
PSO Supported Ensemble Algorithm
for Bad Data Detection Against
Intelligent Hacking Algorithm
Levent Yavuz1, Ahmet Soran2, Ahmet Onen1,3 and SM Muyeen4*

1Electrical and Electronics Engineering Department in Abdullah Gul University, Kayseri, Turkey, 2Computer Engineering
Department in Abdullah Gul University, Kayseri, Turkey, 3Electrical and Computer Engineering Department in College of
Engineering, Sultan Qaboos University, Al-Khoud, Oman, 4Department of Electrical and Computer Engineering, Curtin University,
Perth, WA, Australia

Power system cybersecurity has recently become important due to cyber-attacks. Due to
advanced computer science and machine learning (ML) applications being used by
malicious attackers, cybersecurity is becoming crucial to creating sustainable, reliable,
efficient, and well-protected cyber-systems. Power system operators are needed to
develop sophisticated detection mechanisms. In this study, a novel machine-learning-
based detection algorithm that combines the five most popular ML algorithms with Particle
Swarm Optimizer (PSO) is developed and tested by using an intelligent hacking algorithm
that is specially developed to measure the effectiveness of this study. The hacking
algorithm provides three different types of injections: random, continuous random, and
slow injections by adaptive manner. This would make detection harder. Results shows that
recall values with the proposed algorithm for each different type of attack have been
increased.
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INTRODUCTION

Power systems have been evolved and exposed to significant changes due to integrating sophisticated
wide-area communication systems and having control infrastructures in the grids. With the high
usage of internet-based technology, cyber-attacks are becoming more critical and dangerous since
most devices are connected to the grid or communicate with each other through a network. Partial
outages or widespread blackouts can occur if the system cannot correctly detect the harmful
intrusions in time.

One of the ways to get rid of these attacks is tomonitor the power systemsmore frequently, mainly
with the Supervisory Control and Data Acquisition System (SCADA). SCADA systems are
composed of hardware devices that help in collecting and monitoring data. Advanced Metering
Infrastructure (AMI) (Kabalci 2016) and Phasor Measurement Unit (PMU) devices are used for the
same purposes. PMU is typically faster and more accurate than SCADA. However, collecting data is
not enough to analyze the system while identifying whether bad data is being injected. It is still
required to have smart software tools to build safe, robust, and reliable grid systems against cyber-
attacks.

The Energy Management System (EMS) provides more secure grid control mechanisms, and it
protects the system from hacking attacks since they are fully equipped with many sensors and
detection devices that need to be communicated online for the safe operations of the power grid
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(Musleh et al., 2019). Hacking attacks generally occur by injecting
bad data into controller units to get control of the system with
operations such as causing cracking/authentication failure, worm
attack, hybrid attack, etc., (Ahn and Kim 2020). These false data
may negatively affect the system through things such as false
billing, energy theft, data manipulation attack, and false dispatch,
which causes generation and demand mismatch (Xie, Mo, and
Sinopoli 2010). Inaccurate energy monitoring could change the
relay position, and as a result, blackouts may happen
(Tyuryukanov et al., 2016). Blackouts/power outages are
having adverse effects on the power market. Hackers have
attacked two power grids in Ukraine, which caused 200 MW
energy loss in the country (J. Condliffe 2016). However, having
bad data does not always mean that the system is under attack.
Hardware malfunctions or communication noise can also
produce some unusual data that might be mistakenly classified
as an intrusion attempt. So, it is vital to detect the bad-data
injection and distinguish them from the system noise to avoid the
harm of these attacks.

A plethora of new techniques for intrusion detection have
been developed and tested recently (Huang et al., 2014; Lee and
Moon 2018; Chen et al., 2019; Esmalifalak, 2017, Liu, et al., 2017;
D. Wang et al., 2013). These techniques are mainly focusing on
software-based detection methods. Researchers (Pal, Sikdar, and
Chow 2018) have developed a Gaussian mixture model-based
statistical anomaly detection model that does not require any
iterative computations, but it is not adaptive. That model
measures attacked vectors and then features are reduced by
Principal Component Analysis (PCA), which is used to
calculate the proper threshold to detect the attacks. However,
this model might not be able to provide a decent and full-secure
system since trial-and-error type hacking attacks can discover the
threshold and open the door to enter the system. These attacks are
referred to as slow injection models and are attacks that
protection systems cannot easily handle. The Distributed
Kalman Filter approach is also applied for wide-area control
of the smart grid (Musleh et al., 2019). In this article, threshold
dependency is ignored, as threshold-dependent behavior is not
well-adaptive, and the model cannot change protection schemes
according to attack type. The Linear Weighted Least Square
model-based algorithms (Yang et al., 2014; Wu et al., 2018)
are developed to deal with hacking attacks. However, this
model ignores the cybersecurity perspective, and the
computational processing time is at an unsatisfactory level.
Also, a game-theory based model that provides a practical and
sophisticated understanding of the gaming process between
attackers and defenders is proposed to solve network
monitoring problems (Q. Wang et al., 2019). A hybrid model,
including Gaussian distribution, statistical tools, and forecasting
approaches, is another solution for bad data detection (Zhao et al.,
2017). Still, the processing time window is not fast enough, so the
Principal Component Analysis (PCA) method is applied to raw
data before coming up with a decision. This method decreases the
number of features to obtain the most significant dataset, but
there are still pitfalls with this solution. Because attackers can
inject every kind of data into the power system, this method may

cause some crucial data to be missed during the feature
decreasing process.

Many other machine-learning-based methods have been
developed for detecting bad data. Most of the time,
monitoring devices and firewalls cannot cope with unintended
data, therefore, prediction algorithms become a good alternative
as a solution. Several methods are proposed in the literature,
including, but not limited to, Support Vector Machine (SVM),
combined SVM with PCA, Partitioning Method, Partitioning
combined K-means, Neural Networks, and Convolutional Neural
Network (CNN) with Long Short-termMemory (LSTM) (Izakian
and Pedrycz 2014; Esmalifalak, 2017; Liu, et al., 2017; Niu and
Sun 2018; Wei et al., 2018; Young et al., 2018). These algorithms
have some superiority over others, depending on the type and
nature of badly injected data. In many cases, one individual weak-
learner algorithm cannot achieve sufficient accuracy results to
detect the bad data, even after improving the performance by
employing various boosting approaches. Therefore, in this
presented work, five well-known and most commonly used
weak-learner machine learning algorithms are combined to
develop a powerful decision mechanism that allows them to
decide together and compensate for the uncorrected prediction
of each other with the help of Particle Swarm Optimizer (PSO).
The PSO optimizes the algorithm weights based on their
individual prediction success during the bagging process.
Another contribution in this work is to create different
hacking algorithm schemes to test the proposed detection
model. The expected data and the intrusions are generated
with PSCAD IEEE 14 bus system. One of the strengths of the
proposed ensemble method is to have a self-healing ability in case
of any dataset or topological changes. PSO will find the optimal
subset of the weak learners with the most suitable weights.

Hacking Algorithm and Bad Data Injection explains the
proposed bad data injection model for the hacking algorithms.
The ensemble algorithms and weak learners are discussed in
Proposed Bad Data Detection. In Simulation Model and Case
Study, the proposed algorithm architecture is presented. The
effectiveness and success of the proposed algorithm is
represented in Result and Discussion by comparing the results
with individual ML algorithms and other ensemble methods.
Finally, the findings of the proposed work are summarized in the
conclusion section.

HACKING ALGORITHM AND BAD DATA
INJECTION

Bad data injection attacks can be seen in any kind of network.
However, it becomes more problematic when many devices are
communicating with each other over the network, such as in
Power Systems. In that case, regular firewalls and traditional
security kits are not enough for dealing with bad data injection
attacks.

There are many varieties of hacking attacks that are known
and reported in the literature. The attack types are explained in
the following list:
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• Device Malfunction Attack: The communication devices
can become unavailable due to a DoS (Denial of Service)/
DDoS (Distributed Denial of Service) attack. Some system
failures and delays can be seen in smart meters as well. IP
addresses or MAC protocols send some unintended data
packages to exceed the maximum connection (Tuan et al.,
2019).

• Password-Cracking attack: There are always password
requirements in smart grid communications. However,
smart meters use digits as a password, and that can be
cracked easily. And user information stealth or unwanted
data packages can be sent to the network operator as a result
of system failures, and blackouts can be seen (Hatzivasilis
2017).

FIGURE 1 | Hacking algorithms flowchart.
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• Authentication-Identifying Attack: Although some power
systems have truly complex communications protocols
(Modbus/TCP or 3.0/TCP), the receive/transmit type
packages might be cleartext. Therefore, external attackers
can easily monitor or manipulate it (Moosavi et al., 2015;
Moreira et al., 2015).

• Worm Attack: Attackers directly target grid communication
with worms, which are injected into the communication
packages (voltage, current, phase angle, etc.) to manipulate
the system. This type of attack can be considered as the most
dangerous one since it can cover itself instead of harming the
system immediately. There are several types of worm attacks in
power systems that need protection. Otherwise, the results of
this attack can be critical and dangerous. In previous research
(Ma et al., 2015; Moreira et al., 2015), manipulation with
unintended injections are created as the same as worm attacks.

In this work, the IEEE-14 bus PSCAD model is simulated to
generate voltage, current, and frequency signals. These signals are
manipulated by a hacking mechanism that provides three different
injection types for three different signals. Figure 1 represents the
flowchart of hacking algorithms and their relations with the
proposed method. Hacking algorithm’s working principle is also
explained in Figure 1. There are three different injection types that
have been simulated by python; on the flowchart each process is
shown together, but during the experiment each hacking process is
tested individually. Each hacking process is applied five times, so 15
different datasets are obtained. Each individual ML algorithm and
proposed method are tested with all datasets and all recall values
are averaged.

The algorithms must be checked under random states, so in
the python library, the NumPy generator uses a pseudo number
generator. The linear congruential generator is one of the most
commonmethods to generate random numbers. The method can
be defined as:

xn+1 � (ax0 + c)mod m (2.1)

In Eq. 2.1 the generated sequential integer number chooses the
column and rows which are targeted for injections, where x is a
pseudo-random value, m is a module that is smaller than x, c is
increment, and x0 is the starting value. After selecting columns
and rows, the injection process has been started. So, the
manipulated dataset has been obtained, and the training
process has been started. In that step, each ML algorithm tries
to detect the injections individually.

Random Points Injection Attack
In the power system, network communication signals include
voltage, current, power, and phase angle. Most of the time, PMU-
and SCADA-based devices monitor these signals, and system
operators can control and manage the entire network by
considering the collected data. At that point, somehow,
attackers inject random points and try to manipulate the
system. Security systems must detect these random bad-data
packages, but most of the time, security systems cannot handle
it since it is tough to distinguish healthy packages from the worm-
injected data with conventional techniques. Thus, advanced
machine learning algorithms must be specified for this
purpose and examined with these data packages.

For that purpose, random points are generated considering the
original data which is obtained by PSCAD simulation. Figure 2
represents original (blue points), and random (orange points)
injected data. These random points are developed and injected to
train and test the proposed method. The hacking algorithm
undertakes the injection process.

Single Continuous Attack
Random points injection attack is not always the scenario for the
intrusions. An attacker can continuously implement the
intervention in some cases, and the firewall systems must

FIGURE 2 | Random injection. FIGURE 3 | Continuous random injection.
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detect that attack type as well. Thus, a single continuous data
injection model has been created to train the proposed method
and strengthen the security wall.

To obtain this manipulation in the PSCAD simulations, 10%
of the original data is used and a threshold is chosen between ±
2–5% with respect to original data. For example, in PSCAD the
normal value of phase angle is 60.00, so manipulated data will be
between +60.02 and 60.05 or −59.92 and 59.95 continuously, as
shown in Figure 3.

Slow Injection Attack
Slow injection is another attack type that can be seen in the power
networks. The attackers prefer to use it since it is very hard to
detect, and it can defeat the system very quickly.When the system
cannot prevent the attack, very critical problems such as the
operating system collapsing, breakage of communication, wrong
authentications, and data modification might occur. So, the
proposed method is exposed to slow injection attack during
the training session to learn this model. The attacker injects
manipulated data into the power system slowly in order to create
undetectable signals. The representation of the slow injection
model are represented in Figure 4.

PROPOSED BAD DATA DETECTION

General ML algorithms learn from past data and predict the
future by using all labeled information, referred to as supervised
learning. The proposed method works as a supervised learning
model. Initially, the proposed model learns from data with some
injected points and it is tested with other labeled data. After that
the performance of the model is measured by checking the
algorithm’s predictions.

At the beginning of the process, PSCAD and Python linkage
obtain the simulation data (clean data) from each bus at the same

time. After this simulation generates the regular data, the
developed hacking algorithm starts to inject bad data and the
created dataset is given to ML algorithms. Standard weak learners
work in parallel and the proposed bagging method finds the
proper weights to combine all of them together. Throughout,
another PSO module will calculate the optimized weights, which
are used for the bagging process. Thus, weak learners settle their
own decisions separately in parallel and finally the proposed
method will combine all of them together with the trained weights
to decide whether there is an injection. After this training session,
each weak learner will find their ways to come up with a decision
for upcoming requests as a prediction.

A good prediction algorithm can classify an upcoming packet
correctly as bad data or not. However, sometimes, packets can be
incorrectly identified by the detection system. Accuracy is one of
the well-known measuring metrics to benchmark the
performance of the model against other algorithms. It gets a
set of input data, checks the correctness of the predictions, and
scores accurate decisions. In some scenarios, wrong predictions
can be tolerable since they are not vital for the system’s
robustness. For example, capturing a bad packet might be
more crucial than wrongly labeling regular packets. When the
system drops one secure packet, it does not affect the system at a
critical level. Contrary, if the security module allows any
intrusion, it might fail the whole network. The main target in
this scenario is to identify harmful packets. The system can label a
packet as a hacking attempt when it carries harmful data (TP), or
when it is a regular packet (FP). Also, the system might decide a
packet as a regular one when it is an ordinary packet (TN), or
when it is an intrusion attempt (FN). The critical values here are
TP and FN decisions since FP and TN predictions do not
seriously affect the system. Recall metric measures how the
prediction model identifies the packets accurately when it is a
hacking attempt. Thus, in this work, the recall performance
metric is used to measure the proposed model’s achievement
since the accuracy metric can mislead the decision. Figure 5
represents all prediction metrics and formulizes the calculations
(Precision, Recall, Accuracy, and F1).
In Figure 6, there are some unintended data represented and ML
algorithms (individually) try to detect them. However, as it can be
clearly seen, some of them can fail in different cases. While
Logistic Regression (LogReg), LDA, and NB cannot define the
injected data, k-Nearest Neighbor (kNN) and Support Vector
Machine (SVM) can detect the point. That means none of the
individual algorithms can reach 100% accuracy unless there is
overfitting. Each ML algorithm has their own mathematical
background and different injection models could generate
distinct data patterns. So, one weak learner could detect one
type of attack very well, while it might not perform adequately in
another case or dataset. On the other hand, improving the ML
algorithms can require some additional complex calculations and
that can be very costly. In the proposed method each algorithm’s
parameters have been tuned automatically at first by considering
the injected data and their individual success. This tuning process
is applied only once and after that, according to the algorithms’
own success criteria, PSO gives different weights to them by using
10 iterations with 100 swarms for each data. When all iterations

FIGURE 4 | Slow injection.
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are completed, then the optimizer decides the weights for
reaching the most accurate results.

Table 1 shows the performances of each individual algorithm
for a given attack scenario. Although the topology (IEEE-14 bus)
and other network schemes are the same for each simulation, the
same algorithms cannot achieve similar results in different cases.
For example, in the random point injection case, kNN accuracy is
93% and LogReg accuracy is 83%, however, in the single
continuous injection case kNN accuracy drops to 81% and
LogReg accuracy goes up to 95%.

Results show that different data patterns need to be handled
individually since each ML algorithm has different
mathematical backgrounds. Therefore, it is difficult to
suppose that any weak learners can perform well under all
three scenarios. The proposed method aims to build a new

intrusion detection mechanism that is not affected when the
attack strategy is changed. The main idea is to obtain the best
recall results by closing the gaps among weak learners with the
help of a PSO-supported bagging process.

In this part, the mathematical model of the generalized version
of all five weak learners is given separately. Please assume that the
dataset has n rows with m attributes and ML algorithms aim to

FIGURE 5 | Algorithm’s prediction classes.

FIGURE 6 | Comparison and evaluation results show that there is no single algorithm can detect all injections.

TABLE 1 | Algorithms individual success (after parameter tuning).

kNN NB (%) LogReg (%) LDA (%) SVM (%)

Random points 93 89 83 90 91%
Single continuous 85 91 95 78 89%
Slow injection 87 79 75 85 92%
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classify a newcomer row as an injection (Class I) or not (Class II).
Please note that, even though this example is considering the
problem as a binary classification, k represents the number of
classes in general format.

d(x, y) � (∑n

i�1
∣∣∣∣(xi − yi)m∣∣∣∣ )1/m (3.1)

K-Nearest Neighbors (kNN) is one of the cluster-based weak
learners in machine learning. Each data is represented in a vector
space, and a number of attributes (m) gives the vector size. When
a new row is given to the system as test data, kNN calculates the
distances to each of the trained data to find k-nearest neighbors. If
most k-neighbors are in Class I then the value is predicted as in
Class I, or vs. Eq. 3.1 shows the general distance calculation
formula, where d is a distance x, y values are coordinates of
vectors, and m is the size of space.

p(Ck|x) � p(Ck) p(x|Ck)
p(x) (3.2)

Naïve Bayes (NB) is a probabilistic-based approach that relies on
the frequency table of each attribute given in training data.
Assume there are three different values (x, y, z) given as an
attribute A1 among m attributes. Assume x is given as a predictor
in the test data. Eq. 3.2 shows the formulation of the classical
Naïve Bayes method. p(Ck|x) is the posterior probability that
gives the probability of class k when a given predictor is x for
attribute A1. p(Ck) is prior probability class k, which is general
class probability in training data.p(Ck|x) shows the likelihood of
predictor for a particular class k. Finally, p(x) is the predictor
prior probability that shows the probability of having the given
predictor in the dataset. The highest posterior probability gives
the prediction. Please note that there are m attributes of a given
test data, so the final posterior probability will be a multiplication
of the posterior probabilities of each attribute.

L(θ|k; x) � ∏n

i�1hθ(xkii )(1 − hθ(xi))1−ki (3.3)

There are also some statistical models used for the predictions,
such as regression models. It approximates the probability
of the class for a given specific predictor. Logistic regression
(LogReg) is one of the regression fitting models that rely on
a logarithmic function, also called sigmoid function. Since
the output of this function has to be between 0 and 1, logistic
regression is one of the most frequently used weak learners
for binary classification. Eq. 3.3 shows the likelihood
function L(θ|k; x) of a given predictor, x, and the class, k. θ
represents the coefficient parameters and hӨ(x) is the logistic
function of the generalized linear model. Please note that the
probability of not being in a given class becomes (1 − hθ(xi))
since only two classes are given. The maximum likelihood will
be the final prediction.

Sw � ∑
j
pj × (covj)

Sb � ∑k

j
(μj − μt)(μj − μt)T

covj � (xj − μj)(xj − μj)T (3.4)

Richey, 2010 is another cluster-based technique mostly used as a
weak learner in machine learning. It is a variance-based method
that tries to maximize the differences between in-class variance
and overall variance. Eq. 3.4 shows the probability density
function where μt is the mean vector of the total set, μj is the
mean vector of class j, and pjshows the probability of class j. Sw
gives the within-class covariance, and Sb is for between-class
covariance value. Please note that LDA creates clusters by
maximizing the differences among classes. The distance
function is also essential here, and Minkowski Distance, Eq.
3.1, is mostly used.

h(xi) � g(wmxi + b) (3.5)

Support VectorMachine (SVM) is another well-known technique
in machine learning. SVM tries to find an optimal hyperplane
that properly distinguishes the class area in vector space. Please
remember that each row in the data can be represented as an
m-dimension vector since m attributes are given. Eq. 3.5 shows
the objective function of SVM. w is the m-dimension vector that
shows the coefficient parameters, x is the data vector, and b is a
bias value. The function g() is used here because different
algorithms can be used to find the optimal hyperplane.

In the following equations, the mathematical explanation of
the combination process and closing the gaps among weak
learners are explained. The objective functions are dependent
on x, which can be defined as F(x|k), and the optimization
method is trying to maximize or minimize the recall rate.
There are five weak learners (kNN, NB, LogReg, LDA, and
SVM) used in this article; thus, the probability sequence would
be (P1, P2,. . ., P5) for each class, respectively. Here, the particle
swarm optimizer can find the best weights based on these Fi(x|k)
feedbacks while bagging all the weak learners. The final decision
mechanismmodel (U) would be given as the following equations,
where cn (n � 1–5) are representing the weights, created by PSO,
of each ML algorithm.

U �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1
c2
c3
c4
c5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(x) � d(x, y)
F2(x) � hw,b(x)
F3(x) � p(Ck|x)
F4(x) � L(θ)

F5(x) � P(X|πi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.6)

Combination Process
The proposed method’s key point is a combination of different
ML algorithms. So, five of the well-known ML algorithms (kNN-
NB-LogReg-LDA-SVM) are ensembled with the help of PSO.
Algorithms decide together whether there is an injection or not.
Each ML algorithm is tuned with the best parameters, given in
Table 2.

PSO gives algorithms different weights considering their success
with 10 iterations and 100 swarms. Even the system faces different
types of injection attacks or some topological changes, the proposed
method can deal with them. The following equations explain the
algorithm’s decisionmechanism.M representsML algorithms,W is
weight of each algorithm which calculated by PSO, θ is
multiplication of probability and weight, argmax is a function of
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python which gives the highest result of the function, and H
represents both clean and infected data.

M � {F1, F2, F3, F4, F5}, MLAlgorithms (3.7)

W � {w1,w2, . . . , w5}, Weights (3.8)

θ(M, W,H) � argmax
i

∑N

j�1wj p pFj|i) (3.9)

PSO(F1, F2, F3, F4, F5) � {w1, . . . ,w5} (3.10)

WhereM is the set of individualmachine learning algorithms, each one
is represented as mla, the class labels are represented as H/U (which is
“healthy” or “unhealthy”), andW shows the weights of the algorithms
(M) is the functionH � {i0, i1, . . . , ik}, Class Labels n
combination process and to obtain the highest recall results PSO
find the weights for (M,H).

The proposed method has been shown in Figure 7 and the
following steps explain the workflow:

1. Collect the data from the PSCAD.
2. Three different manipulated datasets are obtained by python.
3. Infected datasets are injected into normal data.
4. Each ML algorithm’s parameters are tuned with respect to

individual success.
5. After the parameter tuning, PSO-based combination begins.

In that part, PSO finds the best weights for each ML algorithm
according to their individual success, and lets algorithms
decide together as one algorithm.

6. Combined algorithm has been developed, which has self-
healing and adaptive features.

SIMULATION MODEL AND CASE STUDY

The proposed method has been evaluated in two different
topologies and for each topology three injection cases are
applied. In addition to the IEEE 14 bus system running on
PSCAD simulation, three PV generators were injected into
different busses. Three different cases are explained below:

Case 1: Random Data Injection (Standard Model/PV Added
Model): Due to PMU malfunction, bad data is injected into our
dataset as voltage, frequency, and phase angle. In that case,

random points are created with the following equations: P:
phase angle, V: Voltage, f: Frequency, D: Data, inf D: infected
data, µr: Random Row, and µc: Random Column.

∑380

k�1(± D) p%2< inf D<∑380

k�1(± D) p%5 (4.1)

μr μc[Dp, f , v] p%10 � inf Dp, f , v (4.2)

inf Dp, f , v→Dp, f , v (randomdata injected) (4.3)

These points are represented with Equations with Eqs. 4.1, 4.2,
4.3. and iterations are reproduced five different times and then
the proposed method is tested with injected datasets to have a
tolerable confidence interval. 80% of infected data has been used
for the training and the rest of the data is used to test the method.
The recall results of the proposed method and single machine
learning algorithms are represented in Table 2. Cross-validation
(k � 5 iteration) method has been used in every scenario to avoid
over/under fitting problems.

Case 2: Continuous Injection (Standard Model/PV added
Model): As mentioned before, there are too many attack types
that currently exist. Power system protection units must be
powerful, sufficient, adaptive, and sustainable against these
attacks even though attacks are continuous. The idea is that,
instead of adding one single failure point, the continuous data
manipulation has been injected into the main dataset. The
continuous type attack’s mathematical expressions are
described as below:

∑380

k�1(± D) p%2< inf D<∑380

k�1(± D) p%5 (4.4)

∑380

k�1(± D) � inf_Dp, f , v

inf_Dp,f,v→ c_inf_Dp,f,v (Continue for 10 points).
c_inf_Dp,f,v → Dp,f,v (random data injected).
Case 3: Slow Injection (Standard Model/PV added Model):

Slow injection type is one of the most challenging, because
protection systems cannot easily distinguish injected data from
the original ones. In Figure 4, slow injection starts from 3.5 s and
goes until 6.5 s. This type of attack can easily crack firewalls and
are hard to detect even with sophisticated intelligent tools. Thus,
this case study is beneficial to test the proposed method due to its
difficulty. Eqs. 4.5, 4.6, 4.7 describe this attack type:

TABLE 2 | Tuned parameter of ML algorithms.

Machine learning algorithm Parameter Interval

KNN Number of neighbors [3 to 21, incremented by 1]
LogReg Tolerance 0.0001
NB — —

LDA — —

SVM Rbf kernel —

Penalty parameter C � 1,000,000
RF Number of trees [10 to 100 incremented by 10]
ExtraTree Tree size [10 to 100 incremented by 5]
GB Number of trees [11 to 71, incremented by 1]

Seed [1 to 11, incremented by 1]
AdaBoost Estimator [1 to 100, incremented by 5]

Learning rate [1 to 100, incremented by 5]
Algorithm type SAMME, SAMME.R
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First Stage ∑380

k�1(± D) p%0< inf D<∑380

k�1(± D) p%2 (4.5)

µr µc [Dp,f,v]2% p %10 � inf_Dp,f,v

Second Stage ∑380

k�1(± D) p%0< inf D<∑380

k�1(± D) p%4 (4.6)

µr µc [Dp,f,v]4% p %10 � inf_Dp,f,v

Third Stage ∑380

k�1(± D) p%0< inf D<∑380

k�1(± D) p%6 (4.7)

µr µc [Dp,f,v]6% p %10 � inf_Dp,f,v.

RESULT AND DISCUSSION

Hacking attacks on power systems can occur inmany different ways
and must be detected accurately as soon as possible. Conventional
protection systems generally use thresholds to detect fault and they

do not use self-healing/adaptive mechanisms, so they may end up
with low accuracy (in this work recall) rates on hacking attacks. In
this work, there are three different types of attacks that have been
developed by hacking algorithms and applied into datasets which
have been obtained by PSCAD and Python linkage. After that, each
ML algorithm (weak learners) was trained and tested individually;
results show that each ML algorithm reached different recall
success. However, comparison results show that boosting
algorithms results are very high. In that case the proposed
method is trained and tested with these same infected datasets.
Though, the boosting method has superiority on the bagging
method, in the proposed method weak learners are combined
with the bagging method. As a result, comparison tables show
that the proposed method reaches a higher recall value.

In Tables 3–5, ML algorithms’ individual recall results are not
satisfied even though their parameters have been tuned
automatically. While one of them can detect the injection, the

FIGURE 7 | General workflow of the proposed method.
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other can fail in different conditions or attack types. Thus, the
results show that the proposed method has superiority over each
individual algorithm.

Case 1: Random Data Injection
Random data injection scenario is one of the most common
methods used in power system attacks. In that case, attackers
generate random points and inject them into PMU or SCADA
systems, so as to cause blackout or steal some important data.
In Table 3, the most popular detection algorithms and the
proposed method results have been compared. The simulations
are also tested for both conditions (the case with PV and without
PV). Recall results drop a little bit in PV test system as expected,
because the collected data points are not stable due to
intermittent behavior of Sun. In addition to the fluctuations
in PV added scenarios, the hacking algorithm is also applied to
test the robustness and sustainability features of the proposed
method.

Case 2: Single Continuous Injection
In that case, single continuous data points are injected into the
power system. The prediction results are represented in Table 4.

For each % of infected data case, the proposed method has
superiority over others for several infected data percentages:
5%, 10%, and 15%

Case 3: Slow Injection
In case 3, data is slowly injected and results are represented in
Table 5. Average results have been obtained after running
it five times, and in total 10% of normal data has been
manipulated and manipulation rate increased slowly from
2% up to 6%. There are also boosting algorithms available
in literature and these algorithms work as an ensemble
method. In case 3, boosting algorithms are also tested and
compared with the proposed method. These algorithms are
applied on the same datasets and comparison results are
represented in Table 6. As the power system data starts to
get noisier, boosting algorithms start to fail in that case. A
drawback of boosting algorithms is that they may not work
well with weather-dependent data. To test the proposed
algorithm’s success and comparisons needed for noisy
signals, three different PV generators have been added to
IEEE 14 bus system. The results show that the proposed
algorithm is also better than boosting algorithms.

TABLE 3 | Case 1: Comparison of algorithm’s average (five times run) recall values for random data injection.

Simulation results (IEEE 14 bus without PV) Simulation results (IEEE 14 bus with PV)

% Of infected data 5% 10% 15% 5% 10% 15%
kNN 89.13 90.17 91.28 87.87 89.73 90.69
NB 90.3 93.31 94.66 90.14 90.83 94.27
LogReg 90.38 91.50 92.05 89.13 89.84 94.63
LDA 85.5 92.37 93.37 83.56 87.23 93.78
SVM 91.35 92.61 92.68 90,25 91.12 95.75
Proposed method 95.93 96.63 97.95 93.69 96.07 97.63

TABLE 4 | Case 2: Comparison of algorithm’s average (five times run) recall values for single continuous injection.

Simulation results (IEEE 14 bus without PV) Simulation results (IEEE 14 bus with PV)

% Of infected data 5% 10% 15% 5% 10% 15%
kNN 91,11 95,23 97,15 90.45 95.13 96.14
NB 89,23 93,95 92,9 87.75 90.18 91.93
LogReg 90,97 91,20 93,14 90.35 90.89 93.07
LDA 85,59 89,87 93,75 84.73 87.31 96.75
SVM 94,12 95,53 97,56 93.98 94.77 97.46
Proposed method 95,45 97,93 98,15 96.94 97.38 98.94

TABLE 5 | Case 3: Comparison of algorithm’s average (five times run) recall values.

Simulation results (IEEE 14 bus without PV) Simulation results (IEEE 14 bus with PV)

Infection rate of healthy data 2% 4% 6% 2% 4% 6%
kNN 80,2 82,85 88,74 79.85 81.93 86.83
NB 31,54 38,60 48,37 30.85 37.39 45,33
LogReg 80,24 83,39 90,28 78.83 81.81 85.69
LDA 81,23 82,99 85,50 75.16 82.12 84.75
SVM 80,54 83,39 87,0 80.16 81.74 86.12
Proposed method 90,28 91,55 93,67 87.20 88.73 90.53
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CONCLUSION

Power systems must be reliable and uninterruptable against the
hacking attacks. The injection and data manipulation may cause
damages and even blackouts. Thus, power systems should be
capable of avoiding these dynamic and unpredictable attacks.
For that reason, a combination of five different ML algorithms
with PSO has been developed in this work. These combinations
increase detection rate by changing each algorithm’s weight by
using PSO. One of the benefits of the proposed method is
adopting mechanics that can be used in different attacking
actions and topological changes in systems. Another advantage
of the proposed method is the use of only raw data which means
that feature selections and data preparation processes are not
needed. The proposed method is tested with random data

injections, single continuous injection, and slow injection cases
and the proposed methods’ recall value results are obtained as
95–98%, compromising for any kind of hacking attack.
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