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The integrity of data is an essential basis for analyzing power system operating status
based on data. Improper handling of measurement sampling, information transmission,
and data storage can lead to data loss, thus destroying the data integrity and hindering
data mining. Traditional data imputation methods are suitable for low-latitude, low-
missing-rate scenarios. In high-latitude, high-missing-rate scenarios, the applicability of
traditional methods is in doubt. This paper proposes a reconstruction method for missing
data in power system measurement based on LSGAN (Least Squares Generative
Adversarial Networks). The method is designed to train in an unsupervized learning
mode, enabling the neural network to automatically learn measurement data, power
distribution patterns, and other complex correlations that are difficult to model explicitly. It
then optimizes the generator parameters using the constraint relations implied by true
sample data, enabling the trained Generator to generate highly accurate data to
reconstruct the missing data. The proposed approach is entirely data-driven and does
not involvemechanistic modeling. It can still reconstruct themissing data in the case of high
latitude and high loss rate. We test the effectiveness of the proposed method by
comparing three other GAN derivation methods in our experiments. The experimental
results show that the proposed method is feasible and effective, and the accuracy of the
reconstructed data is higher while taking into account the computational efficiency.
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INTRODUCTION

As the power grid-scale continues to grow, especially with renewable energy generation’s accession,
the power system operation’s uncertainty has increased dramatically. The above situation brings
unprecedented challenges to ensure the power system’s security and economic operation (Li et al.,
2019). In recent years, with the flourishing development of supervisory control and data acquisition
systems, as well as the increasing maturity of technologies such as big data and deep learning, power
security situation prediction has gradually formed new security warning modes based on data-driven
to grasp, control and predict the operation status of the power system, which is different from the
traditional modeling and presupposing working conditions. It shows the significant value of data for
secure power system operation.

The reliability of measurement data directly affects the conclusions from the data-based analysis
of the power system operation behavior. Only conclusions based on reliable data analysis can reflect
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the system operation’s true status (Wang et al., 2020). However,
in practice, the supervisory and data acquisition system, due to
the data acquisition process, measurement process, transmission
modes, storage modes, and other segments, may break down or
suffer interference, which will lead to lost or missing data (Jing
et al., 2018). To grasp, control, and predict the power system’s
operation status based on data-driven, the primary problem we
need to solve is reconstructing the missing data.

State estimation, a fundamental technology for advanced
applications in energy management systems, has made a
remarkable contribution to grid data estimation (Ho et al.,
2020). On the premise that there are a few missing data and
the system has complete observability, we can treat the missing
data as data to be estimated and then apply state estimation to
estimate the missing data’s concrete values (Miranda et al., 2012).
Nevertheless, applying state estimation has two major
prerequisites: the system needs to meet complete observability,
full parameter information (network topology and line
parameters). In general, to meet the system’s complete
observability, the measurement system provides many
redundant data. In the case of a high rate of missing data, the
state estimation cannot accomplish the task of estimating missing
data when the system’s complete observability requirement
cannot be satisfied.

Traditionally, the methods for reconstructing missing data are
mainly based on the filling method, which can be subdivided into
the data filling method based on statistical analysis and the data
filling method based on machine learning from the
methodological perspective. The former is more common,
such as regression Imputation, mean Imputation, and hot-deck
Imputation are widely used in practice. The principle is to give
reasonable reconstruction values through statistical analysis to
reduce the calculation bias caused by missing data (KallinWestin,
2004). The latter mostly uses supervised learning, semi-
supervized learning, and unsupervized learning to achieve the
effective reconstruction of missing values (Comerford et al., 2015;
Sun et al., 2018; Li et al., 2020). Data reconstruction methods
based on statistical analysis are simple and efficient, but
reconstructed data accuracy is weak. Although the data
reconstruction method based on machine learning class has
high accuracy, it requires corresponding multiple mechanism
modeling when dealing with multiple missing data, and its
practicality is doubtful in the case of high latitude and high
missing rate.

The correlations, data distribution characteristics, and data
change patterns existing among the power system measurement
data can be used as an auxiliary basis for reconstructing the
missing data, which can greatly enrich the data’s information.
The defect of traditional methods is that they do not rationalize
the application of such information. The birth of GAN
(Generative Adversarial Network) has solved this problem.
Initially, GAN made breakthroughs in image inpainting and
high-resolution graphic reconstruction (Wang et al., 2017).
Indeed, restoring the missing part of the image and
reconstructing the missing data of power system
measurements belong to the same problem. Both of them
generate the missing part following the objective law

considering the assigned partial constraints (Dong et al.,
2019). In the image restoration problem, GAN can
automatically learn the complex distribution pattern among
data through the training of neural network in an
unsupervized form, and then generate the data to meet the
objective law, solving the problem of high data latitude and
complex modeling (Wu et al., 2017).

GAN has attracted scholars from home and abroad, and many
studies have been conducted. J. Lan et al. have proposed a CGAN
(Conditional Generative Adversarial Networks) model with the
inclusion of classification label information to enrich the original
true and false binary classification into a multi-type
determination. The introduced label information can be used
as an additional criterion to verify the generation results and
contribute to the correction of the generation results (Lan et al.,
2018). A. Borgia et al. have applied GAN to generate pedestrian
walking postures and Interpolate the video to enrich the video
information, thus improve the accuracy of pedestrian recognition
(Borgia et al., 2019). C. Ledig et al. proposed the SRGAN (Super-
Resolution Generative Adversarial Networks) model to
accomplish the task of improving the image resolution (Ledig
et al., 2017). In the domain of missing image restoration, M.
Wang et al. applied GAN to reconstruct the obscured part of the
face in the image to enrich the training sample, thus improving
the accuracy of recognizing facial expressions (Wang et al.,
2019a). R. A. Yeh et al. applied a deep generative model to the
image reconstruction problem to guarantee that the image
realism constraint is satisfied during reconstruction (Yeh et al.,
2017). To solve the problem of gradient disappearance and
dispersion during GAN training, S. Wang et al. replaced the
original objective function to train GAN with minimized
Wasserstein distance as the objective function, which
improved the stability of training. However, applying WGAN
makes computational efficiency significantly decreased (Wang
et al., 2019b).

In summary, data restoration methods based on statistical
analysis are relatively simple and straightforward but not very
practical in the case of high dimensionality and high loss rates.
The state-estimation-based data restoration method is limited by
the conditions required for mechanism modeling, and the
available premise is that absolute preconditions must be
provided. The GAN-based data restoration method solves the
former deficiency to some extent. It overcomes the limitations of
conditions for the method and can still reconstruct data and
restore data in high-dimensional and high-lost rate cases.
However, the original GAN may suffer from gradient
disappearance and dispersion during training due to the loss
function’s limitation. The improved WGAN, a GAN derivative
method, solves gradient disappearance during training by
modifying the loss function. Nevertheless, the consequent
computational burden makes the training efficiency drop
significantly. It is worth investigating how to find a generative
adversarial network that can overcome the gradient
disappearance and consider computational efficiency.

In this paper, we propose to apply LSGAN (Least Squares
Generative Adversarial Networks) to the problem of reconstructing
missing data from power system measurements. The proposed
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method learns the data’s objective distribution pattern to generate
highly accurate reconstructed data that conforms to the inter-data
complex pattern. Unlike other GANs, LSGAN replaces the cross-
entropy loss function with the least-squares loss function when
applyingGAN in reconstructingmissing data.We use this different
distance metric from the traditional one to build an adversarial
network with more stable training, faster computational
convergence, and higher quality in the generated data. It solves
unstable training due to gradient disappearance and diffusion and
the low computational efficiency of traditional GANs. The
experimental results show that comparing with GAN, CGAN,
and WGAN methods, the data generated by LSGAN can still
guarantee high accuracy in the case of multiple data missing, which
provides a good data basis for applying large volume data to
analyze the power system operation behavior.

RELATED WORK

Generating Adversarial Networks
GAN is an unsupervized learning model. It was first proposed by
Ian J. Goodfellow and other researchers in 2014 (Goodfellow
et al., 2014a). GAN was mainly used to generate images in
unsupervized training mode in the beginning. It shows the
effect of generating handwritten digital images by GAN
training with the MNIST training dataset as the sample in
Figure 1. We can see that evolution from the initial noise-
filled image to a cleaned handwritten digital image.

The model embodies the idea of a “zero-sum game”: for the two
participants in the game, under tough competition, if one gains, it
must mean that the other loses. The sum of gains and losses for both
participants is always “zero,” and there is no possibility of cooperation
between them.With this concept of the non-cooperative game, GAN
is composed of Generator and Discriminator.

Generator is a neural network used to learn the distribution
pattern of data within a sample and generate new sample data to
meet the pattern accordingly. The technical route: the Generator
trains an arbitrarily distributed vector z to obtain x′ � G(z),
where x’ is obeying distribution PG(x). Then we obtain the
optimal solution Gp by modifying the Generator’s internal
weight parameters to obey the real data distribution Pdata(x).
Then there is the following equivalence relation:
PG(x) ≈ Pdata(x). According to the above idea, the expression
of Gp is as shown in Eq. 1:

Gp � arg{min
G

(Div(Pdata(x), PG(x)))}. (1)

Discriminator is also a neural network, a binary classifier
mainly used to determine whether the input data is from the
sample data or the generated data. Its purpose is to discriminate
the disparity between the original and generated samples more
precisely. The disparity can be expressed in Eq. 2 as follows:

v(D,G) � Εx∼Pdata logD(x) + Εx∼PG log(1 − D(x)), (2)

Where Εx∼Pdata denotes the expectation of x within the sample
distribution Pdata(x). Εx∼PG denotes the expectation of x within
the sample distribution PG(x).

The Discriminator aims at maximizing v(D,G). max
D

v(D,G)
makes Discriminator better distinguish between D and G. The
larger the value of logD(x) and the smaller the value of
log(1 − D(x)), the trained Discriminator gets higher the
discriminative accuracy.

We denote max
D

v(D,G) � Div(Pdata(x), PG(x)), then

Gp � arg{min
G

max
D

v(D,G)}. The Discriminator’s goal is to

maximize the gap between the generated data distribution and the
true data distribution. The Generator’s goal is to minimize the gap
between the generated data distribution and the true data distribution.

In summary, the Discriminator in GAN is trained to maximize
the correctness of the labels assigned to the sample data and the
“generated data.” The Generator in GAN is trained to minimize
the correct recognition of the “generated data” by the
Discriminator. This adversary training process allows the
Discriminator to reach the Nash equilibrium. Meanwhile, the
Generator can generate “generated data” similar to the sample
data and successfully “trick” the Discriminator.

According to the proof procedure in the companion paper, we
can see that Eq. 3 is the minimized Jensen-Shannon divergence
(Goodfellow et al., 2014a):

v(D,G) � −2 log 2 + KL(Pdata(x)‖12 (Pdata(x) + PG(x))

+ KL(PG(x)‖ 1
2
(Pdata(x) + PG(x)))

� −2 log 2 + 2JS(Pdata(x)‖PG(x)). (3)

The original GAN has one defect: initially, the distribution of
the “generated data” obtained by the Generator may not overlap

FIGURE 1 | The schematic diagram for the effects of GAN in generating images within the iterative training process.
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with the real data distribution. In this case, using the original JS
divergence as a measure of the “distance” between the two
distributions may fail. It results in the gradients disappearing
and diffusing during training, thus failing to generate high-
quality data.

CONDITIONAL GENERATIVE
ADVERSARIAL NETWORKS

CGAN is a conditional generative adversarial networks model
based on the GAN with conditional extensions. Suppose both the
Generator and the Discriminator apply to some additional
condition y, such as class labels. In that case, the data can be
calibrated during the generation process by attaching y to the
input layer for input to the Generator and Discriminator.

In the Generator, the noise is input along with the
corresponding condition y, and the real data x and condition
y are used as the Discriminator’s objective function. According to
the corresponding literature’s derivation process, we can obtain
Eq. 4 (Mirza and Osindero, 2014).

min
G

max
D

v(D,G) � Εx∼Pdata logD(x∣∣∣∣y) + Εx∼PG log(1 − D(x∣∣∣∣y)).
(4)

From the above equation, the optimization process of CGAN
for the objective function v(D,G) is similar to that of GAN.
Where Εx∼Pdata logD(x

∣∣∣∣y) denotes the probability that the
Discriminator identifies whether the data x is real data under
condition y; Εx∼PG log(1 − D(x∣∣∣∣y)) denotes the probability that
the generated data x is judged to be real data by the Discriminator
under condition y.

In summary, it can be seen that CGAN is an improvement of
the unsupervized GAN model into a supervised model. The
added condition helps to improve the accuracy of the
generated data. However, since the objective function
continues to use the GAN’s objective function, there remains a
scenario when the data distribution pattern of generated data PG
differs significantly from that of data Pdata. It can make the case
that the Generator’s generated data would never pass the
Discriminator’s validation, and thus the gradient disappears
and diffuses.

Wasserstein Distance-Based Generative
Adversarial Networks
Both the original GAN and CGAN have the same problem:
applying JS divergence as a measure of the “distance” between
two distributions leads to the gradients disappearing and
dispersion in training. In response to these problems, WGAN
uses the Wasserstein distance to measure the difference between
the true data distribution and the generated data distribution
(Arjovsky et al., 2017).

The Wasserstein distance, also called Earth-Mover distance, is
used to measure the distance between two distributions. Its
expression is shown in Eq. 5:

W(pd , pg) � inf
λ∼∏(pd ,pg)Ε(x,y)∼λ

����x − y
����, (5)

Where Π(pd , pg) is the set of all joint distributions after the
combination of pd and pg. Ε(x,y)∼λ

����x − y
���� is the expected value of

the distance between the true sample x and the generated sample
y under compliance with the joint distribution λ.

inf
λ∼∏(pd ,pg )

Ε(x,y)∼λ
����x − y

���� is the lower bound that we manage to

take for this expected value among all possible joint distributions.
For this Earth-Mover distance, we can intuitively interpret it as

the “distance” used to move the “mound (pd)” to the location of
the “mound (pg)” under the “planning path” of λ.W(pd , pg) is the
minimum distance under the “optimal path.”

Wasserstein’s advantage over traditional distance measures is
that Wasserstein distance can still describe the distance between
two distributions even if they do not overlap, overcoming the
problem of gradient disappearance and dispersion in training due
to no overlap between the two distributions. Although WGAN
solves gradient disappearance and dispersion in training, the
additional computational load increases the computational cost
and reduces the training efficiency.

LEAST SQUARES GENERATIVE
ADVERSARIAL NETWORKS

LSGAN is an optimization model of GAN proposed by Mao
Xudong and other scholars in 2017 (Mao et al., 2017). It mainly
addresses the traditional GAN’s two defects: the low quality of the
generated images and the training process’s instability. The
difference is that GAN’s objective function is changed from
the cross-entropy loss function to the least-squares loss
function. Consequently, a more stable and faster converging
adversarial network with high generation quality is born.

The objective function of LSGAN is defined asEq. 6 (Mao et al., 2017).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
D

VLSGAN(D) � 1
2
Εx∼pdata(x)(D(x) − b)2 + 1

2
Εx∼pG(x)(D(G(x)) − a)2,

min
G

VLSGAN(G) � 1
2
Εx∼pG(x)(D(G(x)) − c)2,

(6)

Where a and b denote the labels of the fake and true data,
respectively. c denotes the value that the Generator expects the
Discriminator to trust for the fake data (Ma et al., 2019).

Two options are given for the values of a, b, c.
1) Add (1/2)Εx∼pdata(x)(D(x) − c)2 to Eq. 6. Since

min
G

VLSGAN(G) does not contain the generator parameters, it
does not change the optimal solution. Thus we can obtain Eq. 7.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
D

VLSGAN(D) � 1
2
Εx∼pdata(x)(D(x) − b)2 + 1

2
Εx∼pG(x)(D(G(x)) − a)2,

min
G

VLSGAN(G) � 1
2
Εx∼pdata(x)(D(x) − c)21

2
Εx∼pG(x)(D(G(x)) − c)2,

(7)

Maintaining the Generator constant, we can obtain the
optimal solution of the Discriminator as in Eq. 8.
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Dp � bPdata(x) + aPG(x)
Pdata(x) + PG(x) . (8)

From Eqs. 7, 8, we derive Eq. 9.

v(G) � ∫
x

((b − c)(Pdata(x) + PG(x)) − (b − a)PG(x))2
Pdata(x) + PG(x) dx. (9)

If we set b-c � 1 and b-a � 2, we can obtain the following
equations.

v(G) � ∫
x

((Pdata(x) + PG(x)) − 2PG(x))2
Pdata(x) + PG(x) dx

� χ2Pearson(Pdata(x) + PG(x)‖2PG(x)), (10)

where χ2Pearson is the Pearson chi-square divergence. For example,
when we set a � -1, b � 1, and c � 0, the objective function is as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
D

VLSGAN(D) � 1
2
Εx∼pdata(x)(D(x) − 1)2 + 1

2
Εx∼pG(x)(D(G(x)) + 1)2,

min
G

VLSGAN(G) � 1
2
Εx∼pG(x)(D(G(x)))2.

(11)

2) By setting b � c, the Generator generates data that is as
similar as possible to the true data distribution. For example, if we
set a � 0 and b � c � 1, respectively, the objective function is as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
D

VLSGAN(D) � 1
2
Εx∼pdata(x)(D(x) − 1)2 + 1

2
Εx∼pG(x)(D(G(x)))2,

min
G

VLSGAN(G) � 1
2
Εx∼pG(x)(D(G(x)) − 1)2.

(12)

The main idea of LSGAN is to provide a smoothing and non-
saturating gradient loss function for the Discriminator. In this
way, D “pulls” the data generated by the generator G to the true
data distribution Pdata (x), so that the distribution of the data
generated by G is similar to Pdata (x). In this paper, we choose the
second scheme as the objective function.

LSGAN-BASED METHOD FOR
RECONSTRUCTING MISSING POWER
DATA
Data does not exist in isolation. There are often various constraints
between data, which describe the relationship between the data. The
data must meet this correlation between the data and not be
contradicted by each other. There is a constraint relationship
between the power data in the power system: during the system’s
operation, the power balance is satisfied at all times.

The power grid is composed of nodes and lines. The grid’s
power balance can be divided into two types of balance: node
power balance and line power balance. For the node, the power
directly related to the node satisfies the principle that the total
power injected into the node is equal to the total power out of the
node. For the line, the difference of the actual power at both ends
is the power loss of branches.

The blue blocks in Figure 2 represent normal power data, and
the red blocks represent missing power data.

When the case in a) occurs, Pij power data is missing.
According to the line power balance principle, we can
reconstruct the missing data Pij by the power at the other end
of the branch, and the branch loss power. We can also reconstruct
the missing power Pij by directly related to node i according to the
node power balance principle.

When the case in b) occurs, Pij and Pji power data are missing.
We can reconstruct the missing power Pij and Pji by directly
correlating the power with node i and node j, respectively,
according to the node power balance principle.

When the case in c) occurs, the missing power Pji can be
reconstructed according to the node power balance principle by
directly correlating the power with node j. Then the missing power
Pij according to the line power balance principle. Finally, the missing
power Pii can be reconstructed according to the node power balance
principle by directly correlating the power with node i.

When the case in d) occurs, the system does not meet the
observability. We can no longer complete the data reconstruction
task by applying the power balance principle alone. The data
reconstruction method in this paper can solve this problem.

FIGURE 2 | Schematic diagram of the missing active power data in different cases.
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The data we currently acquire are fully structured data
recorded at the same time sampling scale with the correlation
measurements of different stations. There are topological linkage
relationships between the physical objects it represents, so each
time section’s data are data with topological constraints.

Unlike regular data, power system measurement data embody
spatially constrained relationships between each other. Therefore,
we can add spatiality to the characteristics of describing data. By
organically integrating the grid data’s spatial correlations with the
grid power data, we can enrich the data’s distribution
characteristics and enhance the data’s representable
dimensions. It contributes to improving the learning effect of
generative adversarial networks on data characters.

We use the adjacency matrix A to describe the network
topology. If a topology consists of n nodes, its adjacency
matrix is an n × n matrix A ∈ Rn×n. The values of each
element aij inside it are as follows:

aij �
⎧⎨⎩ 1, if (vi, vj) ∈ E,

0, if (vi, vj) ∉ E,
(13)

Where v is a one-dimensional array storing information about the
graph’s vertices, vi and vj denote node i and node j. E is a two-
dimensional array storing information about the edges (nodes
directly interconnected) in the graph. (vi, vj) ∈ Emeans that node
i and node j are directly interconnected. Otherwise, the two nodes
are not directly connected.

We place the adjacency matrix’s non-zero elements to the line
active power Pij and place the diagonal elements to the node
injected active power value Pii. The node active power correlation
matrix Prelation is thus generated as shown in Eq.
14, Prelation ∈ Rn×n.

Pij
relation �

⎧⎪⎪⎨⎪⎪⎩
Pij, if (vi, vj) ∈ E,

0, if (vi, vj) ∉ E,
Pii, if i � j.

(14)

The node active power correlation matrix Prelation forms the
database for describing the grayscale map of active power
distribution in a single section. The magnitude of the matrix’s

values determines the corresponding color blocks’ lightness and
darkness in the grayscale map. We can analogize the process of
generating new pictures by unsupervized learning in generative
adversarial networks to reconstruct the missing power data. The
specific process is shown in Figure 3.

EXPERIMENT AND RESULTS

Experimental Results on a Test Sample
In this paper, the IEEE14-bus system shown in Figure 4 was used
to verify the proposed method’s effectiveness. The network
consisted of 14 nodes and 20 equivalent transmission lines. To
make the examples more general, we increased each load in the
example system by 1–10% in equal proportions, for a total of 10
growth percentages, while not changing the rated output of the
generator nodes. A Gaussian perturbation of 0.01 was added to
each growth amount to generate 1,000 data samples for 10,000
data samples.

The nodal active power correlation matrix Prelation and the
nodal reactive power correlation matrix Qrelation were generated

FIGURE 3 | Flow chart of the reconstruction method for missing power data based on LSGAN.

FIGURE 4 | IEEE14-bus system network topology.
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for these data samples according to the nodal active power
correlation matrix’s composition mode. We stitched the two
matrices together along the diagonal to form a new matrix
Y, Y ∈ Rn×n:

Y � [ Prelation 0
0 Qrelation

]. (15)

We set the base values of active and reactive power as Pbase �
500 MW and Qbase � 50 MW and then took the standardized
values for the Y matrix’s active and reactive parts, respectively.
Thus, the normalized power correlation matrix X was generated.

X � [ Prelation/Pbase 0
0 Qrelation/Qbase

]. (16)

If we mapped the normalized power correlation matrix X as a
graph, then the magnitude of the matrix X values determined the

color block’s lightness or darkness at the corresponding position.
The original sample data mapping graph is shown in Figure 5.

As seen in Figure 5, the data distribution characteristics
shown in the graph are that the data are concentrated around
the diagonal, and the upper and lower triangles are approximately
symmetric. It is consistent with the distribution characteristics of
the original data.

We divided the above 10,000 data samples into the training set
and test set in the ratio of 8:2. The dimension of the training set
Xtrain was (28,28,8000), and the dimension of the test set Xtest was
(28,28,2000). On the test set Xtest, we set 10 active power missing
and 10 reactive power missing in their node power correlation
matrix. The specific information was node injected power: P1-1,
P3-3, Q1-1,Q2-2,Q6-6,Q8-8, and line power: P1-2, P2-1, P5-1, P3-2, P5-2,
P2-3, P5-4, P4-5, Q1-2, Q2-1, Q4-5, Q5-4, Q8-7, Q7-8.

We set the batch training number of GAN, CGAN, WGAN,
and LSGAN to 32 and the maximum number of training epochs
to 50. Regarding the optimizer, we chose to use AdaptiveMoment
Estimation (Adam). Based on the comparison of the relevant
parameters in the literature (Ruder, 2016), we set the parameters
as follows: Image size was 28 × 28, the learning rate of the
Discriminator was 3e-4, the learning rate of the Generator was 3e-
4, beta1 was 0.5, and beta2 was 0.999.

We got the mapping graphs of the data generated under the
same training batch at each method’s 50th epoch. Then they were
used to compare and analyzed the effectiveness of learning data
features by each method. The results were shown in Figure 6.

As can be seen from Figure 6, the data generated by each
method display the main distribution characteristics of “the data
are concentrated around the diagonal, and the upper and lower
triangles show approximate symmetry.” However, judging from
the details, the grayscale map of the data generated by LSGAN is
most close to the grayscale map of the original sample. The data
generated by GAN differs significantly from the original data.
Both CGAN andWGANmethods are deficient in the accuracy of
generating non-diagonal data.

FIGURE 5 | The grayscale map is drawn from the original sample data.

FIGURE 6 | The grayscale map is drawn from the generated data by GAN, CGAN, WGAN, LSGAN.
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TABLE 1 | The AE and APE statistics of the generated active data.

GAN CGAN WGAN LSGAN

AE (MW) APE (%) AE (MW) APE (%) AE (MW) APE (%) AE (MW) APE (%)

P1-1 115.3 ± 68.5 49.60 ± 29.44 7.1 ± 17.1 3.07 ± 7.36 19.0 ± 14.3 8.18 ± 6.13 9.9 ± 4.4 4.24 ± 1.9
P2-1 66.4 ± 48.6 43.46 ± 31.85 11.2 ± 28.1 7.33 ± 18.41 22.4 ± 16.4 14.67 ± 10.75 8.9 ± 4.9 5.8 ± 3.21
P5-1 42.2 ± 36.1 57.98 ± 49.67 24.4 ± 71.4 33.60 ± 98.12 10.3 ± 7.5 14.14 ± 10.28 4.2 ± 3.2 5.76 ± 4.41
P1-2 57.0 ± 42.6 36.29 ± 27.11 8.8.0 ± 23.6 5.57 ± 15.02 19.4 ± 13.9 12.37 ± 8.87 7.5 ± 4.7 4.75 ± 2.98
P3-2 23.4 ± 16.4 32.95 ± 23.09 23.0 ± 64.1 32.41 ± 90.20 13.9 ± 10.7 19.52 ± 15.12 4.6 ± 3.5 6.5 ± 4.88
P5-2 31.4 ± 23.8 77.09 ± 58.46 33.6 ± 81.9 82.34 ± 200.75 10.1 ± 8.3 24.85 ± 20.37 2.7 ± 2.1 6.62 ± 5.06
P2-3 43.7 ± 29.3 59.59 ± 40.00 7.1 ± 18.5 9.66 ± 25.18 9.0 ± 6.9 12.28 ± 9.38 5.7 ± 4.1 7.73 ± 5.61
P3-3 47.6 ± 32.6 50.56 ± 34.66 19.0 ± 44.5 20.20 ± 47.25 13.9 ± 10.3 14.75 ± 10.91 4.3 ± 3.0 4.52 ± 3.23
P5-4 24.4 ± 21.2 40.53 ± 35.14 17.5 ± 46.7 29.04 ± 77.51 12.8 ± 9.7 21.29 ± 16.12 5.7 ± 4.2 9.39 ± 7.02
P4-5 33.3 ± 29.5 55.69 ± 49.29 13.9 ± 44.2 23.25 ± 73.83 16.6 ± 10.0 27.81 ± 16.78 4.6 ± 3.2 7.63 ± 5.33

1 The bold values represent the minimum average error values and percentage error values of the active power obtained by different methods.

TABLE 2 | The AE and APE statistics of the generated reactive data.

GAN CGAN WGAN LSGAN

AE (MW) APE (%) AE (MW) APE (%) AE (MW) APE (%) AE (MW) APE (%)

Q1-1 7.3 ± 5.1 46.69 ± 32.86 0.8 ± 2.2 5.29 ± 14.46 0.7 ± 0.5 4.68 ± 3.38 0.4 ± 0.3 2.78 ± 1.65
Q1-2 8.3 ± 5.5 40.54 ± 26.99 0.7 ± 2.1 3.36 ± 10.39 0.6 ± 0.4 2.84 ± 2.17 0.3 ± 0.2 1.35 ± 1.04
Q2-1 7.7 ± 4.7 27.9 ± 17.1 0.6 ± 1.7 2.06 ± 6.05 0.6 ± 0.4 2.07 ± 1.56 0.4 ± 0.3 1.3 ± 1
Q2-2 8.7 ± 6.2 25.38 ± 18.15 1.1 ± 2.6 3.26 ± 7.46 1.7 ± 0.7 4.88 ± 2.12 1.7 ± 0.5 5.09 ± 1.38
Q4-5 4.4 ± 3.4 34.72 ± 27.29 1.3 ± 2.8 10.24 ± 22.32 1.5 ± 0.7 12.06 ± 5.39 1.6 ± 0.3 12.4 ± 2.78
Q5-4 5.9 ± 5.2 53.86 ± 47.43 1.4 ± 3.1 12.37 ± 27.98 1.5 ± 0.8 13.99 ± 7.53 1.4 ± 0.5 12.36 ± 4.78
Q8-7 10.4 ± 6.6 42.46 ± 26.95 1.6 ± 2.6 6.35 ± 10.43 3.3 ± 0.8 13.3 ± 3.2 3.4 ± 0.3 13.69 ± 1.21
Q7-8 10.8 ± 6.6 45.86 ± 28.11 1.4 ± 2.2 5.93 ± 9.42 3.2 ± 0.7 13.59 ± 3.14 3.1 ± 0.3 13.19 ± 1.36
Q8-8 6.9 ± 4.4 28.07 ± 18.05 1.4 ± 2.1 5.89 ± 8.73 3.3 ± 0.8 13.52 ± 3.29 3.4 ± 0.4 13.87 ± 1.45
Q6-6 6.5 ± 2.6 46.36 ± 18.2 2.1 ± 3.8 14.66 ± 27.22 4.2 ± 1.2 30.02 ± 8.79 4.2 ± 0.5 29.55 ± 3.62

2 The bold values represent the minimum average error values and percentage error values of the reactive power obtained by different methods.

FIGURE 7 | Computational time consumption curves for each training cycle of different methods.
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To further measure the accuracy of the data generated by the
above four methods, we counted the absolute error (AE), absolute
percentage error (APE) of the 20 sets of missing data
corresponding to the generated data under the 50th epoch of
each method. The mean and standard deviation statistics were
shown in Tables 1, 2.

As seen in Tables 1, 2, the LSGANmethod generates data with
small errors and the highest accuracy in most of these cases.
Although the error of the generated data under the CGAN
method in some measurements is smaller than the error of the
generated data based on the LSGANmethod, the LSGANmethod
is more stable in terms of standard deviation. These indicate that
LSGAN outperforms the other three methods in most cases in
terms of generating data effects.

To obtain the training effect of the proposed method in the
training process, we counted the computation time consumed
and the reconstructed data’s average accuracy under different
epochs. The results were shown in Figures 7, 8.

As seen in Figure 7, GAN is the most efficient in terms of
computational efficiency. CGAN and LSGAN are approximately
more efficient than WGAN. WGAN takes the most time to
compute and is the least efficient.

As seen in Figure 8, the highest accuracy of the data
reconstructed by GAN is only 58.19%, and the training effect

is unstable. It is mainly due to the gradient disappearance and
dispersion during the training process. CGAN makes the
accuracy of the reconstructed data reach 90.24% in the first 7
epochs. It indicates that the method can obtain the reconstructed
data with high accuracy in a short training period. However, the
accuracy of the reconstructed data by CGAN decreases as the
training continues. It indicates that although CGAN improves the
GAN-based reconstructed data’s accuracy, the training instability
still exists. The accuracy of the data reconstructed by WGAN
steadily increased during the continuous training process and
finally reached 86.13%. In contrast, the accuracy of the data
reconstructed by LSGAN is not as high as that of CGAN in a short
period. However, the accuracy of the generated data has been
steadily improving with increasing training epochs, and the
highest accuracy reaches 93.57%, which is significantly better
than the other three methods.

Experimental Results on LSGAN
In this section, we applied the IEEE 39-bus system and the IEEE
118-bus system to test the method’s effectiveness in this paper.
The IEEE 39-bus system had 39 nodes and 46 lines. The
dimension of the nodal active power correlation matrix
Prelation-39, which was composed based on this system’s tide
data, was 39 × 39. We followed the LSGAN-related

FIGURE 8 | Mean accuracy of reconstructed data by different methods during the training process.

TABLE 3 | The AE and APE statistics of the generated reactive data (IEEE 39-bus system).

P1-1 P2-1 P1-2 P3-2 P2-3

AE (MW) 7.05 ± 5.20 11.05 ± 8.28 4.81 ± 3.60 10.10 ± 7.46 9.07 ± 5.17
APE (%) 7.22 ± 5.33 6.33 ± 4.74 2.77 ± 2.07 3.17 ± 2.34 2.83 ± 1.62

P3-3 P4-5 P5-6 P4-4 P5-4

AE (MW) 5.30 ± 4.06 6.62 ± 5.09 6.91 ± 4.87 8.33 ± 6.22 8.60 ± 6.68
APE (%) 1.65 ± 1.26 3.35 ± 2.58 1.29 ± 0.91 1.67 ± 1.24 4.35 ± 3.38
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parameters in the previous section and modified the weight
coefficient matrix dimension to fit the nodal active power
correlation matrix derived from the IEEE 39-bus system.

We added a 1% Gaussian perturbation to each load in the test
system without changing the generator nodes’ rated output to
generate 1,000 data samples as training samples. The proposed
method was then trained iteratively for 50 epochs, generating 250
data samples per epoch. We selected some nodes active power
and directly associated line power as missing data, as follows: P1-1,
P2-1, P1-2, P3-2, P2-3, P3-3, P4-5, P5-6, P4-4, P5-4

We counted the absolute error (AE), absolute percentage error
(APE) of the 10 sets of missing data corresponding to the
generated data under each method’s 50th epoch. The mean
and standard deviation statistics were shown in Table 3.

As seen from the above table, the generated data have few
errors, and the majority of the generated data have an accuracy of
over 92%. The difference between data-driven and mechanism-
based modeling is that the former is not constrained by the
system operating conditions. The above process is executed under
whole network conditions. How effective the proposed method is
under partial data conditions. We performed the following
experiments: we extracted bus 1–14 in the whole network to
form a cut-set network, and the cut-set network was made to

contain all missing measures. We treat the contact line between
the cut-set network and the whole network as a separate line.
Then we modify the dimensionality of the relevant parameters
within LSGAN to fit the new network. The accuracy of the
generated data changes under the two network forms is
counted. The average accuracy of the generated data trained
by the whole network and the cut-set network under different
training cycles is compared as shown in Figure 9.

As can be seen from the above figure, the data generated by the
whole network (39 buses) is more accurate than that generated by
the cut-set network (14 buses) at the beginning of the training
process. In the later period, the data accuracy of both generated
data is the same. The data-driven data restoration approach does
not rely on external conditions such as network parameters and
does not require complete network data. The purpose of data
restoration can also be achieved with cut-set data.

We made similar experiments as above in the IEEE 118-
bus system. The IEEE 118-bus system had 118 nodes and 186
lines. The dimension of the nodal active power correlation
matrix Prelation-118, which was composed based on this
system’s tide data, was 118 × 118. We followed the
LSGAN-related parameters in the previous section and
modify the weight coefficient matrix dimension to fit the
nodal active power correlation matrix derived from the IEEE
118-bus system.

We selected some nodes’ active power and directly
associated line power as missing data, as follows: P4-5, P5-8,
P8-9, P10–9, P15–15, P15–17, P25–23, P25–25., P26–26, P25–27. We
counted the absolute error (AE), absolute percentage error
(APE) of the 10 sets of missing data corresponding to the
generated data under each method’s 50th epoch. The mean
and standard deviation statistics were shown in Table 4.

As seen from the above table, the generated data have minor
errors, and the majority of the generated data have accuracy
above 95%. It indicates that the method in this paper can be
extended to apply in larger networks. To further verify whether

FIGURE 9 | Mean accuracy of reconstructed data by different network forms during the training process (IEEE 39-bus system).

TABLE 4 | The AE and APE statistics of the generated reactive data (IEEE 118-bus
system).

P4-5 P5-8 P8-9 P10–9 P15–15

AE
(MW)

5.51 ± 4.09 10.45 ± 7.51 5.85 ± 4.44 6.11 ± 4.55 4.13 ± 3.14

APE (%) 5.34 ± 3.97 3.09 ± 2.22 1.33 ± 1.01 1.36 ± 1.01 4.60 ± 3.50
P15–17 P25–23 P25–25 P26–26 P25–27

AE
(MW)

4.98 ± 3.64 3.13 ± 2.42 1.79 ± 1.39 5.96 ± 4.37 1.68 ± 1.34

APE (%) 4.80 ± 3.51 1.88 ± 1.45 0.82 ± 0.63 1.90 ± 1.39 1.17 ± 0.93

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 65180710

Wang et al. A LSGAN-Based Data Reconstruction Method

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


the cut-set network still works in large networks, we select a
cut-set network consisting of bus 1–30 for training, containing
all the missing data. The average accuracy of the generated data
trained by the whole network (118 nodes) and the cut-set
network (30 nodes) under different training epochs are
compared, as shown in Figure 10.

As shown from the above figure, the test results are similar to
those of the IEEE 39-bus system test. At the beginning of the
training process, the accuracy of the data generated by the whole
network training is higher than that of the data generated by the
cut-set network training. With continuous iterative training, the
two generated data with the same accuracy at the later stage.
Although the accuracy is similar between the two networks, the
cut-set network is used as the training sample to streamline the
data’s composition and decrease the non-essential data. The
computation time is only 1/10 of the whole network, which
greatly improves the computation efficiency.

LSGAN does not depend on external operating conditions’
constraints but needs to have sample data as the necessary
foundation. With the great development of power system
information, the power grid has established many
measurement systems reflecting the system operation status,
such as the SCADA system, which records active power,
reactive power, voltage, and power grid frequency. The
sampling interval of this system is 1 min, and each
measurement day records 1,440 data. The amount of SCADA
data recorded by a provincial power grid in a day can reach
several GB, which provides a good training sample base for this
paper’s method. Grid measurement data has spatial and temporal
properties. When there is a high dimensional and high loss rate
case in the power grid, the data before and after the time series can
be used as training samples to identify the missing data, and the
data at the same time every day can be used as supplementary
samples to assist in determining the missing data. The actual

system is complex and variable. How to construct the internal
architecture of LSGAN, select the sample data, and apply this
paper to the actual system needs to continue to be studied in-
depth, which is not discussed too much in this paper.

CONCLUSION

This paper’s main contribution is to propose a method based
on LSGAN to reconstruct missing data for missing
measurement data in power systems. We transformed the
problem of reconstructing missing data into the problem of
repairing missing parts in images. The method in this paper
provided a new approach to solve the problem of restoring
missing data. LSGAN learned correlations and distribution
features among data by unsupervized self-gaming training
mode. By changing the latent parameters in the Generator, it
enabled the Generator to generate data that matched the
objective laws of real data. The proposed method was able
to cope with data loss in power systems due to improper
handling and provide a solid technical basis for ensuring data
integrity.

Unlike the traditional GAN model, LSGAN replaced the
original objective function from cross-entropy loss function to
least-squares loss function. It ensured gradient descent by
penalizing those samples far from the decision boundary,
solving gradient disappearance and dispersion. Moreover, the
least-squares iterative computation was efficient.

It was experimentally verified that the proposed method could
still reconstruct the missing data in the case of multiple power
data missing. In the comparison experiments with GAN, CGAN,
and WGAN models, respectively, the LSGAN-based data
reconstruction method could steadily improve the generated
data accuracy during the continuous training process with

FIGURE 10 | Mean accuracy of reconstructed data by different network forms during the training process (IEEE 118-bus system).
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higher final accuracy than GAN, CGAN, and WGAN models
under the same epoch. The computational efficiency was
4.5 times higher than that of WGAN.

The method in this paper was entirely data-driven and did
not involve mechanistic modeling. A cut-set network could be
constructed on-demand to streamline the composition of the
data, thus avoiding non-essential computational burden, and
its accuracy was similar to that of data generated by the overall
network training. The method was able to generate data with
high accuracy for the restoration data problem. It was mainly
because the least squares-based loss function imposes a large
penalty on the boundary data. Although it enabled to improve
the accuracy of the generated data, the method had some
limitations for cases where diverse sample data needed to be
generated.

In this paper, the proposed method was validated based on the
IEEE 14-bus system, IEEE 39-bus system, and IEEE 118-bus
system. The feasibility of the method was demonstrated. It
should be noted that many issues are worthy of attention and
further study for application to actual large-scale power grids. For
example, designing LSAGN internal deep neural networks for
large-scale power systems and how to select the training set

reasonably are all issues that we plan to study in-depth in the
future.
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