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When nuclear power plants (NPPs) are in a state of failure, they may release radioactive
material into the environment. The safety of NPPs must thus be maintained at a high
standard. Online monitoring and fault detection and diagnosis (FDD) are important in
helping NPP operators understand the state of the system and provide online guidance in a
timely manner. Here, tomitigate the shortcomings of processmonitoring in NPPs, five-level
threshold, qualitative trend analysis (QTA), and signed directed graph (SDG) inference are
combined to improve the veracity and sensitivity of process monitoring and FDD. First, a
three-level threshold is used for process monitoring to ensure the accuracy of an alarm
signal, and candidate faults are determined based on SDG backward inference from the
alarm parameters. According to the candidate faults, SDG forward inference is applied to
obtain candidate parameters. Second, a five-level threshold and QTA are combined to
determine the qualitative trend of candidate parameters to be utilized for FDD. Finally, real
faults are identified by SDG forward inference on the basis of alarm parameters and the
qualitative trend of candidate parameters. To verify the validity of the method, we have
conducted simulation experiments, which comprise loss of coolant accident, steam
generator tube rupture, loss of feed water, main steam line break, and station black-
out. This case study shows that the proposed method is superior to the conventional SDG
method and can diagnose faults more quickly and accurately.

Keywords: nuclear power plants, process monitoring, fault detection and diagnosis, signed directed graph,
qualitative trend analysis

INTRODUCTION

Nuclear power plants (NPPs) are large and complex systems. To ensure the reliability and safety of
NPPs, process monitoring and fault detection and diagnosis (FDD) are implemented to provide
online guidance for operators diagnosing the abnormal functioning of NPPs in an accurate and
timely manner (Liu et al., 2013; Liu et al., 2014).

FDD techniques can be divided into data-driven, signal-based, and model-based methods in NPP
(Ma and Jiang, 2011; Ma and Jiang, 2015). Data-driven FDD mainly relies on large datasets to
establish relationships among various parameters and faults. It does this through multiple
approaches, such as neural networks (Mo et al., 2007; Amal et al., 2011), principal component
analysis (Gajjar et al., 2017), qualitative trend analysis (Maurya et al., 2005), and others (Žarković and
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Stojković, 2017). Signal-based methods operate in the time
domain and employ techniques such as wavelet analysis, time-
frequency analysis, and spectral analysis (Ma and Jiang, 2011).
There are two main approaches for model-based FDD. The first is
based on the use of expert knowledge, such as expert systems
(Kramer and Palowitch, 1987). The second is based on graph
theory, that is, the model graphically displays relationships
among the various parameters and faults as in a Bayesian
network (Kang and Golay, 1999), a signed directed graph (Liu
et al., 2016), and a dynamic uncertain causality graph (Zhou and
Zhang, 2017).

FDD is difficult to achieve for NPPs using data-driven and
signal-based methods. On the one hand, an NPP is a complex
system and it is difficult to obtain real-time data. On the other
hand, data-driven methods of diagnosis are “black box” in nature,
which makes it difficult for operators to determine the cause of
faults. Therefore, graph methods are currently widely used for
FDD in NPPs.

As a type of qualitative FDD technique, a Signed Directed
Graph (SDG) model, which does not require a precise
mathematical model to establish, can contain a large amount
of information about faults. SDG was applied in the chemical
industry by Lapp and Powers (1977), and the concept of SDG was
proposed by Iri et al. (1979). Compared with other data-driven
methods, SDG has the significant advantage that SDG-based
FDD can reveal fault propagation paths and comprehensively
explain causes of failure (Chen et al., 2015; Maurya et al., 2004),
which has led to it becoming widely implemented in industry. To
improve the accuracy and sensitivity of SDG-based FDD, other
methods are combined with SDG, which has resulted in variants
such as the SDG-expert system (Kramer and Palowitch, 1987),
SDG-principal component analysis (Hiranmayee and
Venkatasubramanian, 1999), SDG-qualitative trend analysis
(Gao and Wu, 2010), SDG-hazard and operability (Wang and
Chen, 2009), SDG-fuzzy logic (Tarifa and Scenna, 2003; He et al.,
2014), and SDG-Bayesian network (Peng et al., 2014).

Based on the above studies, we found that almost all research
into SDG-based FDD technology has focused on inference,
diagnosis, and modeling. However, because process
monitoring is the first step of FDD in NPPs, process
monitoring itself should be more closely studied. Furthermore,
the safety threshold in NPPs is very conservative, which not only
increases the difficulty of applying FDD but also makes incipient
fault diagnosis difficult (Chung and Bien, 1994). To solve these
problems, SDG combined with principal component analysis was
proposed for FDD, and principal component analysis was applied
to solve the threshold problem in process monitoring. SDG
combined with qualitative trend analysis (QTA) is used to
determine the qualitative trends of parameters in early failure
and to conduct incipient fault diagnosis. However, SDG
combined with other methods requires more in-depth
research. Principal component analysis reduces the parameters,
so it is difficult to guarantee the accuracy of FDD. QTA obtains
the trend of parameters. When the parameters fluctuate within
the normal range, misdiagnosis may occur.

This study combines five-level threshold, QTA, and SDG
inference to solve these problems. Signed Directed Graph

Method Section introduces the SDG method; Process
Monitoring for Nuclear Power Plants Section presents the
method of process monitoring; and Monitoring and Fault
Diagnosis Framework for Nuclear Power Plants Section
proposes a combination of five-level threshold, QTA, and SDG
inference. In Application Case Study Section, we discuss a case
study, and finally, present conclusions in Conclusion Section.

SIGNED DIRECTED GRAPH METHOD

Concepts and Principles
SDGmodels are described by nodes and directed edges which can
express relationships among the parameters. An SDG model is
defined as G � (V , E), whereV � {V1,V2, . . . ,Vn}represents
parameter nodes; Vi � {+, 0,−} is defined as node states: “0”,
“+”, and “−” represent the normal state, higher than normal state
and lower than normal state, respectively; E � {E1, E2, . . . , Em}
represent branch nodes, Ei � {+,−} represents the directed edge,
where “+”, “−” indicate the cause node and effect node in positive
and negative effects, respectively, which are expressed by a solid
line or dotted line (Maurya et al., 2007). There also exists a
“coupling of relations” in the SDG model, δ+ : E→V (the cause
node of a branch); δ− : E→V (the effect node of a branch).

A fault’s propagation path can be located by SDG inference. A
“moment sample” includes all the values of the monitored
parameters at the same time. According to the “moment
sample”, if φ(δ+Ek)∅(Ek)φ(δ−Ek) � +, then the directed edge
is defined as a consistent path. An SDG model is presented as an
example in Figure 1, which also gives an example of a consistent
path. Figure 1 shows that if:

φ(A) � +,∅(A − B) � +,φ(B) � +,φ(A)∅(A − B)
φ(B) � +,∅(B − C) � −,
φ(C) � +, so φ(A)∅(A − B)φ(B)∅(B − C)φ(C) � +

then A–B–C is a consistent path. In Figure 1, if a symbol is “+”,
the model means: A increases (+) → B increases (+) → C
decreases (−), then nodes A, B, C constitute a consistent path.
A consistent path can not only describe the fault’s propagation
path but also can explain the reason why failure occurs. Thus, the
role of SDG-based FDD is to find all consistent paths in
instantaneous samples of the system.

Signed Directed Graph-Based Fault
Detection and Diagnosis
SDG inference is divided into forward inference and backward
inference. Forward inference generally starts from the selected

FIGURE 1 | Sketch map of an SDG model.
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candidate fault node to find all consistent paths; its purpose is
mainly to verify the correctness of FDD. Backward inference
generally starts from the sign nodes back to the fault nodes based
on a consistent path and is used for FDD (Mano et al., 2006).
Forward inference and backward inference are usually combined

for FDD. First, candidate faults are identified based on backward
inference and forward inference is adopted from these candidate
faults to remove false faults (Liu et al., 2014). The flow chart is
shown in Figure 2.

An SDGmodel is shown in Figure 3. According to the alarm
parameters h, d, f, candidate faults are identified based on
backward inference and identifying a consistent path. Taking d
as a starting node, d–h is a consistent path, which means nodes
A and B are candidate faults. In the same way, taking h, f as
starting nodes, then nodes A and B are again candidate faults.
When candidate parameters {d, e, f, h} are identified based on
forward inference, then the status of these candidate
parameters is obtained by process monitoring. According to
forward inference, A–e is not a consistent path, but all paths of
node B have occurred; therefore, A is a false fault and B is a
true fault.

PROCESS MONITORING FOR NUCLEAR
POWER PLANTS

The purpose of process monitoring is to assess the states of
parameters that are utilized for FDD. Here, the method of process
monitoring is based on threshold and QTA methods.

Threshold Method
The threshold method assesses a parameter’s status above the
upper limit or below the lower limit. The method is easy to
operate with software and easily understood by the operator, but
it has some disadvantages: the thresholds in NPPs are more
conservative, so alarm signals occur too late, and incipient fault
diagnosis is difficult to achieve (Daneshvar and Rad, 2010).
Therefore, the threshold method is not enough to achieve the
goal of process monitoring and other methods should be added to
improve the sensitivity of process monitoring.

Qualitative Trend Analysis
The purpose of QTA for process monitoring is to obtain a best-fit
trend of parameters to assess the state of NPPs. Trend fitting is
primarily based on linear least-squares (Frank, 1996). The main
algorithm is as follows.

FIGURE 2 | Flow chart of SDG inference.

FIGURE 3 | Example of an SDG model.
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Parameters x, y are sampled with n sets of data
(x1, y1), (x2, y2), . . . , (xn, yn). Assuming that x and y have a
linear relationship, by the least squares method, the regression
equation between x and y: y � ax + b is achieved, where a, b
minimize bias squares Q. A qualitative trend is achieved by
calculating slope a. The fitting equations are shown by Eqs.
1–3. Values of a > 0, a < 0, a � 0 indicate that the
parameter’s status is high, low, and normal respectively.

Q � ∑n
i�1
(yi − b − axi)2 (1)

a �
∑n
i�1
(xi − x)(yi − y)
∑n
i�1

(xi − x)2
(2)

b � y − ax (3)

The main disadvantage of QTA for process monitoring is that
it may lead to misdiagnosis. When the system is in a state of
disturbance, the parameters may remain high or low over a
certain period, which leads to a misdiagnosis.

MONITORING AND FAULT DIAGNOSIS
FRAMEWORK FOR NUCLEAR POWER
PLANTS
Five-Level Threshold and Qualitative Trend
Analysis
To mitigate the shortcomings of QTA and threshold methods in
process monitoring, we propose a five-level threshold combined
with QTA to improve the sensitivity of process monitoring.

1) Thresholds in nuclear power plants

Nodes are divided into two categories: parameter nodes and
fault nodes. The statuses of parameter nodes are determined by

the upper and lower limits (three-level threshold) of each
parameter. A parameter’s status may be in three states: “0”,
“1”, or “−1”. “1” indicates that the value of a parameter
exceeds the upper limit, “0” indicates that values of a
parameter are normal, and “−1” indicates that values of a
parameter are below the lower limit (He et al., 2014). The
calculation method is shown in Eq. 4:

ψi �
⎧⎪⎨⎪⎩ −1,

0,
1,

if
if
if

ni < nil

nil < ni < nih

ni > nih

(1≤ i≤ α) (4)

2) Concept of a five-level threshold

The concept of a five-level threshold is shown in Figure 4.
“±”, “±?” stand for certain states and uncertain states of
parameters respectively (Chung and Bien, 1994). A three-
level threshold is currently used in NPPs. The five-level
threshold, which is very sensitive to a parameter’s
variability, includes the three-level threshold. When
parameters are within the three-level threshold, the status
of a parameter is considered certain. When the parameters
are between the five-level threshold and three-level threshold,
the parameter’s state is uncertain and the status of the
parameter is identified using QTA.

3) U test

It is difficult to obtain the fault data of NPPs, but normal
data are easy to acquire. Most parameters may appear as
random variability in normal data, in which the values of
parameters follow a normal distribution, but parameters may
not always do so. The U-test is applied to determine whether
the values of parameters follow a normal distribution.
Calculating coefficients of skewness and kurtosis is the first
step of the U test (Hao et al., 2009). For the time sequence
{xi, i � 1, 2, . . . ,N} coefficients of skewness g and kurtosis k can
be written as:

FIGURE 4 | Five-level threshold.
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g �
∑n
i�1

(xi − x)3

(n − 1)σ3 , (5)

k �
∑n
i�1
(xi − x)4

(n − 1)σ4
− 3, (6)

whereσis the standard deviation, x is the mean value, and n is the
number of samples. ∣∣∣∣g∣∣∣∣<U1 (7)

|k|<U2 (8)

U1α � 1.96

������������
6(n − 2)

(n + 1)(n + 3)

√
(9)

U2α � 1.96

�������������������
24n(n − 2)(n − 3)

(n + 1)2(n + 3)(n + 5)

√
(10)

If Eqs. 6, 7 are satisfied, then parameters obey a normal
distribution with time.

4) U test-based five-level threshold acquisition

Because it is difficult to obtain fault data from NPPs, the five-
level threshold is obtained by handling the normal data of NPPs.
The flow chart is shown in Figure 5.

5) Five-level threshold and qualitative trend analysis

When monitored parameters obey a normal distribution, the
probability of parameters exceeding the five-level threshold is
0.00265(y < y3σ or y > y + 3σ) (Tarifa and Scenna, 1998). When
the five-level threshold is met by the maximum and minimum
values of parameters, the probability of these parameters
exceeding the five-level threshold is lower than 0.00265.
Therefore, it is reasonable to use the normal distribution to
calculate the probability of parameters used to assess the
abnormal state of NPPs.

The probability of parameters exceeding a five-level threshold
over three continuous seconds is 0.0026533 � 1.76 × 10–8, as can
be seen above. If an outside range based on the five-level
threshold over three continuous seconds is considered as an
abnormal process, then QTA based on least-square fitting can
be used to obtain qualitative trends. The parameter c is defined in
Eq. 10 and can extract qualitative trends for FDD.

c � apψi > 0, (11)

whereψiis shown in Eq. 11.

ψi �
⎧⎪⎨⎪⎩ −1

0
1

lower than five level threshold ( − ) and higher than three level threshold ( − )
normal

higher than five level threshold ( − ) and lower than three level threshold ( − )
(12)

We propose the use of a five-level threshold in combination
with QTA for incipient fault diagnosis. However, when the
system is in a state of disturbance, the parameters may remain
high or low over a certain time, which leads to misdiagnosis. To

FIGURE 5 | Flow chart for calculation of five-level threshold.
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ensure the accuracy of FDD, SDG inference is proposed in
combination with QTA and the five-level threshold.

Framework of Combining Process
Monitoring and Signed Directed
Graph-Based Inference for Fault Detection
and Diagnosis
Five-level threshold, QTA, and SDG inference are combined to
improve the veracity and sensitivity of process monitoring and
FDD. Here, we assume that when the system is perturbed and
parameters exceed the three-level threshold, failure occurs.

The steps of process monitoring and FDD are as follows:
Step 1: The SDG model is set up based on the flow chart and

knowledge of systems in NPPs; although, at the same time, the
SDG model should be modified and verified by simulation.

Step 2: The five-level threshold is achieved by data handling.
The three-level threshold is initially applied for process
monitoring, and when alarm signals appear as defined by the
three-level threshold, candidate faults are identified by SDG
backward inference.

Step 3: According to the identification of candidate faults, each
fault is separately assessed by forward inference to determine
candidate parameters.

FIGURE 6 | Flow chart of process monitoring and FDD.
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Step 4: If the state of a candidate parameter is considered
certain by the three-level threshold, this parameter state is used
for FDD. If a candidate parameter’s state is uncertain based on the
three-level threshold, then five-level threshold and QTA are
combined to determine the state of that parameter.

Step 5: According to the parameter’s state, forward inference is
used for FDD to reject false candidate faults.

Step 6: If a fault exists, then the result is shown in the NPP
interface. If there is no fault, Steps 2–5 are repeated. The flow
chart is shown in Figure 6.

APPLICATION CASE STUDY

1) Method of SDG modeling

According to the basic steps and principles of SDG modeling,
the SDG model of a loss of coolant accident (LOCA), steam
generator tube rupture, loss of feed water, main steam line break,
and station black-out over three loops of the pressurized water
reactor are created. The SDG model of an NPP is established by

combining fundamental principles and existing knowledge. The
steps for SDG modeling in NPPs are shown in Figure 7.

Analysis of the LOCAmodel: When a small LOCA occurs, the
primary loop flow leaks, and with the containment of pressure,
the temperature will rise. With the constant flow of leaking
coolant, the pit water level will rise. The system pressure will
have a short increase, but after a period of time, the loop pressure
will continue to decrease, which reduces the system pressure and
lowers the pressurizer water level and pressure. At the same time,
the loop coolant flow will continue to decline. The LOCA of SDG
can be built based on LOCA. As with SGTR and loss of feed water,
the SDG model is built as shown in Figure 8 (abbreviations are
listed in Table 1).

2) Five-level threshold

First, three-level thresholds are achieved by NPPs according to
the steps shown in Figure 5; then the five-level threshold is
calculated and stored in a database.

3) Process monitoring and FDD

FIGURE 7 | Flow chart of SDG modeling.

FIGURE 8 | SDG model for the pressurized water reactor.
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Figure 9 shows the interface for process monitoring and FDD
when the NPP is in a normal state (parameters in black are in a
normal state; red indicates that the parameter is abnormal and the
parameter status is “1”; green indicates that the parameter is
abnormal and the parameter status is “−1”). When the NPP is in a
normal state, there are no alarm signals and the values of
parameters are displayed in real-time.

When LOCA occurs in 1000 s, the interface changed, as shown
in Figure 10. The parameters that are monitored according to the
flowchart shown in Figure 6 are shown in Figure 10. Figure 10
shows that FDD results in 2 based on a five-level threshold, QTA.
SDG inference for LOCA and results 1 are based on an unknown
threshold method. The results show that the speed of diagnosis
based on a five-level threshold is faster than that for a single-
threshold method.

When LOCA occurred, the PRB (4) first exceeded the three-
level threshold; the corresponding process monitoring on PRB (4)

is shown in Figure 11. On this basis, SDG backward inference was
used to identify LOCA candidate faults. TGRB (4) was one of the
candidate parameters based on candidate faults and SDG forward
inference.

Process monitoring on TGRB (4) based on a five-level
threshold, QTA, and SDG is shown in Figure 12. Figure 12
shows that fitting of the curve improves the speed of process
monitoring and ensures the accuracy of FDD.

When the simulator inserts a fault in 1000 s, the TGRB (4)
starts to exceed the five-level threshold at 1004 s. At 1009 s,
continuous 5 s exceeds the five-level threshold, QTA can
identify abnormal parameters. When using the normal
threshold method (three-level threshold), it is difficult to find
parameters abnormalities. QTA can detect parameter
abnormalities early, that is, within 1009–1034 s. It can
recognize that the parameters are abnormal, and the common
method can only find the parameters of abnormality after 1034 s.

TABLE 1 | Abbreviation of parameters.

Parameters Abbreviation Parameters Abbreviation

Flow of coolant in loop 1 WLOOP(1) Temperature of cold leg in loop 1 TWRCS(10)
Flow of coolant in loop 2 WLOOP(2) Temperature of cold leg in loop 2 TWRCS(20)
Flow of coolant in loop 3 WLOOP(3) Temperature of cold leg in loop 3 TWRCS(30)
Water level in steam generator 1 ZWDC2SG(1) Pressure of cold leg in loop 1 PRCS(10)
Water level in steam generator 2 ZWDC2SG(2) Pressure of cold leg in loop 2 PRCS(20)
Water level in steam generator 3 ZWDC2SG(3) Pressure of cold leg in loop 3 PRCS(30)
Flow in steam generator 1 WGOUTSG(1) The average primary pressure in reactor coolant system PPSSOLID
Flow in steam generator 2 WGOUTSG(2) Pressure of pressurizer PPZ
Flow in steam generator 3 WGOUTSG(3) Water level in pressurizer ZWPZ
Pressure in steam generator 1 PSGGEN(1) Temperature of the containment TRGB(4)
Pressure in steam generator 2 PSGGEN(2) Pressure of the containment PRB(4)
Pressure in steam generator 3 PSGGEN(3) Radioactivity of condenser RC
Radioactivity of sewage of steam generator MFPWSG(14,1) Radioactivity of the containment MFCSIC
Pit water level ZWRB(3) Pressure of second-loop PBS

FIGURE 9 | FDD interface in the normal state.
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QTA and threshold method realize parameter monitoring in
the SDG model. The abnormality of TGRB (4) is first detected,
and then the path (LOCA—TGRB (4)) is inferred based on the
SDG model; according to the state of ZWPZ, PPZ, PPSSOLID,
PRCS (17), the path is obtained: LOCA—PRCS (17)
decreases—PPSSOLID decreases—PPZ decreases—ZWPZ
decreases. The path is shown below. SDG inference to verify
the accuracy of FDD results is shown in Figure 13 for a LOCA
accident. According to the obtained path, the possible failure is
LOCA.

1) LOCA—pressure of the containment (PRB (4)) increases;
2) LOCA—radioactivity of the containment (MFCSIC) increases;
3) LOCA—temperature of the containment (TRGB (4))

increases;
4) LOCA—pit water level (ZWRB(3)) increases;
5) LOCA—pressure of cold leg in loop 1(PRCS(17))

decreases—the average primary pressure in the reactor
coolant system (PPSSOLID) decreases—pressure of
pressurizer (PPZ) decreases—water level in pressurizer
(ZWPZ) decreases.

FIGURE 10 | Interface of FDD when LOCA occurred.

FIGURE 11 | Process monitoring on TGRB (4) when LOCA occurred.
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CONCLUSION

Based on the characteristics of NPPs, this study proposes a method
of process monitoring and FDD based on SDG. This method can
increase the path of SDG, which is needed to guarantee the
accuracy of FDD. The study has provided simulation-based
examples that show the advantages of process monitoring and
FDD by use of five-level threshold, QTA, and SDG methods:

1) It improves the sensitivity of process monitoring;

2) Incipient fault diagnosis is achieved and accuracy is
improved;

3) Fault propagation paths are shown by SDG, which can explain
the causes of faults.

Because of the complex structure of NPPs, the SDG model as
established in this paper needs further refinement and will require
different methods of establishment for different types of reactors.
An SDG-based method combined with other quantitative
methods is the subject of future research.

FIGURE 12 | Process monitoring on TGRB (4) when LOCA occurred.

FIGURE 13 | Interface of SDG inference at the time the LOCA occurred.
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