selects the EBM model to accurately
measure the efficiency of China’s wind power industry. A non-
oriented EBM DEA description for the basic model and solution
(Tone and Tsutsui, 2010) goes as follows.

Suppose there are DMU , where
DMUj � (DMU1,DMU2, ......,DMUk, ......,DMUn). There are m
kinds of inputs Xj � (X1j,X2j, ......,Xmj) and soutputs
Yj � (Y1j,Y2j, ......,Ysj). The efficiency value of DMU is:

Kp � min
0,η,λ,s− ,s+

θ − εX ∑
m
i�1

W−
i S

−
i

Xi0

η + εy ∑
s
i�1

W+
i S

+
i

Yi0

θX0 − Xλ − S− � 0 (1)

ηY0 − Yλ + S+ � 0

λ1 + λ2 + . . . + λn � 1

λ≥ 0, S− ≥ 0, S+ ≥ 0

Y: DMU output,
X: DMU input,
S−: slack of input variable,
S+: slack of output variable,
W−: weight of input I, ∑ W−

i � 1(∀iW−
i ≥ 0),

W+: weight of output S, ∑  W+
i � 1(∀iW+

i ≥ 0),
Ex : the set of radial θ and non-radial slack,
Ey : the set of radial η and non-radial slack.

In this paper DMUj represents province j of China, Xj

represents the input factor of the wind power industry in
each province, Yj represents the output factor of the wind
power industry in each province, and K* represents the
efficiency value of the wind power industry in each
province. If DMU0 Kp � 1 is the best efficiency for non-
oriented EBM and if an inefficient DMU wants to achieve
an appropriate efficiency goal, then the following adjustments
are needed:

X0p � Xλp � θpX0 − S−p
Y0p � Yλp � ηpy0 + S+ (2)

To overcome any possible bias in the traditional energy
efficiency indicators, this paper uses a total-factor energy
efficiency indicator. For each specific evaluated
municipality or province, installed capacity efficiency and

CO2 emission reduction (CO2 ER) efficiency are calculated
using Eqs. 3, 4.

Installed capacity efficiency � Target Installed capacity input(i, t)
Actual Installed capacity input(i, t)

(3)

CO2 ER efficiency � Actual CO2 ER efficiency desirable output(i, t)
Target CO2 ER desirable output(i, t)

(4)

If the target installed capacity input equals the actual input,
then installed capacity efficiencies equal one, indicating overall
effective. If the target installed capacity input is less than the
actual input, then installed capacity efficiencies are less than one,
indicating overall ineffective.

If the target CO2 ER desirable output is equal to the actual CO2

ER desirable output, then CO2 ER efficiencies equal one, indicating
overall effective. If the actual CO2 ER desirable output is less than
the target CO2 ER desirable output, then CO2 ER efficiencies are
less than one, indicating overall ineffective.

Figure 1 shows the research framework of the EBM model.

Data Sources and Description
This paper collected data from 30 provinces in China between
2013 and 2017. In order to analyze whether there is a difference in
the efficiency of the wind power industry between regions with
different resource endowments, we divide the provinces with
different natural and social resources into eastern, central,
western, and northeastern regions (Figure 2). The eastern
region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, and Hainan. The
central region includes Shanxi, Anhui, Jiangxi, Henan, Hubei,
and Hunan. The western region includes Inner Mongolia,
Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, and Xinjiang. The northeast region
includes Liaoning, Jilin, and Heilongjiang.

The efficiency calculation of the evaluation areas by the DEA
model is based on the selected variables. Thus, whether the
selected variables are appropriate is critical to the reliability of
the evaluation results. The selection of variables in this paper
follows two principles: 1) variable data can be obtained; and 2)
validity must be proved by the relevant literature. According to
the principle of variable selection, the input indicator variables
used in this study are labor, generating equipment availability
hours, and installed capacity, and the output indicators are
electricity generation and CO2 emission reduction (Table 1).

Installed capacity has a strong positive correlation with electricity
generation and represents fixed asset investment in the wind power
industry (Saglam, 2017). Thus, it is oneof the important input indicators
in the DEA model for wind power efficiency evaluation. Like installed
capacity, labor input also is the primary input of the wind farm
production process (Wu et al., 2016). Generating equipment
availability hours reflect the degree of utilization and level of
production capacity of the power generation equipment invested by
the wind power industry. Electricity generation is important and the
most common output indicator in DEA for wind power efficiency
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evaluation research (Saglam, 2017; Zhang, 2019). In order to explore the
performance of wind power in reducing carbon emissions, CO2

emission reduction is a very essential and intuitive output indicator.
Through the evaluation of CO2 emission reduction efficiency, the
contribution of wind power electricity generation to CO2 emission
reduction can be analyzed (Papiez et al., 2019).

Input Variables
Installed capacity (Cap): The sum of the rated effective
power of the generator set installed. Installed capacity
unit: MKW.

Generating equipment availability hours (Hours): The
number of operating hours calculated by dividing the

FIGURE 1 | Research framework

FIGURE 2 | Distribution of the four regions in China.

Frontiers in Energy Research | www.frontiersin.org June 2021 | Volume 9 | Article 6721835

Tian et al. China’s Regional Wind Power Industry

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


generating capacity of the reporting period by the capacity of the
equipment. Unit: hour.

Labor (Lab): This study uses the number of employees in the
production and supply industries of electricity, gas, and water in
each municipality/province at the end of each year (Zhao and
Zhen, 2019). Unit: 10,000 people.

Output Variables
Electricity generation (Elec): The amount of electrical energy
produced by a generator through energy conversion. Unit: KWh.

CO2 emission reduction (Red): Based on CO2 emissions from
thermal power generation under the same generating capacity,
the generating capacity is converted into standard coal, and one
degree of power consumes 360 g of standard coal; 1 ton of raw
coal � 0.714 tons of standard coal. The carbon dioxide emission
coefficient per ton of raw coal is 1.9003 kg-co2/kg. Therefore, the
formula is: CO2 emission reduction � power generation * 0.36/
0.714*1.9003/10. Unit: Mt.

Validating the Input and Output Variables
In order to prove the reliability of the five selected variables for
efficiency evaluation, principal component analysis (PCA-
DEA) is used by referring to Adler and Golany (2002) and
Nataraja and Johnson (2011). IBM SPSS Statistics 23.0 is
employed to get the test result. (As shown in Table 2, the
KMO measure is 0.613, which is larger than 0.50). The Bartlett
test’s approximate chi-square is 1,605.792, and the
corresponding significance is 0.000. According to the results

of the KMO measure and Bartlett’s test for sphericity, the five
selected variables for efficiency evaluation are relevant.

Table 3 lists the results of principal component analysis. It
shows that the extraction of the selected five variables used for
efficiency evaluation is larger than 0.75. Hence, these variables are
suitable for evaluating China’s wind power industry efficiency.

RESULTS AND DISCUSSION

Statistical Analysis of Indicators
The average, maximum, and standard deviation of installed wind
power capacity are increasing year by year. The average value of
labor has declined. The average hours of generating equipment
availability are the lowest in 2015.

The average value, maximum value, and standard deviation of
wind power electricity generation and CO2 emission reduction
show a significant upward trend. From the statistical
characteristics of output indicators, the capacity of China’s
wind power industry is growing rapidly. Figure 3 shows the
statistical analysis of installed wind power capacity (Cap),
generating equipment availability hours (Hours), electricity
generation (Elec), and CO2 emission reduction (Red) of
China’s wind power industry.

Overall Efficiency Score Ranking
To measure the efficiency of China’s wind power industry, this
paper takes data of its wind power industry from 2013 to 2017 as
the research object and uses the EBM model to calculate the
efficiency values. Table 4 shows its four regions’ efficiency scores
and rankings. The average overall efficiency of China’s wind
power industry is 0.617. Among the four regions, the eastern
region ranks the highest in average annual total efficiency (0.662),
northeast is second (0.636), western is third (0.608), and central is
the lowest (0.549). We see that the annual average overall
efficiency of China is on the rise. Among all areas, the western
and northeastern regions’ annual average efficiency values
increase the most, reaching 0.22. The eastern region’s annual
average efficiency value increased the least during the study
period at 0.10.

Figure 4 shows more intuitively the regional differences in the
efficiency of the wind power industry, where the darker the color
is, the better is the wind power performance. In Figure 4 the
average annual electricity generation efficiency of provinces in the
eastern region, which have large electricity demand and rich
offshore wind energy, is generally higher. Slightly lower is the
efficiency of provinces in the northeast region, which have no
shortage of wind energy, but find it difficult to completely absorb

TABLE 1 | Input and output variables.

Input variable Output variable Data source(s)

Installed capacity Electricity generation China electric power yearbook 2014–2018 China statistical yearbook 2014–2018
Generating equipment availability hours CO2 emission reduction
Labor

TABLE 2 | KMO and Bartlett’s test.

Kaiser-Meyer-Olkin measure of sampling adequacy 0.613

Bartlett’s test of sphericity Approx. Chi-square 1,605.792
Df 15
Sig. 0.000

Note: The data are from the authors’ collection.

TABLE 3 | Communalities.

Variable Initial Extraction

Installed capacity 1.000 0.979
Generating equipment availability hours 1.000 0.962
Labor 1.000 0.753
Electricity generation 1.000 0.770
CO2 emission reduction 1.000 0.962

Note: The data are from the authors’ collection.
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wind power electricity in winter. Except for Inner Mongolia,
Xinjiang and Yunnan, which have abundant wind energy
resources, the annual average power generation efficiency of
the central provinces and western provinces is generally low,
because of their small resident population and insufficient
demand.

Both Fujian in the eastern region and Inner Mongolia in the
western region have an overall efficiency score of one, indicating
that they have no need for improvement. The specific analysis of
the overall efficiency in the remaining regions is as follows.

From the eastern region, Beijing dropped 12 places in 5 years,
Tianjin dropped eight places, Zhejiang dropped 13 places,
and Shandong and Hainan dropped by nine spaces. The
average wind power efficiency in Beijing for 5 years is the
lowest in the eastern region at only 0.494. The overall
efficiency score of Fujian is one, and the remaining eight
provinces and cities are concentrated between 0.588 and
0.785. The ranking of Jiangsu has risen, while Hebei’s
ranking has not changed, but its efficiency value has
increased from 0.646 to 0.930.
From the central region, Shanxi, Hubei, and Hunan have
significantly improved their overall efficiency scores and
rankings. Hunan’s efficiency improvement is the most

obvious. Its ranking increases from 25 to 15, and its overall
efficiency score increases from 0.362 to 0.634. The overall
efficiency rankings of Anhui and Jiangxi are stable, with a
slight increase in scores. The only decline in the overall
efficiency ranking in the central region is in Henan, from
21 in 2013 to 29 in 2017. The difference in wind power
efficiency values is small.
The provinces with the highest efficiency scores and rankings
in the western region are Guizhou, Ningxia, Sichuan, Xinjiang,
Yunnan, and Chongqing. Xinjiang has risen by as many as 14
places, and its efficiency value has increased from 0.443 to
0.843. The overall efficiency rankings in Gansu and Guangxi
have declined. The overall efficiency rankings of Inner
Mongolia, Qinghai, and Shaanxi are stable.
The overall efficiency score and ranking in the northeast have
increased. Jilin rose from 18 in 2013 to 12 in 2017. The most
significant increase in efficiency is in Liaoning, which rose
from 0.569 to 0.825.

Decomposition of Technical Efficiency
With reference to Alsaleh et al. (2017), this paper uses the radial
DEA model to measure the technical efficiency of China’s wind
power industry and decomposes it into pure technical efficiency
and scale efficiency to explore whether changes in the technical

FIGURE 3 | Statistical description of indicators by year.
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efficiency of the domestic wind power industry are due to
technological progress or changes in scale. Table 5 displays
technical efficiency (TE), pure technical efficiency (PTE), and
scale efficiency (SE) of each province in the four regions. Among
them, Fujian, Yunnan, and Inner Mongolia have technical
efficiency scores of one.

Figure 5 shows the average annual technical efficiency of the
wind power industry in each province in the form of amap, where
the darker color represents higher efficiency. It can be seen that
the color distribution in Figure 4 is similar to that in Figure 3.
Provinces in the eastern region, which have higher average annual
overall efficiency, have greater technical efficiency scores than
provinces in other regions. The two efficiency values of provinces
in other regions have the same relationship.

As shown in Table 6, the annual average technical efficiency of
China’s wind power industry is 0.788, and the annual average
pure technical efficiency (0.997) is higher than the annual average
scale efficiency (0.791) after decomposition. The pure technical
efficiency value in 2013–2017 is between 0.99 and 1, which is high
and stable. The scale efficiency value in 2013–2017 is between

0.76 and 0.84, which is low and fluctuating. Technical efficiency is
more affected by scale efficiency.

From a regional perspective, the respective average annual
pure technical efficiencies of the eastern, central, western, and
northeastern regions are also higher than their average annual
scale efficiencies. Among the four regions, the eastern region has
the highest annual average technical efficiency (0.857), pure
technical efficiency (1.000), and scale efficiency (0.858); the
northeast region has the second highest annual average
technical efficiency (0.838) and scale efficiency (0.838), while
its pure technology is efficient (1.000); the eastern region’s
technical efficiency (0.736) and scale efficiency (0.736) rank
third, but its pure technical efficiency (0.992) is the lowest;
and the central region’s technical efficiency (0.729) and scale
efficiency (0.733) are the lowest, but its pure technical efficiency
(0.995) ranks third.

Figure 6 shows the changing trends of technical efficiency,
pure technical efficiency, and scale efficiency in China’s four
regions from 2013 to 2017. The pure technical efficiency values of
the four regions are stable between 0.97–1.0 with minimal

TABLE 4 | Overall efficiency and ranking.

2013 2014 2015 2016 2017 Avg.
scoreRegion No. DMU Rank Score Rank Score Rank Score Rank Score Rank Score

Eastern region 1 Beijing 16 0.475 18↓ 0.523 24↓ 0.504 30↓ 0.502 28↑ 0.467 0.494
2 Tianjin 8 0.605 10↓ 0.604 14↓ 0.571 16↓ 0.688 16- 0.634 0.620
3 Hebei 5 0.646 6↓ 0.694 4↑ 0.732 5↓ 0.922 5− 0.930 0.785
4 Shanghai 6 0.629 12↓ 0.578 19↓ 0.541 11↑ 0.733 8↑ 0.768 0.650
5 Jiangsu 15 0.512 7↑ 0.677 10↓ 0.611 10− 0.745 11↓ 0.700 0.649
6 Zhejiang 10 0.547 15↓ 0.551 22↓ 0.522 13↑ 0.715 23↓ 0.603 0.588
7 Fujian 1 1.000 1− 1.000 1− 1.000 1− 1.000 1− 1.000 1.000
8 Shandong 11 0.537 11− 0.604 6↑ 0.694 8↓ 0.761 20↓ 0.619 0.643
9 Guangdong 17 0.471 14↑ 0.552 8↑ 0.642 12↓ 0.729 19↓ 0.624 0.604
10 Hainan 13 0.525 16↓ 0.526 11↑ 0.594 17↓ 0.682 22↓ 0.613 0.588

Avg. score — 0.595 — 0.631 — 0.641 — 0.748 — 0.696 0.662
Central region 1 Shanxi 12 0.536 9↑ 0.618 7↑ 0.645 7− 0.776 9↓ 0.756 0.666

2 Anhui 19 0.445 20↓ 0.515 13↑ 0.574 9↑ 0.746 18↓ 0.631 0.582
3 Jiangxi 23 0.406 24↓ 0.457 25↓ 0.481 20↑ 0.654 24↓ 0.603 0.520
4 Henan 21 0.413 25↓ 0.444 26↓ 0.409 23↑ 0.612 29↓ 0.422 0.460
5 Hubei 24 0.386 17↑ 0.524 16↑ 0.55 18↓ 0.672 17↑ 0.632 0.553
6 Hunan 25 0.362 29↓ 0.357 23↑ 0.519 15↑ 0.698 15− 0.634 0.514

Avg. score — 0.425 — 0.486 — 0.530 — 0.693 — 0.613 0.549
Western region 1 Gansu 7 0.623 22↓ 0.505 20↑ 0.533 29↓ 0.539 13↑ 0.648 0.570

2 Guangxi 22 0.411 26↓ 0.424 28↓ 0.402 22↑ 0.63 26↓ 0.537 0.481
3 Guizhou 28 0.238 30↓ 0.266 27↑ 0.406 21↑ 0.634 21- 0.618 0.432
4 Inner Mongolia 1 1.000 1− 1.000 1− 1.000 1− 1.000 1− 1.000 1.000
5 Ningxia 4 0.828 5↓ 0.720 5- 0.700 1↑ 1.000 1− 1.000 0.850
6 Qinghai 29 0.193 27↑ 0.411 18↑ 0.543 28↓ 0.572 30↓ 0.406 0.425
7 Shaanxi 26 0.294 23↑ 0.498 21↑ 0.531 24↓ 0.603 27↓ 0.522 0.490
8 Sichuan 30 0.154 28↑ 0.363 29↓ 0.387 25↑ 0.602 25- 0.540 0.409
9 Xinjiang 20 0.443 4↑ 0.727 17↓ 0.548 14↑ 0.704 6↑ 0.843 0.653
10 Yunnan 3 0.892 1↑ 1.000 9↓ 0.640 1↑ 1.000 1− 1.000 0.907
11 Chongqing 27 0.267 21↑ 0.512 30↓ 0.340 26↑ 0.583 14↑ 0.644 0.469

Avg. score — 0.486 — 0.584 — 0.548 — 0.715 — 0.705 0.608
Northeast region 1 Heilongjiang 14 0.520 13↑ 0.573 12↑ 0.580 19↓ 0.668 10↑ 0.714 0.611

2 Jilin 18 0.468 19↓ 0.521 15↑ 0.551 27↓ 0.574 12↑ 0.668 0.556
3 Liaoning 9 0.569 8↑ 0.653 3↑ 0.823 6↓ 0.824 7↓ 0.825 0.739

Avg. score — 0.519 — 0.582 — 0.651 — 0.689 — 0.736 0.636
Avg. score of China — 0.513 — 0.580 — 0.586 — 0.719 — 0.687 0.617

Notes: “↑“, “↓“, and “-” respectively indicate that the province’s efficiency rankings in the current year have risen, fallen, or remained the same versus the previous year. The data are from the
authors’ collection.
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changes. The changes in technical efficiency are mainly affected
by scale efficiency. The technical efficiency and scale efficiency of
the eastern and northeastern regions both show a downward
trend, but the eastern region has a greater decline. The western
region’s technical efficiency and scale efficiency show a
fluctuating upward trend. The technical efficiency and scale
efficiency of the central region fluctuate greatly, but the overall
change is not obvious.

Efficiency Scores for Each Indicator
Table 7 shows the installed efficiency and CO2 emission
reduction efficiency scores for the four regions during
2013–2017. The installed capacity efficiency rankings of the
provinces are almost the same as the CO2 emission reduction
efficiency rankings. The rapid development of the wind power
industry exhibits a clear positive relationship with CO2 emission
reduction.

Installed Capacity Efficiency
As shown in Figure 7, the average installed capacity efficiency in
the eastern region is the highest among the four regions, followed

by the northeast region and the central region. The average
installed capacity in the western region is the least efficient.
The average installed capacity efficiency in the eastern region
shows a downward trend, while the average installed capacity
efficiency in the western region presents an undulating
upward trend. The changes of average installed capacity
efficiency in the central and northeastern regions are less
obvious.

In the eastern region, Zhejiang has the highest installed
capacity efficiency and the most stable performance, with its
efficiency value steady at one. Beijing has the lowest annual
average installed capacity efficiency, and its efficiency value
has decreased year by year, from 0.928 in 2013 to 0.759 in
2017. Beijing currently has less land for wind farm
construction, thus resulting in relatively small installed
capacity. Although the other eight eastern provinces have
relatively high efficiency values, they all show a downward
trend. The eastern region has the advantage of developing
offshore wind power since it is close to East China Sea and
rich in wind energy resources. Therefore, the installed capacity is
relatively high.

FIGURE 4 | Average annual overall efficiency in various regions.
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In the central region, Shanxi’s installed capacity efficiency is
the best, with a five-year average of 0.959. This closely relates to
Shanxi’s energy transformation in recent years, and its overall
installed capacity of wind power has ranked at the forefront of
China. Henan has the lowest efficiency value and ranks 27th in
the country. The installed capacity in the central region increased
and reached its highest efficiency in the 5 years in 2016.

The western region is China’s second-largest wind energy
resource area due to westerly winds all year round, and its
wind energy is widely distributed. The installed capacity
efficiency of Inner Mongolia is one for all 5 years, while
Qinghai, Sichuan, and Shaanxi rank 20th in the country.
The efficiency values of Gansu, Guizhou, and Ningxia
declined in 2017, which is inconsistent with the conditions
of superior wind energy resources in the western region.
Hidden behind the current situation is the problem of a
lack of coordination between wind power resources, grid
planning, and economic development. An oversupply of
wind power electricity generation creates the embarrassing
situation of many wind power plants and the phenomenon of
“abandoning wind.”

In the northeastern region, the installed capacity efficiency of
Liaoning has increased year by year, and its stability value is one
from 2015 to 2017. Heilongjiang and the eastern part of Jilin are

the third largest wind energy resource areas in China. The
installed capacity efficiency of these two provinces is declining
year by year, which undoubtedly implies a waste of wind energy
resources.

CO2 Emission Reduction Efficiency
The average carbon emission reduction efficiency values in the
four regions are all above 0.8 (Figure 8), which is high. The
average carbon emission reduction efficiency values in the eastern
and northeast regions exceed 0.9 in the 5 years, which is higher
than that in the other two regions, and thus their room for
improvement is small. The gap between the average carbon
emission efficiencies in the eastern and northeast regions is
narrowing. The average carbon emission reduction efficiencies
in the central and western regions have increased slightly.

The trend of the average CO2 emission reduction efficiency in
the four regions is similar to that of the average installed capacity
efficiency. The average installed capacity efficiency in the eastern
region shows a downward trend, while the average installed
capacity efficiency in the western region shows an upward
trend. The changes of average installed capacity efficiencies in
the central and northeastern regions are less obvious.

Emission reduction efficiency of CO2 in the eastern region
declined in 2017 compared to 2013. Zhejiang and Hainan do not

TABLE 5 | 2013–2017 Decomposition of technical efficiency score.

Region No. DMU 2013 2013 2013 2014 2014 2014 2015 2015 2015 2016 2016 2016 2017 2017 2017

TE PTE SE TE PTE SE TE PTE SE TE PTE SE TE PTE SE

Eastern
region

1 Beijing 0.865 1.000 0.865 0.837 1.000 0.837 0.782 1.000 0.782 0.676 1.000 0.676 0.612 1.000 0.612
2 Tianjin 0.987 1.000 0.987 0.866 1.000 0.866 0.809 1.000 0.809 0.886 1.000 0.886 0.802 1.000 0.802
3 Hebei 0.947 1.000 0.947 0.927 1.000 0.927 0.977 1.000 0.977 1.000 1.000 1.000 1.000 1.000 1.000
4 Shanghai 0.976 1.000 0.976 0.792 1.000 0.792 0.641 1.000 0.641 0.844 1.000 0.844 0.928 1.000 0.928
5 Jiangsu 0.909 1.000 0.909 1.000 1.000 1.000 0.886 1.000 0.886 0.864 1.000 0.864 0.753 1.000 0.753
6 Zhejiang 0.874 1.000 0.874 0.745 1.000 0.745 0.601 1.000 0.601 0.827 1.000 0.827 0.729 1.000 0.729
7 Fujian 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 Shandong 0.897 1.000 0.897 0.883 0.977 0.904 0.997 1.000 0.997 0.923 1.000 0.923 0.703 1.000 0.703
9 Guangdong 0.882 1.000 0.882 0.759 1.000 0.759 0.974 1.000 0.974 0.923 1.000 0.923 0.762 1.000 0.762
10 Hainan 0.811 1.000 0.811 0.675 1.000 0.675 0.757 1.000 0.757 0.828 1.000 0.828 0.750 1.000 0.750

Central region 1 Shanxi 0.909 0.956 0.951 0.909 1.000 0.909 0.888 1.000 0.888 0.937 1.000 0.937 0.868 1.000 0.868
2 Anhui 0.712 1.000 0.712 0.663 1.000 0.663 0.728 1.000 0.728 0.822 1.000 0.822 0.749 1.000 0.749
3 Jiangxi 0.689 1.000 0.689 0.679 1.000 0.679 0.642 1.000 0.642 0.753 1.000 0.753 0.711 1.000 0.711
4 Henan 0.736 1.000 0.736 0.666 1.000 0.666 0.515 1.000 0.515 0.741 1.000 0.741 0.530 1.000 0.530
5 Hubei 0.649 0.900 0.721 0.706 1.000 0.706 0.658 1.000 0.658 0.849 1.000 0.849 0.781 1.000 0.781
6 Hunan 0.596 1.000 0.596 0.479 1.000 0.479 0.628 1.000 0.628 0.890 1.000 0.890 0.782 1.000 0.782

Western
region

1 Gansu 0.853 1.000 0.853 0.621 1.000 0.621 0.603 1.000 0.603 0.587 1.000 0.587 0.711 1.000 0.711
2 Guangxi 0.777 1.000 0.777 0.697 1.000 0.697 0.586 0.893 0.657 0.795 1.000 0.795 0.646 1.000 0.646
3 Guizhou 0.440 1.000 0.440 0.420 1.000 0.420 0.583 1.000 0.583 0.752 1.000 0.752 0.703 1.000 0.703
4 Inner

Mongolia
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 Ningxia 1.000 1.000 1.000 0.924 1.000 0.924 0.876 1.000 0.876 1.000 1.000 1.000 1.000 1.000 1.000
6 Qinghai 0.324 1.000 0.324 0.523 1.000 0.523 0.733 1.000 0.733 0.717 1.000 0.717 0.457 1.000 0.457
7 Shaanxi 0.467 1.000 0.467 0.648 0.976 0.663 0.617 1.000 0.617 0.718 1.000 0.718 0.612 1.000 0.612
8 Sichuan 0.295 0.909 0.324 0.577 1.000 0.577 0.535 0.847 0.632 0.719 0.962 0.748 0.646 1.000 0.646
9 Xinjiang 0.658 1.000 0.658 0.949 1.000 0.949 0.591 1.000 0.591 0.715 1.000 0.715 0.856 1.000 0.856
10 Yunnan 1.000 1.000 1.000 1.000 1.000 1.000 0.910 1.000 0.910 1.000 1.000 1.000 1.000 1.000 1.000
11 Chongqing 0.487 1.000 0.487 0.837 1.000 0.837 0.510 1.000 0.510 0.764 1.000 0.764 0.822 1.000 0.822

Northeast
region

1 Heilongjiang 0.887 1.000 0.887 0.863 1.000 0.863 0.817 1.000 0.817 0.795 1.000 0.795 0.780 1.000 0.780
2 Jilin 0.775 1.000 0.775 0.773 1.000 0.773 0.771 1.000 0.771 0.699 1.000 0.699 0.736 1.000 0.736
3 Liaoning 0.895 1.000 0.895 0.931 1.000 0.931 1.000 1.000 1.000 0.978 1.000 0.978 0.876 1.000 0.876

Note: The data are from the authors’ collection.
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FIGURE 5 | Average annual technical efficiency in various regions.

TABLE 6 | Average technical efficiency score.

Year Efficiency Avg. of
eastern region

by year

Avg. of
central region

by year

Avg. of
western region

by year

Avg. of
northeast region

by year

Avg. of
China by

year

2013 TE 0.915 0.715 0.664 0.852 0.777
2013 PTE 1.000 0.976 0.992 1.000 0.992
2013 SE 0.915 0.734 0.666 0.852 0.792
2014 TE 0.848 0.684 0.767 0.856 0.789
2014 PTE 0.998 1.000 0.998 1.000 0.999
2014 SE 0.850 0.684 0.747 0.856 0.784
2015 TE 0.842 0.677 0.686 0.863 0.767
2015 PTE 1.000 1.000 0.976 1.000 0.994
2015 SE 0.842 0.677 0.701 0.863 0.771
2016 TE 0.877 0.832 0.797 0.824 0.833
2016 PTE 1.000 1.000 0.997 1.000 0.999
2016 SE 0.877 0.832 0.800 0.824 0.833
2017 TE 0.804 0.737 0.768 0.797 0.777
2017 PTE 1.000 1.000 1.000 1.000 1.000
2017 SE 0.804 0.737 0.768 0.797 0.777
Avg. by group type TE 0.857 0.729 0.736 0.838 0.788

PTE 1.000 0.995 0.992 1.000 0.997
SE 0.858 0.733 0.736 0.838 0.791

Note: The data are from the authors’ collection.
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maintain optimal efficiency. Fujian’s efficiency value is one for the
5 years, and Hebei reaches one in 2017. Except for Beijing, the
average efficiency of the remaining nine provinces is above 0.9.
Electricity requirements are huge, which makes any wind power
electricity generation completely digested by the local market,
and the amount of CO2 emissions reduced by the wind power
production process is very considerable. Therefore, the carbon
emission reduction efficiency of the eastern region is higher than
that of other regions. However, the installed capacity in the
eastern region has grown slowly, which leads to the downward
trend of CO2 emission reduction efficiency.

In the central region, the CO2 emission reduction efficiencies
of Jiangxi, Hubei, and Hunan increased significantly in 2017
compared with 2013, and the decline is more obvious in Anhui
and Henan. The average CO2 emission reduction efficiency of the
four provinces ranked 20th in the country. In the northeast,
Liaoning’s CO2 emission reduction efficiency has improved
significantly. After reaching one in 2015, it maintained a stable
and optimal state. The CO2 emission reduction efficiency values
of Heilongjiang and Jilin have decreased slightly.

The provinces with the best CO2 emission reduction efficiency
in the western region are Inner Mongolia, Yunnan, and Ningxia.
Their mean values of efficiency are 1, 0.991, and 0.980,
respectively, ranking first, third, and sixth. The CO2 emission
reduction efficiency values and rankings in the western region are
very different. Aside from the above three provinces, the
remaining provinces in the region rank over 18th. Although
the CO2 emission reduction efficiency in the western region
does not rank well, the efficiency values of the six provinces
have increased significantly.

The electricity demand market in the central and western
regions is small, and so current wind power still has a surplus after
filling the gap in the local thermal power market. Many wind

farms are forced to adopt measures of “abandoning wind” due to
the size of consumer market restrictions. The CO2 reduction
efficiency in the central and western regions also has large room
for improvement due to this reality.

Relationship Between Installed Capacity Efficiency and
Carbon Emission Reduction Efficiency Annual average
installed capacity efficiency is generally less than annual
average carbon emission reduction efficiency, but the
relationship between them is very consistent (Figure 9).
Regions with higher installed capacity efficiency have the same
higher CO2 emission reduction efficiency, which is clearly visible
in Figure 8.

As shown in Figure 10, the annual average installed capacity
efficiency of the eastern and northeastern provinces is close to
their annual average carbon emission reduction efficiency, and
the efficiency values are all greater than 0.80. The central and
western regions have large differences within their regions, with
provinces having annual average efficiency values close to or
equal to one, such as Yunnan, Inner Mongolia, and Shanxi.
Others like Sichuan, Guizhou, and Henan have annual average
efficiency values between 0.7 and 0.8.

The annual average installed capacity efficiency and
annual carbon emission reduction efficiency of Beijing and
Zhejiang in the eastern region are significantly different from
those in the other provinces. Although the installed capacity
of these two provinces is low, there is still room for
improvement in the investment of wind power generators.
Increasing the installed capacity of the two provinces will
help promote carbon emission reduction. The annual
installed capacity efficiency and annual carbon emission
reduction efficiency of Sichuan, Qinghai, Hunan, and
Henan in the central and western regions vary a lot, but
the difference in efficiency values is close to 0.1.

FIGURE 6 | Statistical description of indicators by year and by region.
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According to the research results, we see that the installed capacity
efficiency of all regions in China is generally consistent with CO2

emission reduction efficiency. Therefore, increasing the share of wind
power in power production will help reduce the pressure on carbon
emissions and achieve carbon peak and carbon neutralization.

DISCUSSION

To compare the efficiency within China’s wind power
industry, this paper uses the EBM model to calculate the
efficiency of the wind power industry in each province and

TABLE 7 | 2013–2017 Installed efficiency and CO2 emission reduction efficiency score.

Installed capacity CO2 emission reduction

Region No. DMU 2013 2014 2015 2016 2017 Avg. Rank 2013 2014 2015 2016 2017 Avg. Rank

Eastern region 1 Beijing 0.928 0.911 0.878 0.807 0.759 0.8566 18 0.933 0.918 0.891 0.838 0.806 0.8772 18
2 Tianjin 0.994 0.928 0.894 0.939 0.890 0.929 11 0.994 0.933 0.904 0.943 0.901 0.935 12
3 Hebei 0.973 0.962 0.988 1.000 1.000 0.9846 4 0.973 0.963 0.989 1.000 1.000 0.985 4
4 Shanghai 1.000 0.926 0.781 0.915 0.993 0.923 13 1.000 0.931 0.820 0.922 0.993 0.9332 13
5 Jiangsu 0.961 1.000 0.960 0.981 0.859 0.9522 7 0.962 1.000 0.962 0.981 0.876 0.9562 8
6 Zhejiang 1.000 0.896 0.751 0.905 0.872 0.8848 16 1.000 0.906 0.801 0.914 0.887 0.9016 16
7 Fujian 1.000 1.000 1.000 1.000 1.000 1 1 1.000 1.000 1.000 1.000 1.000 1 1
8 Shandong 0.946 0.938 0.999 0.982 0.862 0.9454 8 0.948 0.942 0.999 0.983 0.879 0.9502 9
9 Guangdong 0.946 0.951 1.000 0.960 0.865 0.9444 9 0.949 0.953 1.000 0.961 0.881 0.9488 10
10 Hainan 1.000 0.847 0.861 0.906 0.887 0.9002 15 1.000 0.867 0.878 0.914 0.898 0.9114 15

Avg. score 0.975 0.936 0.911 0.940 0.899 0.932 — 0.976 0.941 0.924 0.946 0.912 0.940 —

Central region 1 Shanxi 0.961 0.952 0.941 0.982 0.957 0.9586 6 0.962 0.954 0.944 0.982 0.958 0.96 7
2 Anhui 0.939 0.926 0.957 0.974 0.875 0.9342 10 0.942 0.931 0.959 0.975 0.889 0.9392 11
3 Jiangxi 0.816 0.808 0.782 0.859 0.860 0.825 22 0.845 0.839 0.821 0.876 0.877 0.8516 22
4 Henan 0.848 0.799 0.680 0.851 0.693 0.7742 27 0.868 0.833 0.758 0.870 0.765 0.8188 27
5 Hubei 0.787 0.869 0.769 0.925 0.877 0.8454 19 0.824 0.885 0.813 0.931 0.890 0.8686 20
6 Hunan 0.747 0.685 0.741 0.942 0.878 0.7986 25 0.798 0.761 0.794 0.945 0.891 0.8378 24

Avg. score 0.850 0.840 0.812 0.922 0.857 0.856 — 0.873 0.867 0.848 0.930 0.878 0.879 —

Western region 1 Gansu 0.921 0.766 0.752 0.740 0.831 0.802 23 0.926 0.810 0.801 0.793 0.855 0.837 25
2 Guangxi 0.875 0.822 0.739 0.886 0.814 0.8272 21 0.889 0.849 0.793 0.897 0.843 0.8542 21
3 Guizhou 0.619 0.592 0.756 0.911 0.825 0.7406 28 0.724 0.710 0.804 0.919 0.851 0.8016 28
4 Inner Mongolia 1.000 1.000 1.000 1.000 1.000 1 1 1.000 1.000 1.000 1.000 1.000 1 1
5 Ningxia 1.000 0.961 0.678 1.000 1.000 0.9278 12 1.000 0.962 0.938 1.000 1.000 0.98 6
6 Qinghai 0.490 0.810 0.775 0.835 0.628 0.7076 29 0.662 0.840 0.816 0.858 0.729 0.781 30
7 Shaanxi 0.735 0.827 0.763 0.872 0.759 0.7912 26 0.790 0.853 0.809 0.887 0.806 0.829 26
8 Sichuan 0.456 0.732 0.697 0.837 0.814 0.7072 30 0.647 0.789 0.768 0.860 0.843 0.7814 29
9 Xinjiang 0.793 0.974 0.667 0.796 0.922 0.8304 20 0.829 0.974 0.795 0.857 0.928 0.8766 19
10 Yunnan 1.000 1.000 0.953 1.000 1.000 0.9906 3 1.000 1.000 0.955 1.000 1.000 0.991 3
11 Chongqing 0.655 0.911 0.675 0.866 0.903 0.802 23 0.743 0.918 0.755 0.882 0.911 0.8418 23

Avg. score 0.777 0.854 0.769 0.886 0.863 0.830 — 0.837 0.882 0.839 0.905 0.888 0.870 —

Northeast region 1 Heilongjiang 0.940 0.926 0.919 0.927 0.876 0.9176 14 0.943 0.931 0.925 0.932 0.890 0.9242 14
2 Jilin 0.873 0.872 0.891 0.845 0.833 0.8628 17 0.888 0.887 0.902 0.866 0.857 0.88 17
3 Liaoning 0.945 0.964 1.000 1.000 1.000 0.9818 5 0.947 0.965 1.000 1.000 1.000 0.9824 5

Avg. score 0.919 0.921 0.937 0.924 0.903 0.921 — 0.926 0.928 0.942 0.933 0.916 0.929 —

Avg. score of China 0.872 0.885 0.842 0.915 0.878 0.878 — 0.900 0.903 0.880 0.926 0.897 0.901 —

Note: The data are from the authors’ collection.

FIGURE 7 | Efficiency values of installed capacity in various regions by year.
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discusses the efficiency differences among the eastern,
central, western, and northeastern regions. Wind power
technology efficiency is decomposed, and the relationship
between installed capacity efficiency and CO2 emission
reduction efficiency is analyzed.

Like Liu et al. (2015), Shen and Lyu (2019), Lin and Luan
(2020) and Zhang et al. (2021b), the empirical results of this study
also find that the efficiency of China’s wind power industry
exhibits a significant upward trend. However, due to the
differences in time period, samples, and models used in
research, the average annual efficiency value scores calculated
by this study are different from the efficiency values obtained in a
previous study. Findings show that China’s vigorous
development of its wind power industry has achieved great
results in energy security and environmental protection.

Through a decomposition of technical efficiency in China’s
wind power industry, this study presents that the annual average
pure technical efficiency of its wind power industry is higher than

annual average scale efficiency, which is consistent with Dong
and Shi (2019) and Wang et al. (2020). The annual average value
of pure technical efficiency is 0.997, which is high and has little
room for improvement. Scale efficiency fluctuates more
obviously, with an annual average value of 0.791, which means
more room for improvement. Consistent with the findings of
Zhao and Zhen (2019), the low technical efficiency of China’s
wind power is mainly due to the uneconomic scale of the wind
power industry. Therefore, if decision-makers want to improve
the technical efficiency of China’s wind power industry, then the
key point lies in how to improve the industry’s scale efficiency
aside from maintaining technological innovation.

This study also obtains some results that have not been
reached before. First, the development of the wind power
industry in different regions indeed varies, which can be found
by comparing the efficiency of China’s wind power industry by
region. The western region and the northeastern region have
actively promoted the construction of the wind power industry,

FIGURE 8 | CO2 emission reduction efficiency in various regions by year.

FIGURE 9 | Average annual installed capacity efficiency and average annual carbon emission reduction efficiency in various regions.
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and the gap between the efficiencies of these two regions and that
of the eastern region is narrowing. Decision-makers need to pay
attention to the slow development of the wind power industry in
the central region and focus on promoting wind power
construction there.

Second, the changes in installed wind power capacity
efficiency and CO2 emission reduction efficiency in the four
regions are very consistent. Among the four regions, only the
western region’s carbon dioxide emission reduction efficiency
and installed capacity have increased. This indicates that in order
to improve CO2 emission reduction efficiency, decision-makers
should speed up the construction of wind power plants in the east
region, central region, and northeast region.

Third, comparing the overall efficiency value of China’s wind
power industry calculated by EBM with the technical efficiency

value of this industry calculated by the radial DEAmodel, we find
that the efficiency value calculated by EBM (0.617) is lower than
that calculated by the radial DEA model (0.788). The efficiency
trends of China’s wind power industry measured by the two also
vary (Figure 11). Since the DEA model measures the relative
efficiency between comparable DMUs, the radial DEA model
only considers the radial ratio gap between the input or output
orientation of the DMU and the frontier, while the EBM model
additionally considers the non-radial slacks variable
differentiated by each DMU. It reflects that the DMU value
and improvement space represented by the EMB model
calculation results are more accurate and offer more
reference value.

In future work, the impacts of wind power demand, wind
energy resources, technology, investment, and other factors on

FIGURE 10 | (A) Average annual installed capacity efficiency in various regions. (B) Average annual carbon emission reduction efficiency in various regions.
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the efficiency of wind power electricity generation and carbon
emission reduction will be analyzed to find out the factors
restricting the improvement of wind power efficiency in
China. This will improve current research results and help
achieve carbon peak and carbon neutralization.

CONCLUSION

This study uses EBM to measure the wind power industry
efficiency of 30 provinces in China from 2013 to 2017. On this
basis, the wind power industry efficiencies in the eastern, central,
western, and northeastern regions are comparatively analyzed, and
the relationship between installed efficiency and CO2 emission
reduction efficiency is discussed. The results are as follows.

The annual average value of pure technical efficiency
obtained by dismantling the technical efficiency of China’s
wind power industry is 0.997, which is high and has little
room for improvement. Scale efficiency fluctuates more
obviously, with an annual average value of 0.791, thus
denoting more room for improvement. Technical
inefficiency is mainly affected by no efficiency problems
arising from diseconomies of scale in China’s wind power
industry.
This study finds that CO2 emission reduction of China’s wind
power industry exhibits high efficiency (≥0.8). The average
efficiency of the eastern provinces is the highest among all four
regions, while that of the western region is the lowest.
Moreover, CO2 emission reduction efficiency of each region
is very consistent with the installed capacity efficiency, which
means wind power industry investment contributes to carbon
emission reduction and the achievement of carbon peaking
and carbon neutralization.

The overall efficiency scores of various regions’ wind power
industry in China are less than 1, but do present a significant
upward trend. Among the four regions, the eastern region ranks
the highest in average annual total efficiency (0.662), the
northeast is second (0.636), the western is third (0.608), and
the central is the lowest (0.549).

Based on the above research conclusions and combined with
the actual situation of each region, the following measures are
proposed for each province and city. The goal is to help improve
wind power electricity generation efficiency and carbon emission
reduction efficiency.

Industry development plans should be made according to local
conditions. Comparing the efficiency of China’s wind power
industry by region shows gaps in the development of the wind
power industry in different regions. Therefore, the
government and/or authorities should analyze the demand
and wind energy resources of each region, select the most
suitable wind power electricity generation area, and increase
the average installed density of wind farms. Large wind farms
can be built in areas with abundant wind energy resources and
a low population, such as the northeast region and western
region. The coastal eastern region should take advantage of its
coastal terrain to develop offshore wind power. Due to the low
average wind speed and complex terrain conditions,
conditions for wind power construction in the central
region are poor. To change the low efficiency of the wind
power industry, this region needs to vigorously develop low-
speed wind turbine technology.
Cross-regional trade of wind power electricity in China should
be encouraged. China’s wind power technology inefficiency is
mainly due to the diseconomies of scale of the wind power
industry. At this stage, China is adopting a guaranteed
purchase policy for the wind power industry. Except for
some provinces in the western region, few provinces allow
wind power electricity to enter the electricity wholesale
market, which makes it difficult for the wind power
industry to trade freely across regions and achieve
economies of scale. Promoting China’s wind power
electricity cross-regional transactions through the
formulation of policies is conducive to promoting the
enhancement of the wind power industry to achieve
economies of scale.
Encourage the upgrading of wind power generation capacity.
Policies are needed to inspire China’s wind power industry to
expand installed capacity. As CO2 emission reduction
efficiency is highly synchronized with installed wind power

FIGURE 11 | Total efficiency and technical efficiency of China’s wind power industry.
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capacity efficiency, the expansion of installed capacity can
help China to increase CO2 reduction efficiency. The
government should formulate tax and fiscal incentive
policies or initiate a lowest price protection policy for
wind power electricity to stimulate the expansion of
installed wind power capacity.
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