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In the dedicated high-precision power quality analyzer, synchronous sampling is required
to reduce the effect of spectrum leakage produced by the discrete Fourier transform
process. Thus, accurate fundamental frequency measurement is urgently needed.
However, due to the harmonics and noise in the power signal, it is difficult to achieve
the accurate fundamental frequency measurement. Moreover, with the wide application of
high-frequency programmable power supply, the fundamental frequency is gradually
increasing, which requires power analyzers to have the abilities of both high precision
and a wide range of the fundamental frequency measurement. To solve these issues, a
new fundamental frequency measurement architecture used in synchronous sampling is
proposed. This architecture consists of a small-point fast Fourier transform module,
spectrum refinement algorithm, and a multimodal optimization method to calculate the
accurate fundamental frequency under large harmonic conditions. In the practical
hardware platform results, this architecture has a large fundamental frequency
measurement range from 20 Hz to 200 kHz with a relative error which is <0.004%. The
wideband fundamental frequency measurement structure proposed in this article achieves
high measurement accuracy.

Keywords: fundamental frequency, spectrum refinement, FFT, particle swarm optimization, synchronous sampling,
power quality analyzer

1 INTRODUCTION

With the rapid development of power electronics technology, high-power electrical equipment such
as AC motors and electric vehicles, as well as new energy power generation equipment such as solar
power stations and wind power stations are gradually widely used in various fields of industry and
residential life. And with the access of a larger number of distributed photovoltaic power stations in
the low or medium voltage distribution power grids, the harmonic issue of voltage and current
generated by the inverters seriously affects the power supply safety and quality of these power
networks (Haitao et al., 2018). Moreover, due to the influence of nonlinear high-power electrical
loads such as AC motors, electric arc furnaces, and welding machines, harmonic components and
waveform distortion are also produced. At the same time, flicker, voltage dips, supply voltage
unbalance, high reactive power, and other disadvantageous effects will also be produced due to the
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existence of nonlinear loads, which not only leads to the decline of
power supply operation efficiency but also reduces the safety and
reliability of the power supply system (Jain and Singh, 2011;
Repak et al., 2018). Therefore, a dedicated power quality analyzer
is needed to monitor the power quality parameters in the power
grid to improve the efficiency and reliability of the overall power
system. The accurate acquisition of power quality parameters is
based on the high-precision sampling of voltage and current
signals by a power quality analyzer. Moreover, due to the
development of programmable power supply and the wide
application of variable frequency drives (VFDs), the
fundamental frequency of power signal will be much higher or
lower than 50/60 Hz in some specific application scenarios. This
means that the bandwidth of the fundamental frequency of the
power signal to be measured becomes wider, and the frequency of
harmonics also increases. It becomes more and more difficult for
the power quality analyzer to accurately capture and calculate the
power quality parameters.

Because the sampling process is the core part of the power
quality analyzer, the study of the sampling method is of great
significance to improve the measurement accuracy of power
parameters. The sampling methods commonly used in a
power quality analyzer are asynchronous sampling, quasi-
synchronous sampling, and synchronous sampling. The
asynchronous sampling and the quasi-synchronous sampling
do not require the sampling rate to be an integer multiple of
the signal frequency. When the discrete Fourier transform (DFT)
is used to analyze the voltage and current signals sampled by these
two sampling methods, it is difficult to accurately calculate the
power quality parameters like inter-harmonics and harmonics
because of the spectrum leakage and the fence effect (Zhou et al.,
2018; Guo et al., 2019). Meanwhile, it is pointed out in the
literature (Kuwalek and Otomański, 2019) that the calculation
error of the total harmonic distortion (ΔTHD) can reach 4% due
to the influence of spectral leakage and fence effect. And to reduce
this influence on harmonic analysis and other power parameter
calculations, the literature (Jin et al., 2017) processed the sampled
data by windowing and interpolation operations, which
significantly improved the accuracy of fundamental frequency
measurement and harmonic analysis. However, this windowed
interpolation method involves complex transformation formulas
and heavy computation, which is difficult to apply in real-time
power quality monitoring. And in the literature (Tao et al., 2010),
the quasi-synchronous sampling method is used to analyze the
harmonics.When the power signal frequency varies within ±10%,
the relative error of harmonic amplitudes and phase angle is
about 0.1%. Similarly, the quasi-synchronous sampling method
increases the amount of data and computation in the
interpolation section and reduces the operation efficiency.

The synchronous sampling method (Aiello et al., 2007; Jain
and Singh, 2011) requires the sampling rate to be an integer
multiple of the signal frequency. In theory, this integer cycle
sampling of the voltage and current signal realized by the
synchronous sampling method can avoid the adverse effects of
spectral leakage on the calculation of power parameters (Guo
et al., 2019). Song and Yang (2014) studied the harmonic analysis
algorithm based on the synchronous sampling architecture. In

this study, the relative measurement errors of fundamental and
harmonic components are only 0.0019 and 0.003%, respectively.
It shows that the synchronous sampling method can significantly
improve the analysis accuracy of harmonic components and
other power parameters.

To achieve synchronous sampling, high precision acquisition
of fundamental frequency is a vital prerequisite. Erm et al. (2019)
designed a digital phase-locked loop (PLL) to lock the frequency
of the input signal, providing a frequency locking range from 177
to 222 kHz with a locking time of 12.57 us and a delay of 0.8 ns.
However, when a PLL circuit is used to measure a signal with a
wider bandwidth, it will result in a longer locking time.
Meanwhile, the hardware circuit of the PLL is usually more
complex and costly to design. When the signal is interfered
with noise, harmonics, inter-harmonics, and other adverse
effects, the accuracy of the PLL circuit is reduced or even the
phase-locking is not possible (Tourigny-Plante et al., 2018). And
another simple and direct frequency measurement method is
composed of a hardware comparator and a counter, as shown in
Figure 1A. In this structure, the highly stable crystal oscillator
and a clock synthesizer of Channel A produce a reference signal
with a period of T0. And the input signal from Channel B is
converted to a square signal with an unknown period of Tx. Then
this unknown square signal is counted by the reference signal to
get the specific value of the fundamental frequency. However, this
hardware implementation also has difficulty in overcoming the
fact that the input signal contains harmonics. As shown in
Figure 1B, when the input signal contains harmonics, the
actual comparison result of the zero-crossing comparator will
produce additional zero-crossing points, and measured period
Txe of the fundamental component is less than the real period Tx
of itself.

As shown in Figure 1, the harmonics caused by nonlinear
electrical appliances have been a major obstacle to accurate
fundamental frequency measurement. To overcome this
barrier, Moreira et al. (2019) designed an online frequency
estimation method based on an enhanced least mean square
(LMS) method. The fundamental frequency measurement error
is lower than 2 mHz under harmonic and inter-harmonic
conditions. Mohan et al. (2018) proposed a data-driven
method based on the dynamic mode decomposition algorithm
to measure the frequency and amplitude in the power grid, and
achieved a result with a relative frequency measurement error of
less than −2.02e−06 in the 50 Hz power system. Li et al. (2019)
adopted the frequency-shifted filtering method to estimate the
fundamental frequency of the power grid, and the frequency error
is <1e−4 Hz in the case of the test containing the odd harmonics
ranging from 3rd to 11th. Borkowski and Kania (2019) presented
new multipoint weighted interpolations of the DFT (MWIDFT)
frequency estimation method based on generalized maximum
sidelobe decay (GMSD) time windows in which the frequency
estimation accuracy can be at the level of 10−3 or 10−4 Hz. The
literature by Yifan et al. (2019) proposed a fundamental
frequency measurement architecture implemented on an
FPGA chip, and the relative error of fundamental frequency
measurement is <0.2%. Also, this method extends the
fundamental frequency measurement range, which is from
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10Hz to 1kHz. The literature by Chen et al. (2020) designed a
software-implemented fundamental frequency measurement
method with absolute frequency error <0.02 Hz in the
measurement frequency range from 10 to 450 Hz.

Many researchers have studied the accurate measurement
strategies of the fundamental frequency under the influence of
harmonics, inter-harmonics, noise, and other factors in the power
grid. However, most of these studies were focused on the 50/
60 Hz power grid system. Therefore, to satisfy the application
scenarios where the fundamental frequency varies widely and to
accurately measure the fundamental frequency at the condition of
large harmonic contents, a new fundamental frequency
measurement structure has been proposed in this study, which
is based on the fast Fourier transform (FFT) method, spectral
refinement method, and the improved particle swarm
optimization (PSO) algorithm. Compared with the previous
literature, this proposed method has a wider fundamental
frequency measurement range from 20 Hz to 200 kHz and
achieves far less than 0.02% relative error of fundamental
frequency measurement in the case of large harmonics.

The rest of this article is organized as follows. The basic
knowledge of the proposed method in this article is given in

the section “Fundamental Knowledge of the Proposed Method.”
Then the section “Implementation of the Proposed Method” will
give enough details to realize the proposed method. Afterward,
the “Experiment and Verification” section shows both simulation
results and the performance of this proposed method executed in
a hardware platform of a power quality analyzer. Finally, the
“Conclusion” section concludes this article.

2 FUNDAMENTAL KNOWLEDGE OF THE
PROPOSED METHOD

In the actual environment of power quality testing, the harmonic
components and noise of a power signal are inevitable. Therefore,
in order to get over the challenge of fundamental frequency
measurement caused by harmonics and noise, this article
proposes a high-precision and wideband fundamental
frequency measurement method. This synchronous sampling
structure integrating the proposed method is shown in Figure 2.

In the synchronous sampling architecture shown in Figure 2,
the three-phase four-wire mode is adopted to synchronously
sample 4-channel voltage signals and 4-channel current

FIGURE 1 | Traditional frequency measurement method. (A) Hardware comparator measurement circuit and (B) error source of frequency measurement with
harmonics.
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signals, respectively. Also, the phase-A voltage signal is sampled
at a fixed sampling rate by the analog-to-digital convert (ADC),
ADC1. Then the fixed sampling data are transmitted to an FPGA
chip and a processor chip to calculate the fundamental frequency
by the proposed method. After obtaining the fundamental
frequency, the synchronous sampling clock will be generated
by FPGA to drive the 8-channel ADC chip ADC2 to execute the
synchronous sampling process.

Based on this synchronous sampling structure shown in
Figure 2, the remaining part of this section will introduce the
necessary knowledge to realize the proposed fundamental
frequency measurement method.

2.1 Spectrum Refinement Method
Discrete Fourier transform (DFT) is the basis of spectrum
analysis of signals. The DFT of a sampled digital signal
sequence x(n) in which the length is N can be represented as
Eq. 1:

X(k) � DFT[x(n)] � ∑N−1

n�0
x(n)Wnk

N , (1)

where k ∈ [0,N − 1] andWnk
N � e−j2πnkN is called the rotation factor.

And according to the fast Fourier transform (FFT) algorithm, the
DFT of a signal can be calculated efficiently in both FPGA chips
and other processors.

When the FFT algorithm is used to calculate the spectrum of
the signal sequence x(n), the frequency resolutionΔf is defined as
Eq. 2:

Δf � fs
N
. (2)

In Eq. 2, fs is the sampling rate. It can be seen that decreasing
the sampling rate fs is a useful way to improve the frequency
accuracy of the FFT spectrum analysis. However, according to the
Nyquist sampling law, the reduction of the sampling rate fs means
that the bandwidth of signal measurement is reduced as well,
which is hard to meet the range of fundamental frequency
measurement requirement from 20Hz to 200 kHz required in

this article. On the other hand, increasing the number of sampling
data used to process the FFT method is a feasible way to meet the
demand of the fundamental frequency measurement resolution if
the sampling rate is fixed. But the increased calculation number
will cause the unacceptable time consumption of calculation.
Moreover, these two possible ways still cannot radically get rid of
the limitation of spectral resolution shown in Eq. 2.

Therefore, it is necessary to refine the spectrum based on the
signal spectrum obtained by the FFT algorithm with a small
number of calculating points N. In this way, the large frequency
measurement bandwidth and the calculation efficiency can be
satisfied simultaneously.

Based on the frequency resolution Δf defined by Equation 2,
the frequency fk at the kth frequency point in the spectrum can be
computed as Eq. 3:

fk � k × Δf � kfs
N
. (3)

According to the Euler formula, Eq. 1 can be divided into the
real part and the imaginary part, and the index k can be replaced
by the corresponding frequency value fk calculated by Eq. 3. Then
Eq. 1 can be rewritten as Eq. 4.

XR(fk) � ∑N−1

n�0
x(n)cos(2πnfk/fs),

XI(fk) � −∑N−1

n�0
x(n)sin(2πnfk/fs). (4)

XR(fk) in Eq. 4 is the real part of the spectrum of a signal, and
XI(fk) is the imaginary part.

The spectrum after the transformation of Eq. 4 is still discrete.
To obtain the continuous spectrum, the spectrum is needed to be
infinitely refined. Since the DFT has the frequency resolution Δf ,
it can be considered that the real frequency value of the signal is in
the neighborhood in which the central frequency is fk and the
radius is Δf2 ; that is, the real frequency freal of the sampled data is in

the range of [fk − Δf
2 , fk + Δf

2 ]. Therefore, in this neighborhood,

the frequency value fk at the kth point in the spectrum obtained by

FIGURE 2 | Synchronous sampling method integrating the proposed method.
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the FFT method is replaced by a continuous changing frequency

variable f. And Eq. 4 can be rewritten as follows:

XR(fk) � ∑N−1

n�0
x(n)cos(2πnf /fs),

XI(fk) � − ∑N−1

n�0
x(n)sin(2πf /fs), (5)

where f ∈ [fk − Δf
2 , fk + Δf

2 ]. And the amplitude of the spectrum at

frequency point f can be obtained as follows:∣∣∣∣X(f )∣∣∣∣ � 													
X2
R(fk) + X2

I (fk)√
. (6)∣∣∣∣X(f )∣∣∣∣ in Eq. 6 represents the amplitude of the spectrum at a

frequency point f.
Because the frequency variable f is continuously changing

in the neighborhood of fk, which is the frequency at the kth
spectral line obtained by the FFT method, the spectrum
obtained by Eqs. 5 and 6 is also continuous on the
frequency axis. In the corresponding neighborhood, the
infinitely refined spectrum can be obtained by using this
method, which can get rid of the frequency resolution
limitation of the DFT method.

2.2 Close Neighbor Mobility Particle Swarm
Optimization Method
A rough fundamental frequency value fbr can be obtained by
using the FFT algorithm analyzing the spectrum of the fixed-rate
sampling data by ADC1 shown in Figure 2. Then the spectrum is
refined according to Eqs. 5 and 6 at a neighborhood of fbr . In the
field of power parameter analysis, the energy of fundamental
frequency is the largest compared with other harmonic
components. Therefore, by adopting the frequency refinement
method mentioned in the preceding subsection, the problem
of fundamental frequency measurement has been transformed
from the calculation of DFT to an optimization task in a certain
interval. In other words, based on the rough frequency value fbr

calculated by the FFT method, a optimization method is used to

find out a frequency point f * in the search region [fk − Δf
2 , fk + Δf

2 ]
to make Eq. 6, which is the amplitude of the DFT at this

frequency point, reach its maximum value.
In order to reduce the time consumption of the coarse

frequency acquisition, a small-point FFT calculation will be
adopted. Therefore, the frequency resolution Δf calculated by
Eq. 2 will be large. When the fundamental frequency is too low,
some harmonic components may fall in the search region[fk − Δf

2 , fk + Δf
2 ]. And the maximum optimization problem

becomes a multimodal optimization issue, as shown in Figure 3.
In Figures 3A and 3B, the two spectrum refinement results

are based on the rough fundamental frequencies calculated by
the 4,096 point FFT algorithm at the 2MSPS fixed sampling
rate. The frequency resolution Δf is about 488 Hz at this
configuration. Figure 3A shows the refinement result of
phase-A voltage signal, where the fundamental frequency
is 20 Hz, and this voltage signal is superimposed with 2nd,
3rd, 4th, and 5th harmonics. Since the frequency resolution
Δf is much larger than the interval between fundamental
frequency and harmonic frequencies, all the four harmonic
components still appear in the refined spectrum acquired by
Eq. 5. Compared with Figure 3A, the Figure 3B shows the
refinement result of a signal with the fundamental frequency
of 1 kHz and the same harmonic configuration. And in this
condition, there will not be any harmonics in the refinement
region. From this comparison, it can be seen that when the
fundamental frequencies are low, obtaining the fundamental
frequency by the refinement method becomes a multimodal
optimization problem.

In order to solve the optimization problem, many researchers
have studied this problem. The literature by Li et al. (2021)
proposed a model-free optimization method based on the deep
reinforcement learning algorithm which is used to optimize the
control strategy for virtual synchronous generator. And the
literature by Yushuai et al. (2020) proposed an improved

FIGURE 3 | Comparison of spectrum refinement results of different fundamental frequencies. (A) 20 Hz fundamental frequency with multi-peak and (B) 1 kHz
fundamental frequency with a single peak.
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Newton descent algorithm to the cooperative energy
management task in the energy Internet. However, the
optimization task in this article is based on the spectrum
refinement algorithm, as shown in Eqs. 5 and 6, and is a
model-based optimization task. Eqs. 5 and 6 follow the
optimization model. And in some conditions mentioned
above, the optimization task will convert to a multimodal
optimization issue. To obtain the global maximum in the
multimodal optimization problem which is caused by the
frequency refinement method at low frequency and avoid
falling into the local optima, this article adopts a method
called the close neighbor mobility method (Zou et al., 2020)
(CNMM) which is based on the PSO method.

The PSO method is a swarm intelligence optimization
algorithm inspired by birds’ foraging behavior. Each
individual in this bird population is called a particle, and
the position vector of each particle represents a solution in
the solution space of a certain problem. The purpose of each
particle is to keep approaching the position of food which is
also called the global optimal solution. In order to achieve
this goal, particles are constantly dominated by the
personal best position (pbest) of themselves and
attracted by the global best position (gbest) of the whole
population.

The dimension of the solution space is assumed as m, which
means the dimension of each particle is m, too. And the size of
this population is N. Then the position vector of each particle
can be represented as xi � {xi1, xi2, . . . , xim} and i ∈ [1,N]. Also,
the velocity vector of each particle can be represented as vi �
{vi1, vi2, . . . , vim} in the same structure. Based on the above
hypothesis, the velocity and position of the i-th particle in
the dimension d can be updated at the time of t + 1 by Eqs.
7 and 8.

vi,d(t + 1) � w · vi,d(t) + c1 · r1 · (pbesti,d(t) − xi,d(t))
+ c2 · r2 · (gbestd(t) − xi,d(t)), (7)

xi,d(t + 1) � vi,d(t) + xi,d(t). (8)

In the velocity update Eq. 7, w is called the inertia weight,
which is used to illustrate how much velocity information the
current particle can retain. A large w means better global
searchability; however, the local search ability will be declined.
The c1 and c2 are called the self-learning coefficient and the
group-learning coefficient, respectively. The particle is greatly
attracted by its personal best position when the self-learning
factor c1 is large. Conversely, the particle is more easily affected by
the global best position when c2 is large. And the parameters r1
and r2 are two random numbers in the range [0, 1]. The personal
best position pbesti(t) of a particle records the best position of
itself from initialization to current time t. And the global best
position gbest(t) records the best position of the whole
population until now. And the fitness which is calculated by
the aim function is used to judge how best the particle is. In this
study, Eq. 6 is regarded as the aim function or also called the
fitness function. And the larger fitness of a particle means this
particle is good and has a larger probability of becoming the
global optimal.

And to improve the multimodal optimization ability of the
basic PSO method described by Eqs. 7 and 8, the following
strategies are needed to be described.

2.2.1 Elite Selection Strategy
The main purpose of the elite selection strategy is to find out the
particles which have excellent convergence ability, adaptability,
and distribution, and to retain these particles which have good
performance. And then, these elite particles will guide the search
behavior and evolution of the remaining particles.

The procedure of the elite selection strategy is shown in
Figure 4A. To begin this process, the particles in the whole
population P are arranged in a descending order according to
these fitness values, which are calculated by Eq. 6. And the
collection Psort is created to represent the sorted population.
After the arrangement, the particle which has the largest
fitness value is added to the elite population S. And its fitness
value is recorded as fb. Then the remaining particles in the sorted
set Psort where the differences between their fitness value and fb
that are less than a threshold e are considered as the candidate
elite particles. Then the Euclid distances defined by Eq. 9 are
calculated between each candidate elite particle and each particle
in the elite set S. The candidate particle in which the Euclid
distance is larger than the threshold r will be added to the elite
population S.

Distance(xi, xj) � 												∑m
d�1

(xi,d − xj,d)2√√ (i≠ j and i, j ∈ [1,N]). (9)

In Eq. 9, d represents the dimension of a particle.
To illustrate the elite selection strategy more vividly, we

assume there are 9 particles in the population P, and the aim
function is a function with three identical peak points. Through
the elite selection strategy, Figure 4B can be obtained. In
Figure 4B, the circles represent all the particles. It can be
found that particle F has the largest fitness, so this particle
F is added to the elite population S. Its fitness value is
recorded as fb. And particles B, H, and I are the candidate
elite particles because their differences of the fitness value to
fb is less than threshold e. Then the Euclid distances defined
by Eq. 9 between particles in set S which is particle F and
candidate particles which are particles B, H, and I are
calculated. From Figure 4B, particles H and I are too
close, which means particle H is dominated by particle I.
And distances among particles B, C, F, and I are larger than
the distance threshold r. Therefore, the final elite population
S contains the four particles B, C, F, and I. And these four
particles have a greater fitness value which means they are
good particles and more nearer to optima than others. Also,
they are not too close to each other and that indicates the four
particles are independent.

2.2.2 Close Neighborhood Strategy
The close neighborhood strategy is based on the concept of a
niche in biology. And in biological evolution, organisms usually
live and breed with their own species, and form multiple
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subpopulations. And this condition increases the diversity
of the population and improves the ability of local
searching.

To improve the local searching ability of the PSO method, a
close neighborhood strategy shown in Figure 5A is used instead of
the global best position gbest(t) used in the velocity update Eq. 7.
For any particle I, this strategy first calculates the Euclid distance
between this particle I and the remaining particles according to Eq.
9. Then the remaining particles will be sorted at the ascending
order of Euclid distance, and L particles closest to particle I are

selected. Finally, the particle with the largest fitness value in these L
particles will be found, and this particle is used as the global best
particle of particle I and represented as gbesti(t), (i � I). Then
the velocity update function 7 can be rewritten as Eq. 10.

vi,d(t + 1) � w · vi,d(t) + c1 · r1 · (pbesti,d(t) − xi,d(t))
+c2 · r2 · (gbesti,d(t) − xi,d(t)). (10)

In this equation, the global best particle gbest(t) is replaced by
the neighbor global best particle gbesti(t) of particle I.

FIGURE 4 | Elite selection algorithm. (A) The Procedure of the elite selection algorithm and (B) the Principle of the elite selection algorithm.

FIGURE 5 | Close neighborhood strategy. (A) The procedure of the close neighborhood strategy and (B) the principle of the close neighborhood strategy.
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As shown in Figure 5B, we assume there are 9 particles in the
population. And in the current iteration, particle F is the particle
with the largest fitness value. And according to the traditional
PSO method, all particles are attracted by particle F in the next
iteration. In the close neighborhood strategy, taking particle D as
an example, we assume that L equals 3. Then particles B, C, and E
are found, which are three particles closest to particle D. And
from Figure 5B, it can be seen that particle B has the largest
fitness value in this neighborhood. So B is regarded as the
neighbor global best particle gbesti(t) to particle D, and
particle D needs to converge to particle B in the following
iteration.

Unlike the classical PSO method, where all particles
converge to one global best position, the close
neighborhood strategy allows the particles to continuously
move to the best position in their neighborhood. And this
strategy helps the PSO method avoid converging to one local
optimum in a multimodal situation.

2.2.3 Differential Evolution Strategy
The differential evolution (DE) strategy uses mutation, crossover,
and selection operations to generate a new population from the
current population. By these operations, the PSO method can
expand the search region and improve the global optimization
ability.

First, the mutation operation is realized using Eq. 11.

vi � xr1 + F × (xr2 − xr3), (11)

where i ∈ [1,N] and N is the size of the particle population.
Parameter vi is the mutation result of the i-th particle. The three
particles xr1, xr2, xr3 are randomly selected from the population
(r1, r2, r3≠ i), which do not belong to the elite set S. And in Eq.
11, parameter F is a positive real number which controls the
strength of the mutation operation.

Based on mutation result vi of each particle i obtained from
Eq. 11, the crossover operation is performed by Eq. 12.

ui,j � { vi,j , if rand ≤CR
xi,j , else

, (12)

where j ∈ [1,m] is the dimension of particle i. And the rand in
Eq. 12 is a random number with the uniform distribution from 0
to 1. And CR is a crossover control parameter. And when the
random number rand ∼ U(0, 1) is less than the parameter CR,
particle ui at dimension jwill be replaced by the mutation result at
the same dimension. The idea of this operation is to
probabilistically exchange some dimensions between mutation
result vi and current particle xi to form a new particle ui. By
creating new particles, the diversity of the particle population and
the search area is increased. Thus, the probability of converging to
the global optimum is improved.

After finishing the mutation and crossover operation, a
selection process is used to form the final new population
according to Eq. 13.

x*i � { xi , if f (xi)≥ f (ui)
ui , else

. (13)

In Eq. 13, x*i is the i-th particle in the new population. The
selection operation is processed between the crossover new
particle ui and current particle xi, and the particle which has a
larger fitness value will be selected to the new population of the
next generation.

This differential evolution strategy generates the new
population by mutation, crossover, and selection operation
on the current population. This strategy improves the
abundance of individuals in the population and expands
the search scope.

Based on the above strategies, the procedure of the complete
CNMM PSO algorithm is shown in Figure 6. At the beginning of
this procedure, the initial population P is generated randomly,
and each particle in P has its own velocity vector vi and position
vector xi. Then the initial personal best position is assigned by
their initial position xi. After the initialization stage, the outer
loop is entered as the maximum iteration number is not reached,
and the outer loop represents the evolution times. At the
beginning of the outer cycle, the elite set S is found by the
elite selection strategy. Then the close neighborhood strategy is
used to find out the global best positions of each particle to form
set G. Furthermore, the inner particle update loop is entered to
update the velocity and position vectors of each particle in
population P. If the current particle is an elite particle in S,
the particle will keep their characters and not be updated.
Otherwise, particles will be used to calculate the fitness value,
and the personal best position pbest(i)will be updated. According
to Equations 10 and 8, the new velocity and position vectors of
current particle can be obtained. Before recording these new
vectors, the boundary check process must be done. If the new
vectors satisfy the boundary requirement, the new velocity
vectors are used to update the position vector of particles.
Otherwise, the boundary will be used to replace the undesired
velocity vector. And after updating all the particles in population
P, if the number of generations reaches a specific number, the DE
strategy will be performed. When the number of iteration reaches
the setting value, the CNMM algorithm is completed. Finally, the
position vectors xi of the whole population P are output as the
final solution.

3 IMPLEMENTATION OF THE PROPOSED
METHOD

Based on the spectrum refinement method and the CNMM PSO
algorithm described above, the high precision and wide range
fundamental frequency measurement architecture proposed in
this article are shown in Figure 7.

In Figure 7A, the structure consists of an FPGA chip and a
processor. The phase A voltage signal is sampled by ADC1 at the
sampling rate of 2MSPS. Then in the FPGA chip, the sampled digital
signal is divided into two channels, one is the FFT coarse frequency
measurement branch and the other is the down-sampling branch. In
the FFT channel, a Blackman window is used to preprocess the
sampled data. The peak amplitude of the sidelobe of this Blackman
window is only −57 dB, which can effectively reduce the spectrum
leakage at the fixed sampling rate condition. After this preprocessing
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operation, an FFTmodule withN� 4,096 points is used to obtain the
discrete spectrum sequence of the sampled digital signal. Since the
power signal has the prior information that the energy of the
fundamental frequency component is greater than that of other
harmonics, the spectrum index k corresponding to the frequency
component with the largest amplitude can be found through a
simplemaximumvalue searchingmodule called the “Max Search” in
Figure 7A. Therefore, the coarse fundamental frequency fk can be
obtained by Eq. 3.

And another channel is the down-sampling channel which
reduces the sampling rate. Then the decimated digital signal is
transferred to the processor to complete the spectrum refinement

method and the CNMM PSO method. The target of this
fundamental frequency measurement method proposed in this
article is from 20 Hz to 200kHz, and the analog-to-digital
converter ADC1 works at the fixed sampling rate mode.
Therefore, according to the Nyquist sampling law, the
sampling rate of ADC1 needs to be twice the maximum signal
frequency at least. However, the high sampling rate is
unnecessary and redundant for the low fundamental frequency
measurement conditions. Therefore, it is necessary to reduce the
sampling rate of the sampled digital signal by the decimation
method to improve the calculation efficiency when the ADC1 is
working at the fixed sampling rate.

FIGURE 6 | Procedure of the CNMM PSO algorithm.

Frontiers in Energy Research | www.frontiersin.org July 2021 | Volume 9 | Article 6523869

Wang et al. Wideband Fundamental Frequency Measurement

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


And according to the rough frequency measurement result fk,
the different decimation coefficient M is selected. Also, to avoid
the spectral aliasing caused by decimation, the low-pass finite
impulse response (FIR) filter is used as the anti-aliasing filter
which is implemented in the FPGA chip. Since different

decimation coefficients require different coefficients of the FIR
filter to form low-pass filters with different cutoff frequencies, the
down-sampling factorM is classified into several groups shown in
Table 1 according to the spectrum index k calculated by the FFT
module.

FIGURE 7 | Structure of the proposed fundamental frequency measurement method. (A) The implementation structure of the proposed method and (B) the
implementation process of the proposed method.

TABLE 1 | Category of down sampling coefficient.

Spectrum Index k Decimation factor M Cutoff frequency of FIR filters fc

0≤ k ≤2 200 5 kHz
2< k ≤10 100 10 kHz
10< k ≤20 50 20 kHz
20< k ≤40 10 100 kHz
40< k ≤100 5 200 kHz
1,000 < k 1 1 MHz
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In terms of the cutoff frequencies required for the FIR low-pass filter
listed inTable 1, the correspondingfilter coefficients can be designed by
some software design tools, like Matlab. And through the spectrum
indexk foundby the “Max search”module, the correspondingFIRfilter
coefficients and decimation factorM are found inTable 1 and brought
into the “FIR filter” and “down sampling”modules shown in Figure 7
to complete the decimation stage.

After the decimation process, the decimated digital signal and
the rough fundamental frequency fk are sent to the processor chip
from FPGA by the PCIe interface. In this processor, the search
region [fk − Δf , fk + Δf ] is calculated first, and it is found that the
search region is a little larger than the theoretical one mentioned
in the last section. And the frequency resolution Δf is calculated
by Eq. 2, and fs is the sampling rate of ADC1 which is not
decimated and equals to 2MSPS in this article. After determining
the search region, the CNMM PSO algorithm with specific
iteration times will be executed. And the fitness value of each
particle is calculated according to Eqs. 6 and 5. And in the fitness
computing process, the sampling rate fs in Eq. 5 is the sampling
rate after the decimation, rather than the original sampling
frequency of ADC1. When the requisite number of the
iteration of the CNMM PSO method has reached, the fitness
values of the final population P will be calculated again. The
position vector xi of the particle in the final population which has
the largest fitness value is regarded as the result of the
fundamental frequency measurement. The complete flow of
the proposed method is shown in Figure 7B.

4 EXPERIMENT AND VERIFICATION

4.1 Simulation
In this section, the proposed fundamental frequency measurement
method was performed in the Matlab programming environment.
A simulation voltage signal was used to test the functionality and
correctness of this proposed method.

The simulation signal is constructed according to Eq. 14.

S � ∑n
i�1

Aisin(2πfit). (14)

The simulation signal formed by Eq. 14 consists of n frequency
components, of whichA1 and f1 is the amplitude and frequency of
the fundamental component, and the remaining part, i ∈ [2, n],
are the amplitude and frequency of the harmonic components,
respectively.

First, the fundamental frequency f1 is set to 50 Hz to verify the
frequency measurement accuracy of the most commonly used
power frequency. And assuming that the amplitude A1 of the
fundamental frequency component is 1V , n equals 5, which means
the simulation signal contains harmonics from the second order to
the fifth order. And the amplitude of each harmonic component is
0.5V , which is a test environment with more severe harmonic
content. Then according to the simulation structure implemented
on a computer shown in Figure 8, the test of 50 Hz fundamental
frequency measurement is executed. In Figure 8, the maximum
velocity of each particle is defined as 10, which balances the
convergence speed and the convergence accuracy. And based on
the parameter settings in Figure 8, the proposed fundamental
frequency measurement method is verified for the signal with a
fundamental frequency of 50 Hz and containing harmonics from
the 2nd order to the 5th order. And the simulation result is shown
in Figure 9.

Figure 9A shows the coarse frequencymeasurement result after
the 4,096 point FFT calculation of the simulation signal. Since the
frequency resolution of this FFT module is about 488.3Hz, the
spectrum calculated by the FFT module has the maximum
spectrum amplitude at k � 0, which means the fundamental
component and the harmonics are mixed into one spectral line.
After obtaining k � 0, the rough fundamental frequency fk can be
calculated by Eq. 3, which is 0Hz. The frequency range needed to
be refined can be calculated, which is in the range from −244.15 to

FIGURE 8 | Architecture of the simulation verification on computer.
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244.15 Hz. Since the frequencies of all actual signals are positive,
the search interval here is from 0 to 244.15 Hz. From the curve of
the refined spectrum shown in Figure 9B, it can be seen that as the
frequency resolution is larger than the frequency interval between
harmonics, the refined spectrum still has 3 harmonic components.
And in this situation, it represents the problem of the multimodal
optimization. Based on the refined spectrum, the convergence
result of the CNMM PSO method is shown in Figure 9C. The
red circles in Figure 9C are particles in the population. It can be
seen that after 100 iterations, all the 150 particles converge to the
region very close to 50 Hz. And the particles do not fall into the
local optimal solution which represents the harmonic components.
Then the fitness values of these final 150 particles are calculated
again. The position xi of the particle which has the largest fitness
value is considered as the fundamental frequency. Thus, the final
calculated fundamental frequency is 49.99976 Hz, and the absolute
error is only −0.00024 Hz.

After verifying the capability of the proposed algorithm for
50 Hz fundamental frequency measurement, we examine the
influence of the signal-to-noise rate (SNR) of the input power
signal on the fundamental frequency measurement performance.
In this test scenario, the SNR of the simulation signal constructed
by Eq. 14 changes from 3 to 60 dB. A group of simulation signals
with different fundamental frequencies are tested. The number of
harmonic components of each simulation signal is 4, which

contains harmonics from the second order to the fifth order.
And the amplitude of the fundamental component and
harmonics of each simulation signal are 1 and 0.5 V,
respectively. Figure 10A demonstrates the SNR performance
of this proposed fundamental frequency measurement method.
The performance is evaluated by the absolute value of the relative
error, which is calculated by Eq. 15.

error �
∣∣∣∣fmeasure − freal

∣∣∣∣
freal

. (15)

In this Eq. 15, the errormeans the absolute value of the relative
error, and fmeasure is the fundamental frequency measured by the
proposed method. The parameter freal is the setting value of the
simulation signal.

In the SNR range from 3 to 60 dB, the absolute values of the
relative error of each fundamental frequency are <0.02%, as
shown in Figure10A. Even if the SNR of the simulation
signals is 3 dB, the maximum relative error is only 0.0114%.
These results shown in Figure 10A indicate that this proposed
method has the ability to overcome the changing SNR of the input
power signal.

In this next test case, the fundamental frequency measurement
accuracy of the proposedmethod under different harmonic amplitudes
is evaluated. In this set of simulation signals, each signal contains 4

FIGURE 9 | Verification results of the simulation singal with fundamental frequency 50 Hz. (A) The result of the 4,096 point FFT module, (B) the output of the
spectrum refinement method, and (C) the optimiaztion result of the CNMM PSO method.
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harmonics from the second order to the fifth order. The amplitude of
each harmonic component varies from 0.1 to 0.7 V. From Figure 10B,
it can be seen that the relative error of each fundamental frequency is
lower under the small harmonic amplitude. The relative errors increase
with the increase of the harmonic amplitudes. This is because the
attraction of local optima increases with the increase of harmonic
amplitude. Taking the fundamental frequency of 50Hz as an example,
as shown in Figure 9C, the amplitude of the global optimum, the
50Hz, is fixed. And the amplitudes of other local optima, which are
100, 150, and 200Hz, vary from 0.1 to 0.7 V. When the amplitudes of
harmonics are small, the amplitudes of local optima are small, which
means the fitness values of particles which are in the position
close to the local optima are small, too. In this situation, the
global optimum is very attractive for particles. However,

when the amplitudes of harmonics are gradually
increasing, the fitness values of particles near the local
optima are gradually as well. The attractiveness of local
optima increases. And the speed of particles moving to
global optimum will decrease. After a fixed number of
evolution, the particles are not as close to the global
optimum as the case of small harmonic amplitude. The
distances between global optimum and particles are the
frequency measurement error. Although the relative errors
increase when the harmonic amplitudes are large, the relative
error is <0.02%.

In the third test scenario, the relationship between the number of
harmonic components and measurement accuracy is examined. The
amplitude of the fundamental component is set to 1 V. And the

FIGURE 10 | Fundamental frequency measurement accuracy verification under different parameters. (A) Absolute value of relative error of fundamental frequency
measurement vs. SNR of the simulation signal. (B) Absolute value of relative error of fundamental frequency measurement vs. amplitude of harmonic components of the
simulation signal. (C) Absolute value of relative error of fundamental frequency measurement vs. the number of harmonic components of the simulation signal.
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amplitude of each harmonic component is 0.5 V. Then a group of
simulation signals for which the number of harmonic varies from 2 to
30 is used to evaluate the performance of the proposed method. From
Figure 10C, it can be seen that the relative error is<0.01% in thewhole
range of the number of harmonic components varying from 2 to 30.

Based on the above examination, the simulation signals with a
fundamental frequency in the range of 20Hz to 200 kHz and with the
harmonics of the 2nd order to the 5th order are tested. The amplitudes
of both fundamental component and harmonic components are
configured in the same manner as the simulation signal with a
fundamental frequency of 50Hz. And the test results are shown in
Figure 11. In this Figure 11, the two red lines are absolute error
boundaries which are calculated by the relative error requirement of
0.02%*fb. And fb is the theoretical true value of the fundamental
frequencymeasured. FromFigure 11, in themeasurement range from
20Hz to 200 kHz, all the absolute errors are within these boundaries,
which means the measurement accuracy of this proposed method is
not affected by the measurement bandwidth and satisfies the design
goal mentioned in the Introduction section.

4.2 Hardware Verification
The hardware verification platform based on the proposed high
precision and wide range fundamental frequency measurement
method is shown in Figure 12. And Figure 12A shows the power
analyzer used for the verification of the proposed method in this
article. And in this power analyzer, four identical acquisition boards as
shown in Figure 12B are used to realize the current and voltage signal
acquisition test of the three-phase four-wire power system. And in
Figure 12B, the acquisition board of phase-A consists of a pair of
voltage signal input ports, the analog signal conditioning circuit of the
phase-A voltage signal, the 16-bits ADC1 working at a fixed sampling
rate of 2MSPS, and the FPGA chip. And Figure 12B shows the
connection relationship of the hardware verification platform between
the signal source and the power quality analyzer. In this connection
relationship diagram, the red lines represent the signal path of this

proposed fundamental frequency measurement method. After
completing the calculation of the coarse spectrum for the FPGA
chip using the FFT module, and the decimation by the FIR filter
module and down sampling module, the processed data will be
transferred to the industrial personal computer (IPC) through the
PCIe interface. Then another processormodule in the IPCwill execute
the CNMM PSO method to accurately calculate the fundamental
frequency through these decimated data.

And based on the hardware verification platform, the power
signals with fundamental frequency varying from 20 Hz to
200 kHz are used to test the performance of this proposed
fundamental frequency measurement method. The SNR of the
test signal is 30 dB. The configuration of all other parameters is

FIGURE 11 | Simulation results of fundamental frequency varies from
20 Hz to 200 KHz.

FIGURE 12 | Hardware experimental platform. (A) The power analyzer
used in this experiment, (B) the acquisition board of Phase-A channel, and (C)
connection relationship of hardware verification platform.
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the same as that of the simulation subsection. The typical actual
measurement results are shown in Table 2.

From Table 2, it can be seen that the largest relative error is
0.003950% at the fundamental frequency setting value of 20Hz. And
all the hardware verification results show that the relative error of this
proposed method is far less than the target value mentioned above.
This proposed fundamental frequency measurement method in this
study effectively improves the frequency measurement accuracy and
has great significance in synchronous sampling applications.

After verifying the measurement accuracy of this proposed method
on a practical hardware platform, Table 3 compares several
fundamental frequency measurement methods used in the power
quality analysis. Method 1 by Li et al. (2019), method 2 by Chen
et al. (2020), and method 3 by Yifan et al. (2019) are used as
benchmarks to illustrate the performance of this proposed method.
FromTable 3, it can be seen thatmethod 1 has the least relative error of
fundamental frequency measurement. However, this method only
focuses on the application scenarios of 60Hz power grid standard.
And the amplitudes of the harmonic components are just 10% of that
of the fundamental component in test process, which is far <70% of
that of the proposed method. Methods 2 and 3 have extended the
measurement range of the fundamental frequency in varying levels.
These twomethods are validated only in test caseswith fewer harmonic
components. And the maximum amplitude of harmonics is only 10%
of that of the fundamental frequency. The proposed method has been
examined in the environment in which the amplitudes of harmonics
are 70% of the amplitude of fundamental frequency or the number of
harmonics is 30. And theworst relative error of the proposedmethod is
no greater than 0.0114%. Nevertheless, the worst relative error is
obtained in the situation that the SNR of the input phase-A voltage
signal is only 3 dB, which can hardly be seen in the actual test

environment. In the same SNR condition, for instance, 50 dB, the
relative error of this proposed method is not >0.002%, as shown in
Figure 10A, which is better than that of other methods.

5 CONCLUSION

This article sets out to improve the accuracy of fundamental frequency
measurement under large harmonic conditions to meet the
requirement of the synchronous sampling architecture used in the
power quality analyzer. And to achieve this goal, in this article, the
spectrum refinement strategy is studied first to overcome the
disadvantage of the limited frequency resolution of the DFT
algorithm. Then a modified PSO method is analyzed to resolve the
multimodal optimization problem in fundamental frequency
acquisition under large harmonics situation. After researching these
twomain components, the entire fundamental frequencymeasurement
structure has been designed. And the measurement convergence ability
and accuracy of this proposed method have been assessed.

This method has a high fundamental frequency measurement range,
which is from20Hz to 200 kHz.And thiswide-bandwidthmeasurement
ability helps to test theperformanceof someprogrammable power source
and variable frequency drivers. And in the premise of a wide
measurement range, this proposed method achieves high precision
that the largest relative error of fundamental frequency measurement
in the practical hardware platform test is only 0.00395%. This minimal
relative error of fundamental frequencymeasurement provides a basis for
the high-performance synchronous sampling method. Also, in the
situation of low SNR, a large number of harmonic components, or
large amplitudes of harmonic components, this method can maintain
high accuracy of fundamental frequency measurement.

TABLE 2 | Fundamental frequency measurement results on HardWare platform.

Setting value (Hz) Measurement value (Hz) Absolute error (Hz) Relative error (%)

20 20.00079 0.00079 0.003950
50 50.00036 0.00036 0.000720
60 60.00032 0.00032 0.000533
100 100.00052 0.00052 0.000520
200 200.00097 0.00097 0.000485
500 500.00278 0.00278 0.000556
1,000 1,000.00516 0.00516 0.000516
2,000 2,000.01129 0.01129 0.000564
5,000 5,000.02635 0.02635 0.000527
10,000 10,000.05245 0.05245 0.000524
20,000 20,000.10537 0.10537 0.000527
50,000 50,000.27621 0.27621 0.000552
100,000 100,000.5586 0.5586 0.000559
200,000 200,000.7088 0.70875 0.000354

TABLE 3 | Comparison of several fundamental frequency measurement methods.

Method Fundamental frequency range Max number of harmonics Max amplitude of
harmonics (%)

Max relative error (%)

Method 1 58–62 Hz 11th 10 ≤0.0002
Method 2 10–400 Hz 5th 10 ≤0.005
Method 3 10 Hz–2 kHz 5th 70 ≤0.13254
Proposed method 20 Hz–200 kHz 30th 70 ≤0.0114
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