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This paper investigates modeling methods with thermal network representation under the
scope of the optimal design and operation of Distributed Multi-Energy System (D-MES).
Two modeling approaches are compared: A Mixed-Integer Linear Programming (MILP)
optimization model and a district heating network (DHN) simulation model. The MILP
model was developed for the simultaneous design of the network layout, the sizing, and
locations of energy generation and storage technologies to minimize both costs and
carbon emissions. The thermal network is represented with a simplified linear
approximation. The DHN simulation model is a thermal-hydraulic model to address the
non-linear operational performance regarding hourly heat losses, pumping energy, and
temperature distribution along with the network. The discrepancies in the network’s costs
and operational performances from the two models are identified. The MILP model is
further improved by adding new constraints. Results from both MILP models are
compared and demonstrated with a case study. It reveals that the state-of-art MILP-
model with simplified network representation suffices for optimal selection and sizing for
most of the technologies. Although more computationally intensive, the refined model can
address the operational issues with distributed design solutions.

Keywords: mixed-integer linear programming, district heating networks, distributed multi-energy systems,
optimization model, simulation model

INTRODUCTION

Background
In Switzerland, buildings account for approximately 50% of the total primary energy consumption,
among which 30% is for heating, cooling, and hot water, 14% is for electricity (Swiss Federal Office of
Energy, 2018), resulting in almost 40% of the greenhouse gas emissions (IEA, 2018). To mitigate
climate change, Switzerland has launched an energy strategy 2050 (Prognos, 2012) to decarbonize its
energy systems. Proposed actions to meet the targets include developing energy efficiency measures
for buildings and integrating renewable energy technologies.

Distributed Multi-Energy Systems (D-MES) are one of the prominent system solutions in the
future, which combine the energy supply, conversion, storage, and distribution systems by coupling
multiple energy carriers for supplying electricity, heating and cooling simultaneously. D-MES are
usually of small to medium size energy systems located at the district scale. It is an intermediate
solution between individual building systems and the conventional centralized energy system which
meets the energy demands of the whole district. It allows for adopting more options of small-scale
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energy generation and storage technologies (e.g., PV panels, CHP
engines, batteries, or thermal storage technologies) and the
utilization of local renewable energy resources (e.g., waste heat,
solar energy) and potentially the connection of buildings through
a thermal network. Besides, the proximity to the consumers also
results in lower transmission losses and higher efficiencies
compared to conventional large-scale centralized systems.

To harness the benefits of the District Heating Network
(DHN) in a D-MES, effective modeling of thermal networks is
required to achieve optimal design and operation. The design of a
D-MES with a DHN is challenging because it involves multiple
supply systems with diverse energy availability, physical system
characteristics, temperature levels, and other operational
constraints and the thermal-dynamic behavior of the DHN.
These differences in behavior might influence the design and
operation of the network, which need to be considered in the
modeling. However, finding the right level of detail in modeling
depends on the research question, it needs to be analyzed more in
detail.

Modeling Methods and District Heating
Network Representations in Literature
Two main types of energy system models are widely used in
literature, namely, optimization and simulation models (Lund
et al., 2017; Pfenninger et al., 2014; Mavromatidis et al., 2019).
Simulation models are used to emulate the operation of a
process or a system to gain operational insights into a
particular system. In optimization models, aspects about the
design and the operation of the energy systems are usually
formulated as decision variables to optimize specific objectives
subject to multiple constraints. When it comes to optimal
design and operation of D-MES with DHN, the representation
of thermal networks often falls in the two modeling
approaches. Talebi et al. conducted a comprehensive review
of state-of-the-art models about the district heating systems by
categorizing the modeling scopes and particular techniques
used (Talebi et al., 2016).

OptimizationModelsWithMathematical Programming
Mathematical programming is frequently used to obtain an
optimal design of D-MES, either with a single objective or
multi-objectives to optimize for the environmental and/or the
economic interests of the overall system. A majority of models in
this category apply linear programming (LP) or Mixed-Integer
Linear Programming (MILP). To maintain model linearity,
energy conversion technologies, and storage technologies in
the systems are extrapolated as simplified linear mathematical
models from physical models to represent the off-design
characteristics of each technology. Similarly, the operational
performance of DHN, such as heat losses and pumping
energy, is also formulated as linear functions depending on
the heat delivered and distance between the consumers and
the supply systems. This approach has been widely employed
in high-level design and operation of D-MES with DHN. For
example, Omu et al. (Omu et al., 2013) presented a MILP model
for the design of a D-MES for a district of 6 buildings, where they

optimized the technology sizing, placement, and the thermal
network structure to minimize the economic and
environmental impacts. Wouters et al. (Wouters et al., 2015)
designed a cost-optimal multi-energy system by using a MILP
model considering uni-directional thermal network pipelines.
Morvaj et al. (Boran et al., 2016a) also used a MILP
formulation for the optimal D-MES design and considered
several scenarios with multiple routing constraints of thermal
networks. Overall, these work mainly use LP or MILP techniques
to design D-MES focusing on the integration of multiple energy
carriers (heat, gas, electricity, etc.). The option of whether a DHN
is installed or not plays a role in the overall design and
performance; however, it is usually not the only focus of the
overall optimization problem. Most models are dealing with a
large number of decision variables (including both continuous
variables and binary variables), for example, Morvaj et al. (Boran
et al., 2016a) with 70,496 variables, Omu et al. (Omu et al., 2013)
with 70,000 variables. Therefore, to remain computation
tractability and the model linear, the representation of DHN
was usually represented as very simplified linear models.

In addition, Mixed-Integer Non-Linear Programming
(MINLP) has been used to address the non-linear nature of
some off-design characteristics and operation constraints of
specific energy system components. Mertz et al. (Théophile
et al., 2016), applied a MINLP model to optimize the
configuration and design of DHN. More specifically, they
investigated the options of connecting consumers in parallel or
in cascade configurations based on network temperature levels
and the trade-offs between pumping energy and heat losses due to
the design of the networks. To accurately model the detailed
physical behavior of the thermal networks, a non-linear model
formulation was necessary. In general, however, non-linear
programming models are much less employed compared to
those based on LP techniques, due to their higher
computation complexity.

Simulation Models
In simulation models, thermal networks are represented using
thermal-hydraulic models to capture the thermal dynamics of the
physical processes and to address the design of the systems on
operational performance. Compared to optimization models, it
enables a more detailed analysis of operational aspects of the
DHN (e.g. the temperature propagation along the pipeline, fast
hydrodynamics, and pressure drops) and the temperature
dynamics from different energy supply systems. Thus, a more
detailed analysis can be addressed on specific performances, for
example, system-level design and operational analyses of D-MES
with renewable energy resources. Several interesting studies have
been carried out which employ simulation models, such as DHN
with biomass (Vallios et al., 2009), solar energy (Hassine and
Eicker, 2013), prosumers with waste heat or distributed rooftop
solar thermal technologies (Brange et al., 2014; Brange et al.,
2016). For high-level energy system design and planning,
scenario-based approaches are used with simulation models to
compare different options of technologies for the system or DHN
configurations. In a word, simulation models facilitate these
purposes with a higher level of accuracy; however, they are
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limited by the overall decision space due to their model
complexity.

Simulation-Based Optimization Models
Another subset of optimization models is simulation-based
optimization models, which adopt a different approach
compared to mathematical programming. In this modeling
approach, meta-heuristic algorithms, such as Genetic
Algorithms (GA) and Evolutional Algorithms (EA) are used to
solve the optimization problem coupled with complex simulation
models. The simulation models usually cannot be easily
formulated as a mathematical model. Instead, module-based
physical models are developed in particular software or even
black-box models. In this scope, the optimal operation of the
D-MES systems is particularly coupled with the operation and
control variables of the networks into the model. For instance, Li
et al. (Li and Svendsen, 2013) applied the Genetic algorithm
coupled with a thermal-hydraulic network simulation model to
optimize the configuration of district heating networks and to
study the trade-offs between network investment costs and the
operational costs due to thermal losses and pumping energy.
However, the optimization scope was only limited to the design
and operation of the DHN, without considering the energy supply
systems. Vesterlund et al. (Vesterlund et al., 2017) applied an
Evolutional Algorithm in combination with a steady-state
network simulation model. The goal was to decide the optimal
location of the heating plant withminimal operational costs of the
existing district heating network. Nevertheless, neither the design
of the district heating network layout nor the supply systems are
included in the study.

Bi-level Optimization Models
In addition, a hybrid approach commonly referred to as a bi-
level approach has also been applied in the D-MES
optimization problem (for example Miglani et al., 2018,
combining a meta-heuristic algorithm and a MILP model.
Weber et al. (Weber et al., 2007) initially decomposed the
optimization problem of energy system design with DHN. In
their model, the non-linear part embedded with
thermodynamic characteristics of energy conversion
technologies was solved with an Evolutionary algorithm and
the linear part was modeled with MILP. Falzollahi et al.
(Fazlollahi et al., 2014) applied a similar approach for
multi-objective and multi-period optimization for
placement and sizing of generation technologies and DHN
layout design while taking into account temperature dynamics.
Van der Heijde et al. (van der Heijde et al., 2019) investigated
the optimal design and control strategy of integrating seasonal
thermal storage technologies into a pre-designed DHN with
the bi-level approach.

While meta-heuristics are efficient at approximating optimal
solutions of NP-hard problems, there is no guarantee that global
optimum can be obtained. Moreover, for continuous decision
variables, the feasible problem dimensionality is significantly
lower compared to mathematical optimization, especially with
LP. Therefore, most energy systems optimization studies
employing metaheuristics typically either limit the time

horizon (days to few weeks), time resolution (daily or monthly
time steps), or reduce the complexity of the studied energy system
(few or single components only, or single energy carrier).

Goal and Scope
After a comprehensive review of previous research efforts on
different modeling approaches, it remains a challenge to conceive
a unique model which can: 1) capture the majority of physical
characteristics of DHN with high time resolution 2) guarantee
high accuracy to represent reality, and 3) facilitate decision
making processes with a large selection of technology options
while remaining computationally tractable. In addition, highly
detailed technology modeling can limit the applicability of
optimization models as it leads to higher computational costs.
Therefore, an adequate compromise between model reliability
and result accuracy needs to be found. Within the context of
optimal design and operation of D-MES with DHN, it is unclear
where this balance should be made in the simplification of DHN
representations.

To fill this gap, in this paper, we illustrate how different
accuracy levels of DHN representations in a MILP model can
impact the optimal design of D-MES. This is done by developing
a novel framework that combines a MILP model for system
design optimization and a detailed district heating network
simulation model to evaluate operational performance of
district heating networks. The results of an initial version of
the MILP model are compared with the DHN simulation model
results. After key discrepancies are identified between these two
models, new network constraints are added to the state-of-art
MILP modeling methods to address operational issues which
include a new piece-wise linear cost, a heat loss, and a minimum
heat distribution constraint. Finally, the impacts of the network
representation of both the original MILP model and the new
refined MILP model are analyzed and discussed. This process is
demonstrated with a simple case study district located in Zurich
Switzerland.

The paper is organized as follows: Overview and Model
Introduction introduces the benchmark models, including the
original MILP optimization model and the DHN simulation
model. Case study and input parameters describes the case
study district and input data for the analysis. Comparison of
the Mixed-Integer Linear Programming Model with the District
Heating Network Simulation Model shows the comparison of the
result of the original MILP optimization model and the DHN
simulation model. New Mixed-Integer Linear Programming
Model Formulations describes the new refined formulations in
the MILP optimization model. In Results and discussion for
optimization model comparison, the results of both the original
and the refined MILP optimization models are shown and
discussed. Finally, Conclusion concludes the study and gives an
outlook on future research.

OVERVIEW AND MODEL INTRODUCTION

The overview of the general methodology is shown in Figure 1.
As a first step, we use a MILP optimization model (Optimization
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model (a)) for the optimal design and operation of the D-MES.
The design and operation schedules of heating and storage
technologies are passed as input to the DHN simulation
model. The thermal networks’ costs and operational
performances are evaluated and compared in the first round
of comparison. As a second step, we identified the critical
discrepancies between both models, and refine the initial
MILP optimization model as optimization model (b), (c), (d),
based on those findings with new constraints added including a
new network cost constraints, heat loss constraint and
temperature constraint. As a final step we compare the
performance of the optimization and the DHN simulation
model again and discuss results.

In this section, we introduce at first the existing model
formulations, inputs and outputs, and goals of the MILP
optimization model 1) and the DHN simulation separately.
The key differences in the network representation in both
models are summarized in the end. In Comparison of the
Mixed-Integer Linear Programming Model with the District
Heating Network Simulation Model and New Mixed-Integer
Linear Programming Model Formulations, the detailed
processes of model comparison as first round comparison nd
refinement inputs, boundaries, data processes are discussed.

Mixed-Integer Linear Programming
Optimization Model
A MILP optimization model is developed based on the energy
hub modeling framework (Geidl and Andersson, 2007). It
combines the existing modeling formulations of energy
conversion and storage technologies and the thermal networks
from (Boran et al., 2016b). The model is treated as a reference
model, named as optimization model 1) in this paper. It follows a

Mixed-Integer Linear Programming (MILP) formulation to
optimize complex linear problems. The model aims to
simultaneously optimize the sizes of technologies and the
DHN layouts and their operation to minimize both costs and
carbon emissions.

Figure 2 presents the candidate conversion and storage
technologies and the interactions with the grid and the
DHN at each building in the district. Selected technologies
include a natural gas boiler (NB), a biomass boiler (BB), a
combined heat and power engine (CHP), a ground source heat
pump (GSHP), photovoltaic panels (PV), solar thermal panels
(ST), thermal storage tank (TES) and batteries. These
technologies are either already present in the Swiss energy
system or are considered to be included in the future to meet
the goals of the Swiss Energy Strategy. Additionally, buildings
can purchase electricity from the electricity grid at a retail price
when needed and can sell surplus electricity to the grid at the
feed-in tariff. The model formulation of the thermal networks
follows the paper by Morvaj et al. (Boran et al., 2016a) and is
given in Thermal network constraints. Every building
connected to the thermal network is treated as a prosumer,
which can either act as a heat source or as a heat sink during
operation of the network. Additionally, every building can
install heating technologies at the building level, to fulfill its
heating demand partially or entirely, and export surplus heat
through the network, or receive heat from other neighbor
buildings if the network is installed.

The general formulation of the MILP model is a
mathematical formulation with equality and non-equality
constraints, including predefined parameters and decision
variables (both continuous and binaries variables), which
specify the design and operation of the system. The model
requires input on buildings hourly energy demand (space

FIGURE 1 | General overview of the methodology.
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heating, domestic hot water, and electricity), renewable energy
potentials (e.g., solar irradiation), technology operational
characteristics (such as operating efficiencies of specific
technologies) and local costs information of different energy
carriers and technologies.

Objective Function
The objective of the model is to minimize both the Equivalent
Annual Cost (EAC) and total carbon emissions of the D-MES.
For multi-objective optimization problems in linear
programming, the epsilon constraint method (Haimes et al.,
1971) is commonly used. In this case, by applying the epsilon
constraint method, the minimization of the EAC is formulated
as the primary objective function with the set of Eqs. 1–4. The
second objective, the total carbon emission, is formulated as an
inequality constraint, shown in Eq. 5, with an upper bound
known as εi, representing the highest carbon emission the
system is constrained. By reducing the limit CO2 value CO2,limit

in each optimization run, a series of Pareto optimal solutions
are generated, which includes the design and operation
pattern, thus representing the trade-off between the two
conflicting objectives.

min EAC � Costinv + Costop (1)

Costinv � ∑
i

∑
m

CRFm · (LCm · Capi,m + δi,m · FCm)
+∑

i,j

CRFpipe · LCpipe · lij · δpipeij ∀i, j,m, t (2)

Costop � ∑
i

∑
t

(cbiomass · Ibiomass
i,t + cgas · Igasi,t ) + cel · Pbuy

i,t − cFIT · Psell
i,t ∀i, t

(3)

CRFm � r × (1 + r)Nm

(1 + r)Nm − 1
(4)

CO2 emissions : ∑
i

∑
t

CFgas . Igasi,t +CFel .(Pbuy
i,t −Psell

i,t ) ≤ CO2,limit ∀i, t

(5)

The Equivalent Annual Cost (EAC) includes the yearly
operational costs (Costop) for fuels (biomass, natural gas), cost
of buying electricity from the grid, and the revenue from selling
electricity to the grid (negative cost). Additionally, amortized
investment costs (Costinv) of all generation and storage
technologies and the thermal network are included.

The cost function of each technology m is constructed by a
linear term (LCm) concerning the installed capacity plus a fixed-
term ((FCm)) once the technology is installed. Capi,m is a
continuous decision variable representing the installed capacity
for technology m at each building i. CRF is the Capital Recover
Factor for each technology, accounting the lifetime of the
technology Nm, and the local interest rate r. The investment
cost of the thermal network is expressed as a linear function
depending on the length of the network between buildings lij. δ is
a binary decision variable defining whether to install a specific
technology (generation, storage, or whethertwo buildings should
be connected).

The total carbon emissions of the D-MES account for the
yearly operational CO2 emissions of all energy carriers. If
electricity is sold to the grid, the resulting CO2 emissions are
deducted. CF represents the carbon emission factor for fuels and
electricity. In this study, embodied emissions of different
technologies and fuels are not taken into account. Therefore,
biomass and PV electricity is considered as carbon-free.

Energy Balance Constraints
For each building i, the energy balance for heat and electricity is
formulated as equality constraints shown in Eqs. 6, 7.

FIGURE 2 | Candidate set of energy technologies and energy flow for the D-MES at each building.
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The hourly electricity demand is covered by the electricity
grid, through discharging the batteries or other electricity-
generating technologies (PV and CHP):

Leli,t � PPV
i,t + PCHP

i,t + Pbuy
i,t − PGSHP

i,t − Psell
i,t + Pbat,discha

i,t − Pbat,cha
i,t ∀ i, t

(6)

For each building i, the heat demand is met by energy from the
thermal network (from other building j), through discharging of
the TES, or local heating technologies (gas boilers, biomass
boilers, CHP, ST panels, and GSHP):

Lheat
i,t � PGB

i,t + PST
i,t + PBB

i,t + PCHP
i,t ·HER + PGSHP

i,t · COP + PTES,discha
i,t

− PTES,cha
i,t +∑

j

((1 − ls · lji) · qpipeji,t − qpipeij,t ) ∀ i, t

(7)

In these equations, Leli,t and Lheati,t are electricity and heat
load required by the building i at the time step t. PPV

i,t and
PCHP
i,t are electricity from PV and CHP. HER is the heat to

electricity ratio of CHP. PGSHP
i,t is the electricity consumed

from GSHP. COP is the coefficient of performance for the
GSHP. Pbuy

i,t and Psell
i,t are electricity bought and sold to the

grid. PGB
i,t , P

ST
i,t , P

BB
i,t , P

GSHP
i,t are heat output from the heating

technologies. Pbat,discha
i,t , Pbat,cha

i,t , PTES,discha
i,t , PTES,cha

i,t are
discharging and charging energy from storage technologies
(Battery and TES).

For the thermal network, qpipeji,t represents the heat flow out
from building j to building i. ls is a constant heat loss
coefficient per pipe length. lji represents pipe length
between building j and i.

Thermal Network Constraints
The thermal network layout and its operation is defined by the
following constraints and then translated into mathematical
formulations.

Heat can only be exchanged between buildings that are
connected by DHN

qpipeij,t ≤M · δpipeij ∀i, j, t (8)

where δpipeij is a binary variable which indicates whether a pipe
between building i and building j is installed or not. qpipeij,t is the
heat delivered by the pipe from building i to j.

The thermal network is modeled as bi-directional, where
energy flow can travel in both directions at different time
steps. However, at each time step, only one direction is
allowed.

δpipe,opeij,t + δpipe,opeji,t ≤ 1∀i, j, t (9)

where δpipe,opeij,t is a binary variable that defines the operational
direction of pipe at time step t.

In the heat energy balance equation (Eq. 7), the heat loss
through the network is represented as a linear loss function
depending on the length of the pipe.

Δqpipeij,t � ls · lij · qpipeij,t ∀i, j, t (10)

Other Model Specifications
As the focus of this paper is onmodeling of DHN and to study the
effectiveness of its representation at different levels of complexity,
only the network constraints are discussed here. Detailed
mathematical formulations of other technologies are given in
Supplementary Appendix A. The MILP optimization model is
programmed in Pyomo, which is an open-source tool for
modeling optimization applications in Python. Gurobi
optimizer is used for solving the MILP problem. The models
were run in parallel with 4 cores and 16 GB of RAM on Euler, an
ETH computer cluster. A MIP Gap of 1% is set for all models as
an optimality stopping criterion. All relevant technical and
economic parameters and coefficients used in the model are
given in Supplementary Appendix B.

District Heating Network simulation model
To investigate the operational performance of the network in
terms of heat losses, pumping energy, and temperature
performance, a thermal network simulation model (DHN
model), which was developed previously by the authors (Wang
et al., 2021), is used for comparison.

The DHNmodel was developed inMatlab as a multi-time step
steady-state thermal-hydraulic model. It can assess the
operational performance of thermal networks with distributed
energy sources at different locations, which can act as prosumers
to the network. The workflow of the DHN model is displayed.
The network model is formulated by graph theory, where each
node denotes one building and each edge denotes the connection
pipe. Distribution pumps are located at each building for
pumping the heat flow from the building to the network. For
a given network layout, the design of the pipes is conducted by
selecting the appropriate pipe sizes. Once the pipes are designed, a
hydraulic model is used to calculate the hydraulic flow and
pressure drop along the pipeline. A thermal model is
constructed to calculate the temperature distribution within
the network at each simulation time step under steady-state
conditions. The detailed modeling process and relevant
equations of components are given in Wang et al. (Wang
et al., 2021). In the following paragraphs of the current paper,
three specific aspects are discussed which highlight differences in
the thermal network representation between the MILP
optimization model 1) and the DHN model.

Pipe Design
The design of the piping network is a complex process. Besides
the length of pipes, it involves the selection of pipe materials (e.g.,
steel or plastic), pipe design (e.g., single pipe, twin-pipe), and
different diameters in different sections of the network, which is
highly depending on the design temperature level of the network,
target pressure loss, allowable flow speed of certain pipe types and
the operation strategies of the network. All these factors influence
the final costs of the network and the overall energy performance.

Energy flows within the pipes are restricted to a maximum
allowable speed vmax of 2 m/s. The inner diameter is calculated as
a function of the maximum flow rate max( _mij,t) in the pipe, water
density, and the maximum allowable speed vmax as:
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dij �

�����������
4 ·max( _mij,t)
π · ρ · vmax

√√
(11)

As a result, the total cost of the piping network is estimated
according to the pipe design (nominal diameter), including
trench costs and piping costs (Nussbaumer and Thalmann 2016).

Pump Design and Pumping Energy
Individual pumps are designed to be located at each building. They are
used to overcome the distribution pressure losses along the network. In
themodel, the pressure drop along the pipe has a quadratic correlation
concerning the mass flow rate according to the Darcy Weisbach
equation shown in Eq. 12 at every time step during operation.

ΔPij � fD · 8lij
ρ · π2 · d5

ij

· _mij
2 (12)

where fD is the friction factor, which is highly dependent on the
flow regime (laminar flow or turbulent flow), the relative
roughness of the pipe ε and the inner pipe diameter dij.

For each distributed pump, the pumping power is calculated
by Eq. 13.

_Qpump,i � ΔPi · _msi

ρ · ηm · ηs (13)

where Pi is the pressure difference derived between supply and
return pipelines for buildings providing heat to the network; _msi

is the flow rate passing by the pump; ηm and ηs are constant values
for isentropic and mechanical pump efficiency, respectively.

Temperature Level and Heat Loss
The temperature drop along every single pipe in the flow
direction is calculated with Eq. 14. It is dependent on the
ground temperature Tg , the mass flow rate _mij along with the
pipeline, pipe thermal transfer coefficient kij and pipe length lij.

Tpipe,out � Tg + (Tpipe,in − Tg ) · e− kij · lij
_mij · cpcp (14)

The heat loss along the supply pipeline is then computed as:

qij � _mij · cp · (Tpipe,in − Tpipe,out) (15)

Detailed values used in the DHN model for the pipe costs and
other parameters are given in Supplementary Appendix C.

Summary of Thermal Network Parameters in BothModels
The MILP model and the DHN simulation model incorporates
different sets of parameters and operational variables in the
thermal network representation. This includes the costs
(economic impact), pumping energy, and heat losses (energy
performance). These variables are summarised in Table 1.

CASE STUDY AND INPUT PARAMETERS

A case study is selected and introduced in this section. The case
study district is located in the city of Zurich in Switzerland and

consists of 6 residential buildings. Figure 3 shows the 2-D
footprints of the buildings in ArcGIS 1) and an image of the
selected solar roof area 2) from the Sonnendach database
provided by the Swiss Energy Department (Bundesamt für
Energie BFE, 2013). The building construction years range
from 1900 to 2004. It is assumed that none of them has been
retrofitted. The total conditioned area of all buildings is 16103 m2.

Building Energy Demands
To design and operate the D-MES of the case study district with
the MILP model, the hourly energy demand of each building is
required as an input. The CESAR tool (Combined Energy
Simulation and Retrofitting) (Wang et al., 2018) is used for
computing the building energy demands, including electricity,
space heating, and domestic hot water. It is an urban scale
building simulation tool, which uses EnergyPlus (NREL, 2015)
as a simulation engine. Occupancy schedules representing
different user behavior is from the Swiss SIA norm (SIA,
2016). Other necessary inputs of building information such as
building age, building type are taken from the building and
apartment registry (“Gebäude und Wohnungregister”) data
(BFS, 2013). Inputs on the building’s geometries are taken as
2.5D GIS data from the Swiss Federal Office of Topography
(Swisstopo, 2016).

Since the optimization problem considers a full year time
horizon at an hourly resolution, the problem is computationally
intractable. Therefore, a temporal aggregation based on the
typical day approach is used to reduce computational time. It
is an effective approach that has been widely used by many design
optimization problems, for example, in (Domínguez-Muñoz
et al., 2011; Marquant et al., 2017). The number of typical
days is selected by minimizing two temporal clustering quality
indicators, the error in the load duration curve (ELDC) and the
Davies-Bouldin index (Davies and Bouldin, 1979). The Davies-
Bouldin index is the ratio of the intra-cluster dispersions to the
inter-cluster distance. For the case study district, these two
indicators are calculated and shown in Supplementary
Figure 1. Ten typical days are selected as a trade-off between
the ELDC and the DB index. In total, 13 days are then used,
including these 10 days, plus one peak heating, one peak cooling,
and one peak electricity demand day. To examine the accuracy of
the typical-days approach, the heating demand error in the load
duration curve is plotted in Supplementary Figure 1 2) for the
anchor building, which is defined as the building with the highest
annual heat-demand (Marquant et al., 2015). The red line
represents the full-year heating demand simulation results.
The blue line is the reconstituted yearly result based on the
typical-days representation. Supplementary Figure 2 displays
the simulated results of the hourly heating (left) and electricity

TABLE 1 | Summary of key parameters used in the optimization model 1) and the
DHN simulation model.

Parameters Optimization model (a) DHN simulation model

Network costs lij lij , dij , Tsupply Treturn
Pumping energy Neglected lij , dij , pipe characteristics
Heat loss lij ls _mij , Tg kij , lij Tsupply, Treturn
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demand (right) for each building for the 13 typical days. The
yearly heating and electricity demand for the district pertains to
1.87 GWh and 0.81 GWh respectively.

Solar Potential Within the Case Study
The hourly solar irradiation profile is obtained from a local
weather station and adjusted to the available roof area of all
buildings. Data for the available solar roof area on each building is
obtained from the Sonnendach database provided by the Swiss
Energy Department (Bundesamt für Energie BFE, 2013).

COMPARISON OF THE MIXED-INTEGER
LINEAR PROGRAMMING MODEL WITH
THE DISTRICT HEATING NETWORK
SIMULATION MODEL

In this section, we compared the results from the MILP model,
and verified them with the District Heating Network simulation
model in three aspects: the network costs, the pumping energy
and the thermal performance of the network (as the shown in
Figure 1). This process is demonstrated with the case study
district discussed in the previous section.

Figure 4 shows Pareto optimal solutions resulting from the MILP
optimization model (a), for the objectives total GHG emissions and
equivalent annual costs per specific conditioned area. Pareto point
(PP) 1 on the bottom-right represents the cost-optimal solution and
Pareto point 6 on the top-left represents carbon emission optimal
solution. The four Pareto points in between are intermediate solutions

by applying the epsilon constraint method to reduce carbon emission
targets gradually by 20% starting from the cost-optimal solution.
Heating and storage technologies, which are installed at each building
for each Pareto optimal solution are shown in Figure 5.

The technology capacity, the installation locations, and the
optimal network layout (whether buildings should be connected
to the network or not) are results from the MILP models for
optimal Pareto solutions. We then processed this information on
system design and operational conditions as input to the district
heating network simulation model. The thermal network pipes

FIGURE 4 | Pareto fronts of specific emissions vs. equivalent
annual costs.

FIGURE 3 | ArcGIS 2D footprint (A) and selected roof area with high solar potentials in orange (B) of buildings in the case study district.
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are designed accordingly for the layout for each optimal solutions.
The network operational performances are then simulated with
the DHN simulation model.

As the simulation model requires more design and operational
input than the MILP model is capable of providing, further
assumptions are made to design and simulate the network
using the DHN simulation model:

The designed supply and return temperatures are assumed to
be 70 and 30°C, respectively.

The mass flow rate carried from one building node to the other
building node _mij is approximated in Eq. 16 with a constant
temperature difference of T � 40°C controlled at the substation.

_mij � qij
cp · ΔT (16)

The district heating network is a single pipe network. Heat
losses along the return pipeline are generally very low; hence they
are neglected.

Network Costs
Figure 6 shows the network layout design of the MILP model for
all Pareto points solutions. The model suggests that all buildings
should be connected to the district heating network in all scenarios
and that the shortest path to connect all the buildings is selected in
most solutions, except the carbon optimal scenario at Pareto point
6. In this figure, the comparison of annualized investment costs for

the MILP optimization model and the DH simulation model is
displayed. On average, the assumptions from the optimization
model 1) indicate slightly higher costs (around 2%) compared to
the DHN simulation model. The piping layout and length are
identified by the MILP model, in this regard, the two models use
the same input; however, the DHN simulation model additionally
sizes the pipe diameter, which causes the difference of
approximately 2% in the annualized investment costs between
both models.

Pumping Energy and Pump Costs
In the optimization model (a), distribution pumps are neglected.
As a result, there is no extra electricity consumption or any costs
considered regarding the distribution pumps. However, by running
the DHN simulation model, we need a specific design capacity for
the distribution pumps to obtain the pumping energy. A range of
pumps with different capacities (between 1 and 6 kW) is selected
for all the Pareto point solutions. The average yearly pumping
energy is 3.63MWh, which takes up only 0.47% of the yearly total
electricity demand for the case study district. The equivalent annual
investment cost of pumps is relatively low, which does not play a
significant role in the decision-making process for the system-level
design and district heating network design, resulting in higher
computational costs. Therefore, we conclude that pumping energy
and extra pump costs are negligible in the MILP model for this
small case study.

FIGURE 5 | Heating technologies (top) and storage technologies (bottom) size installed at each building for all Pareto optimal solutions.As here, the main focus is
the comparison of the thermal network design and performances from both models. Detailed results of system-level design and analysis of other technologies are further
discussed in Results and discussion for optimization model comparison.
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Heat Loss
Hourly heat losses are compared for both models. Figure 7 shows
one exemplary comparison for the scenario with 0.69 kg CO2-eq/m

2

(Pareto point 5). For the whole year, the overall heat loss is
underestimated by the MILP model compared to the DHN
simulation results. On an hourly basis, there is a significant
discrepancy, especially during low heating demand hours (typical
day 1, day 4, day 12, and day 13). As heat loss is only modeled as a
constant percentage per pipe length to the total energy delivered by
the network, the operational performance including the non-linear
behavior in the heat loss approximation of the district heating
network, is not reflected in the optimization model.

Temperature Sufficiency
The DHN simulation model, which takes the supply system
design from the optimization model as an input, can simulate
the temperature distribution within the network, whereby a
design supply temperature of 70°C is considered. If district
heating networks are used to supply buildings with both space
heating and domestic hot water, a critical delivered temperature
of 55°C at the building is required at the building site to prevent
the risk of legionella growth. Figure 8 shows the temperature
delivered to each building during the simulation period for the

same scenario with 0.69 Kg CO2-eq/m
2 (Pareto point 5). The red

horizontal line indicates the critical temperature of 55°C. Results
show that the required temperature is insufficient for some of the
buildings.

We can observe that insufficient temperatures mainly occur
during low heating demand days (typical day 1, day 4, day 12, and
day 13). To guarantee sufficient operation of the thermal network
during these periods, a bypass valve should open to increase the
mass flow circulating in the pipeline to improve the temperature
drop, thus resulting in higher energy consumption than the
buildings need. In the current formulation of the network
representation in the model (a), this operational issue is not
addressed.

NEW MIXED-INTEGER LINEAR
PROGRAMMING MODEL FORMULATIONS

To make a better approximation of the network representation in
the MILP model, and to resolve discrepancies between the
optimizations and the DHN simulation model, new network
constraints have been implemented based on the original
MILP model: optimization model (a).

FIGURE 7 | hourly network heat loss for typical days (TPD).

FIGURE 6 | Network layout and annualized investment costs in [CHF].
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The following assumptions are additionally made to derive the
new thermal network constraints, which are consistent with the
DHN simulation model setup:

The designed supply temperature Tsupply and return
temperature Treturn are 70°C and 30°C respectively.

The mass flow rate carried from one building node to the other
building node _mij is approximated in Eq. 16, with a constant
temperature difference of T � 40°C controlled at the substation.

• The district heating network is a single pipe network. Heat
losses along the return pipeline are neglected.

• The costs of the pumps and pumping energy are neglected.
• The temperature to be delivered to the consumers should be
above the critical delivered temperature at buildingsTlimit at 55°C.

Network Cost Constraint
To account for the discrepancy in pipe costs as shown in Network
costs, a more accurate definition of network costs is derived. This
is done by introducing the new term pipe capacity Cappipeij , which
is defined as the maximum energy intensity that the designed pipe
is capable of delivering without accounting for heat losses of the
pipe. Cappipeij is then converted as a function of the designed pipe
diameter in the following equation, which combines Eq. 11 and
Eq. 16.

Cappipeij � cp · ΔT · π · ρ · vmax · (12 dij)2

(17)

A linear regression of the cost function used in the DHN
model concerning the pipe diameter is performed first. Then a
piecewise linear approximation is extrapolated to represent the
size dependency of the network costs. Supplementary Figure 3
shows the extrapolated cost coefficient as a function of pipe
capacity, in comparison to the formulation in the DHN and the
optimization model (a).

Then the investment costs of the district heating network, used
in the objective function is formulated dependent on the pipe
capacity Cappipeij as follows:

costdhn � CRFdhn × [(a1 + b1Cappipeij )δpipe1,ij

+ (a2 + b2Cappipeij )δpipe2,ij ] × lij (18)

Cappipeij ≤ δpipe1,ij · CappipeSeg1 + δpipe2,ij ·M (19)

Cappipeij ≥ δpipe2,ij · CappipeSeg1 (20)

δpipe1,ij + δpipe2,ij ≤ 1 (21)

where δpipe1,ij and δ
pipe
2,ij are binary variables specifying the active line

segment in the piecewise linear approximation for the pipe
capacity. CappipeSeg1 is the maximum size value for the first
segment of the curve. When δpipe1,ij and δpipe2,ij are both 0, which
forces Cappipeij to be 0 by the constraints, then no pipe connection
is installed between node i and j. a1, a2 and b1, b2 are intercepts
and slopes of the two segments. Detailed values are given in Table
C2 in Supplementary Appendix C.

FIGURE 9 | Pareto fronts of optimization model (A)-(D).

FIGURE 8 | Temperature delivered at the buildings during the simulation period.
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Heat Loss Constraint
For one single pipe, by combining the assumptions used in Eqs.
14–16, the heat loss is approximated as a function of the heat
input qpipeij into the network from i to j.

Δqij � Tpipie,in − Tg

ΔT ·⎛⎝1 − e
− kij · lij ·ΔT

q
pipe
ij ⎞⎠ · qpipeij (22)

For Eq. 22, with the first-order Taylor expansion, when qpipeij is
relatively big, the heat loss could be linearly interpolated as a
function of the pipe length, which results in an approximated
representation, as shown in.

Δqij ≈ (Tin − Tg) p kij · lij (23)

For each pipe,Tin is assumed to be the designed supply temperature
Tsupply, the temperature cascade along the pipeline is neglected. The
thermal transfer coefficient kij is a property, which depends on the pipe
thermal conductivity, the diameter, and the insulation level of the pipes.
The correlation of this factor as a function of the pipe diameter chosen
in the DHN model is used. A threshold value qpipe,thresholdij �
klinearij lij(Tsupply − Tg) is set as a lower bound for the energy input
into the district heating network, to avoid that the heat input into the
thermal network is smaller than the heat loss along the pipe.

In the DHN simulation model, the thermal transfer coefficient
kij is a linear function of pipe diameter, instead of Cappipeij .
Therefore, we used linear regression to derive the function
between klinearij and Cappipeij . Then we obtain the new thermal
loss coefficient klinearij � a + b × Cappipeij . Detailed values of a and b
are given in Supplementary Appendix C.

In the MILP model, the thermal balance equation of model 1)
is then reformulated, where the new heat loss function of the
network is implemented, as follows:

Lheat
i,t � PGB

i,t + PST
i,t + PBB

i,t + PCHP
i,t ·HER + PGSHP

i,t · COP + PTES,discha
i,t

− PTES,cha
i,t +∑

j

((qpipeji,t − klinearji · lji · (Tsupply − Tg)) · δlossji,t

− qpipeij,t )∀ i, j, t

(24)

qpipeij,t ≥ δlossij,t · qpipe,thresholdij,t ∀ i, j, t (25)

qpipeij,t ≤ δlossij,t ·M ∀ i, j, t (26)

where δlossij,t is a binary variable indicating whether qpipei,j,t is larger

than the threshold qpipe,thresholdij Specifically, δlossij,t � 1 if
qpipei,j,t > qpipe,thresholdij ; δlossij,t � 0 if qpipeij,t ≤ qpipe,thresholdij . This is also
formulated as a big M constraint in the linear programming
method.

Temperature Constraint
In the current version of the MILP model, only heat losses of
the pipe are taken into account to represent the thermal
behavior of the thermal network. However, simulation
results showed that the delivered temperatures at buildings
are often not sufficient on most of the summer days when the
heat demand is very low. To improve this behavior, minimum
heat input to the thermal network is added as a new

constraint. qpipe,limit
ij is computed by Eq. 27, whereby the

required minimum temperature Tlimit is set at 55°C.
Additionally, a 5°C safety buffer value is used to
counterbalance the effect of temperature cascade along the
water stream, where the upstream temperature is assumed
as Tsupply.

qpipe,limit
ij � klinearij · lij · ΔT · 1

lg( Tsupply − Tg

Tlimit + 5 − Tg
) (27)

This constraint is added to the MILP model with the following
equation:

qpipeij,t ≥ δlossij,t · klinearij · lij · (ΔT) · βlimit ∀i, j, t (28)

where βlimit � 1

lg(Tsupply−Tg
Tlimit+5−Tg) � 5.48, calculated with the given value

in this particular case.

Summary of the Mixed-Integer Linear
Programming Optimization Model
Formulations
These three new constraints have been gradually implemented
based on the MILP model (a), resulting in three other model
versions: model (b-d). The new models are applied to the
aforementioned case study district.

Table 2 summarizes the different model versions,
including the resulting computational time and number of
binaries for each model. We can see that as the model
complexity increases, with additional binary variables
introduced gradually to model (b-d), the computational
time of the models increases significantly by almost
6 times higher in the most complex model 4) compared to
the original model (a).

RESULTS AND DISCUSSION FOR
OPTIMIZATION MODEL COMPARISON

In this section, the solutions from the original MILPmodel 1) and
refined model (b-d) are given and detailed results are analyzed
and compared.

System Design
Figure 9 shows Pareto optimal points of each optimization model
(a-d), in terms of total GHG emissions and costs per specific
conditioned area. Solution 1 on the bottom-right represents the
minimum cost solution and solution 6 on the top-left represents
the minimum CO2 emission solution. The technology selection
for conversion and storage technologies of each Pareto point is
shown in Figure 10.

Figure 9 shows that all 6 Pareto points of the different
optimization models 1) to 4) reside at similar locations on the
plot. Since emission targets for all points between 2 and 5 are
close, also optimal costs do not significantly deviate among the
different models, even though different levels of complexity of the
thermal network representations are made from the model 1) to
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model 4) (as described in the methodology, Comparison of the
Mixed-Integer Linear Programming Model with the District
Heating Network Simulation Model).

Figure 10 shows that there are only minor differences
regarding both technology selection and installed capacities.
A general trend in technology selection can be observed, which

TABLE 2 | Summary of MILP model characteristics and executing CPU time.

Piecewise linear
cost constraint

Heat loss
constraint

Temperature
constraint

No. Binaries MIP gap
(%)

Average CPU
hours

Model (a) 11,394 1 47.6
Model (b) x 11,950 1 63.0
Model (c) x x 16,632 1 227.5
Model (d) x x x 16,632 1 246.9

FIGURE 10 | Energy conversion technologies capacity and storage technology size for all Pareto optimal solutions from the optimization model (A)-(D).

FIGURE 11 | installed PV capacities on each building for all Pareto optimal solutions.
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shows that in the cost-optimal solution, PV panels, heat pump,
gas boiler, and thermal storage tanks are chosen. To further
reduce the CO2 emissions, gas boilers are gradually replaced

with ground source heat pumps. The carbon optimal solution
usually includes a biomass boiler and PV panels, which are
installed up to the maximum available roof space. A CHP unit is

FIGURE 12 | Design capacities of heating technologies at each building from the model (A)-(D).
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still too expensive for this small district due to its high
investment costs.

Thermal storage tanks are selected in all solutions mainly
for two reasons: 1) to cover the peak heating demand

together with reduced size of the boiler and 2) to be
charged when there’s surplus electricity generated from
PV panels together with operating the heat pumps. As the
battery is still a very costly technology, it is not considered in

FIGURE 13 | Design capacities of storage technologies (TES and Battery) from the model (A)-(D).
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most of the solutions, except for the carbon optimal
solution.

PV panels are often selected as a cost-effective technology for
this particular district, as investment costs are relatively
reasonable and potential gains from feed-in tariffs are an
economically viable option compared to relying entirely on

electricity from the grid. Even though solar thermal panels
are given as a potential option, in competing with PV panels
for the limited available building roof space, it is never
chosen in any of the solutions. This is mainly due to the
relatively high price of solar thermal panels in Switzerland.
Besides, to decarbonize the heating section, alternative

FIGURE 14 | Design capacities of storage technologies (TES and Battery) from the model (A)-(D).
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economical solutions are available by using biomass boilers
or heat pumps. However, for covering the electricity demand,
PV panels are the only available clean technology. Figure 11
shows the installed capacities of PV panels for the 6 buildings
corresponding to each Pareto point, from cost-optimal to
carbon optimal solutions. Please note, that the same solution
for PV panels is obtained from all model versions, as district
heating network installation did not make any impact on the
design of electrical systems. Results show that in the first 5
Pareto points, buildings 1-4 are fully covered by PV panels
utilizing all of the available roof areas. In the last Pareto
point, all the buildings are fully covered.

Figure 12 and Figure 13 shows installed capacities of
energy conversion (for space heating and domestic hot
water) and storage technologies respectively for all buildings
and model versions. The optimal district heating network
layout is also displayed for each solution in Figure 14,
whereby the line thickness represents the pipe capacity.
Please note that model 1) considers only the pipe length for
the network design; therefore, there is no specific design
capacity for the pipes.

When comparing results at the building level, there is a
significant change in where and which technologies are
installed between the different model versions. Also, the

district heating network layout differs among the models. A
clear trend is observed by comparing results from the model
1) to (d). In model version (a), big size heating technologies are
selected and located in more “centralized” locations, mostly at the
biggest energy consumers (which are building 2 and building 4).
Heat is then distributed by the thermal network to smaller energy
consumers. In the model version (d), multiple small size
technologies are selected and are more evenly distributed at
multiple buildings’ locations. The same trend is observed for
thermal storage technologies. Whereas in model version (a), big
thermal storage tanks are installed at one single building, more
and more small units are installed in a distributed manner when
moving from version 2) to (d).

Regarding the optimal district network layout, both model 1)
and 2) suggest that all buildings should be connected. The
shortest path is the optimal layout in most of the solutions.
More diversity in the network layout is shown in model 3) and
(d), indicating that not all buildings need to be connected and
even if they are connected, the shortest path may not be the
optimal solution in reaching system cost and CO2 emission
optimality.

As explained in the model methodology section, a new
capacity based piecewise linear network cost function has
been introduced in the model (b), where network

FIGURE 15 | Times series of the output of technologies for a typical winter day and a typical summer day for building 5 and 6 from themodel (A) (top) andmodel (D)
(bottom).
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investment costs do not only depend on the pipe length, but
also the pipe diameters. Optimization results show that this
update did not impact the network layout design significantly.
This might be because that with this new update of the model,
investment costs can be more accurately predicted, however,
the overall investment costs for the district heating network
only takes up around 2% of the equivalent annual costs of the
entire system for this small district, since total investment costs
are mainly dominated by the heating technologies and PV
panels.

System Operation
Operational results of one exemplary solution for the scenario
with 0.69 kg CO2-eq/m

2 (Pareto Point 5) from the model 1) and
model 4) are shown in Figure 15.

In this figure, hourly operation over 1 day of installed technologies
and the interactionwith the district heating network of building 5 and
building 6 are shown. Results are given for one typical summer and
one typical winter day. As building 5 and 6 are both small energy
consumers, which are located at a middle position of the district heat
network branch, model 1) gives as an optimal solution that both
buildings’ heat demand is covered by the district heating network
through heat supplied by heating systems of other buildings. On the
contrary, with minimum energy flow constraint added in the model
(d), both the optimal design and operation of building 5 and 6 behave

differently compared to model (a). As discussed in Temperature
sufficiency, insufficient temperature levels occurred during
summertime in model version (a). To overcome this issue, the
optimization results of the model 4) show that thermal energy
storage is installed at both buildings. Additionally, a natural gas
boiler is installed at building 5. At a typical summer day, the thermal
storage tank is charged within one timestep from the district heating
network; the heat is then locally stored and gradually discharged to
supply heat to the building. On a winter day, the gas boiler in
combination with the thermal storage works as the primary energy
source to cover the heating demand locally at building 5 and
additionally supplies heat to other buildings through the district
heating network. At building 6, only a thermal storage tank is
installed. The same behavior pattern is observed during a summer
day as in building 5. On a winter day, the thermal storage tank is
charged through the district heating network at some time step, and
later used to partially cover its heat demand and feed in back to the
network to supply heat to other buildings.

The corresponding operational performance of the thermal
network of optimization model 1) and 4) is then simulated by the
DHN model, using the optimal operation schedules of
technologies given from the optimization model. Hourly
temperature distribution at all consumer substations is
obtained. Figure 16 shows an example the hourly temperature
delivered to building 5 and 6 during the simulation period (13

FIGURE 16 | Simulation results of temperature delivered at the building with optimal design given by model (A) (top) and model (D) (bottom).
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typical days (TPD), 312 h in total) for the same scenario with
0.69 kg CO2-eq/m

2 (Pareto point 5) for model 1) and model (d),
where the red horizontal line indicates the critical temperature.

Results show thatmodel 4) heat supply temperatures stay at almost
all time steps above the required temperature of 55°C, whereas in the
model 1) in many instances, insufficient supply temperatures occur.
Due to the update of the model, which takes temperature levels at the
substations into account, the system configuration changed between
themodel versions. In this case, thermal storage tanks are installed and
operated during summer locally at the consumer, which avoids an
inefficient operation of the network. This could tremendously improve
the operational performance of the district heating network.

To quantify this behavior, the percentage of hours of the year
with insufficient supply temperatures delivered to the buildings is
calculated and shown in Figure 17 for all model versions. For each
typical day, the number of hours is counted when the temperature
delivered to the buildings is lower than the 55°C limit. The resulting
values of the typical days are then scaled up to the whole year.

The results show that for the model (a), the heat supply
temperature is insufficient for 5.5–9.61% time of the year for
the various scenarios. By implementing a new cost function in the
model (b), which better approximates the network investment
costs, the problem of insufficient heat supply temperatures even
increases during operation. In model 3) and model (d), this issue
is gradually improved with the integration of a new heat loss
constraint and temperature limit constraint, thus resulting in
better design and operational strategies. Model 4) shows in this
case, a reduced insufficient heat supply temperature rate of below
0.66% over a year for all Pareto solutions.

CONCLUSION

This paper investigates different modeling methods of thermal
networks under the scope of the optimal design and operation of
D-MES for urban districts. A common optimization approach for
D-MES is based on aMixed-Integer Linear Programming method. To

guaranteemodel linearity and to limit computational expenses, thermal
networks are usually represented through a simple fixed percentage of
heat loss per pipe length and a fixed investment cost per pipe length.
Neither the dependence of the pipe selections from different designs
(e.g., diameter, insulation levels) nor the thermal-dynamics of heat flow
along the pipeline during operations are considered.

We investigated the effectiveness of this representation of
thermal networks in the MILP model formulation by
comparing it to a more detailed thermal-hydraulic network
simulation model, which can address the non-linear behavior
in the design and operational performance of the thermal
network. Results of the case study show that:

• The network costs are slightly underestimated by the
original MILP model.

• The required pumping energy is small enough to be
negligible in the MILP model.

• Heat losses are underestimated periodically in the MILP
model, especially during low heating load periods in
summer days.

• During some periods of the year, buildings heated by the
thermal networks do not receive a sufficient temperature
level at above 55°C.

To bridge the discrepancies, further refinements are made to
improve the current MILP model formulations by adding new
constraints with a new piece-wise linear cost constraint, a heat
loss constraint, and a minimum heat distribution constraint. As a
result, more binary variables are introduced, which increases the
solving time by 6 times. The refined more complex model
prescribes similar optimal technology selections at the district
level, nevertheless, technologies are suggested to be installed more
distributed at the building side together with storage tanks.
During operation, small heating demands are covered by the
local thermal storage tanks, which are charged from the district
heating networks. Consequently, the temperature insufficiency
which occurred in the original MILP model improved
significantly. Overall, for the demonstrated small case district,
it reveals that the state-of-art MILP-model with simplified
network representation suffices for the optimal selection and
sizing of most suitable technologies at the district level. However,
to address operational issues such as temperature sufficiency and
heat loss, a more sophisticated model is needed. In general, results
suggest that the optimal design solution in regard to costs and
carbon emissions doesn’t follow a clear pattern. For some Pareto-
optimal solutions not all buildings are connected and if they are
connected, then the shortest route is not always selected as the
optimal network layout. Furthermore it is found that parameters
such as the designed pipe capacity, the selection of heat
generation and storage technology are vital criteria in the
design space, whereas the pumping energy during operation
doesn’t play an important role in the design phase of the network.

Even though these findings are case-specific, the methodology
developed could be applied to areas of different complexity (such
as different building types, sizes of the district, etc.). In this paper,
we tested the methodology on a small case study of 6 buildings
due to the computational complexity with a large number of

FIGURE 17 | Pareto points of optimization model (A)-(D) with the
percentage of insufficient temperature supply indicated.
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decision variables. Resulting limitations that were observed are
discussed in the previous section. It can be assumed that for larger
districts that are equipped with a longer network, the impact of
network costs would be more pronounced. A potential
underestimation of the heat losses from the returning pipes
could also have additional impact. In addition, due to longer
transmission distance, the impact of temperature drop along the
pipelines, that results in a temperature insufficiency issue will
become more significant. As the inaccuracy in the heat loss linear
approximation in the simplified MILP model mostly occurs
during low demand periods in summer, this effect might be
counter-balanced for a district with higher heating demands.

Whether network costs or the impact of pumping energy
would change for other case studies, need to be tested with a more
comprehensive analysis with varying district sizes, heat demand
densities, and climatic conditions. Additionally, other options of
DHN network configurations (e.g., loop networks) and different
temperature levels (e.g., low temperature, ultra-low temperature
networks) could be investigated with this approach, to come to
more general findings and recommendations.

For this case study, embodied emissions of the different
technologies are currently not included. The reason for this
choice was that on the one hand, the Swiss energy strategy
2050 is based on non-life cycle emission values, and on the
other hand, current literature lacks detailed data for accounting
embodied emissions of thermal networks including pipingmaterial
and construction in Switzerland. This choice might impact the
overall decisions on optimal technology selections and the DHN
network design. Besides, due to the computational complexity, we
only considered daily storage technologies. An interesting addition
to the present work would be the inclusion of seasonal storage
technologies such as borehole storage. Finally, a common issue
for simulation and optimization studies is that results are
sensitive to the input data employed. The overall goal of this
paper is, to showcase the process of investigating modeling
methodologies of DHN representations for D-MES and to

demonstrate the outcome for a specific case. However, an
uncertainty and sensitivity analysis regarding the critical
input parameters would be needed, which is out of the scope
of this paper, to derive more general conclusions for the
appropriate level of detail in the DHN representation.
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GLOSSARY

BB Biomass Boiler

CHP Combined Heat and Power

D-MES Distributed Multi-Energy Systems

DHN District Heating Network

EA Evolutional Algorithm

EAC Equivalent Annual Cost

GA Genetic Algorithm

GSHP Ground Source Heat Pump

GB GAS Boiler

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Non-Linear Programming

PV Photovoltaic Panels

SOC State of ChargeState of charge for a storage technology [kWh] (general
for both battery and TES)

ST Solar Thermal Panels

TES Thermal Energy Storage

TPD Typical Day

Parameters

Aroof Available roof area for solar technology installation [m2]

CF Carbon factor [kg CO2-eq/kWh]

COP GSHP Coefficient of Performance

CRF Capital recovery factor

FC Fixed cost for technology installation [CHF]

HER CHP Heat to Electricity Ratio

LC Linear cost coefficient for technology installation [CHF/kW]

M Big M (a sufficiently large number)

N life span of a technology [year]

Tg ground temperature [°C]

Tsupply supply temperature [°C]pipe inlet temperature [°C]

Treturn return temperature [°C]pipe outlet temperature [°C]

Tlimit critical temperature [°C]

cgas natural gas price [CHF/kWh]

cbiomass biomass price [CHF/kWh]

cel electricity price [CHF/kWh]

cFiT Feed-in tariff for exported electricity [CHF/kWh]

cp water heat capacity [J/(kg K)]

d pipe diameter [m]

fD friction factor of a pipe

k pipe thermal transfer coefficient [W/(m K)]

klinear new linear pipe thermal transfer coefficient [W/(m K)]

l pipe length [m]

ls linear heat loss coefficient along the pipe [%/m]

r interest rate

sl standby loss (for storage technologies)

ρ water density [kg/m3]

vmax maximum allowable flow speed along a pipe [m/s]

ηstg,discha discharging efficiency of storage technology (general for both
battery and TES)

ηstg,cha charging efficiency of storage technology (general for both battery
and TES)

ηm pump mechanical efficiency

ηs pump isentropic efficiency

ηST ST efficiency

ηPV PV efficiency

ηBB BB efficiency

ηGB GB efficiency

ηCHP,el CHP Electrical efficiency

ζBBmin BB minimum load percentage

ζGBmin GB minimum load percentage

Variables

APV installed PV area [m2]

AST installed ST area[m2]

Capi,m installed capacity of technology m at building i (general for all
technology m)

Cappipe installed pipe capacity [kW]

CapGB installed GB capacity [kW]

CapBB installed BB capacity [kW]

I energy consumption from energy carrier [kWh]

Isolar hourly solar irradiation on the roof [kW/m2]

L hourly load [kWh]

_m mass flowrate in pipe [kg/s]

_ms mass flowrate at source/sink [kg/s]

Pbuy electricity bought from the grid [kWh]

Psell electricity sold to the grid [kWh]

Pdischa discharging energy from a storage technology [kWh] (general for
both battery and TES)

Pchar charging energy to a storage technology [kWh] (general for both
battery and TES)

PTES,discha
i,t discharging energy from TES [kWh]

PTES,cha
i,t charging energy to TES [kWh]

Pbat,discha
i,t discharging energy from battery [kWh]

Pbat,cha
i,t charging energy to battery[kWh]

PGB output heat from GB [kW h]

PBB output heat from BB [kW h]

PCHP output electricity from CHP [kW h]

PGSHP input electricity to GSHP[kWh]

PST output heat from ST panels [kW h]
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PPV output electricity from PV panels [kW h]

_Qpump,i pumping power at building i [W]

qpipe heat into the pipe [kW]

qpipe,limit limit heat into the pipe [kW]

SOC State of ChargeState of charge for a storage technology [kWh] (general
for both battery and TES)

Tpipe,in pipe inlet temperature [°C]

Tpipe,out pipe outlet temperature [°C]

Tsupply supply temperature [°C]pipe inlet temperature [°C]

Treturn return temperature [°C]pipe outlet temperature [°C]

Pij pressure drop along the pipe ij [Pa]

Pi pressure difference between the supply pipe and return pipe at
building i [Pa]

qpipeij heat loss along the pipe ij [W]

δi,m binary variable indicating whether technology m is installed at building i

δpipe binary variable indicating whether a pipe is installed

δpipe,ope binary variable indicating the operational direction of a pipe

δloss binary variable indicating whether the heat is larger than the
threshold value

δGBop binary variable indicating whether GB is in operation

δBBop binary variable indicating whether BB is in operation

Superscripts

dhn district heating network

el electricity

heat heat

Sets and Indices

i, j ∈ B buildings in the district

t ∈ T timesteps of the model

m ∈ K all energy technologies: PV, ST, CHP, GSHP,GB,BB, battery, TES

ij from i to j

ji from j to i
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