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The operation of the integrated energy system will be affected by uncertainties, leading to
sub-optimal design decisions. Accurate and effective modeling of these uncertainties is
essential to ensure the optimal integration of renewable energy in the integrated energy
system. This article first gives the basic optimal operation model of the integrated energy
system, and analyzes various uncertain factors in the optimal operation of the integrated
energy system. The source side mainly considers the intermittent and volatility of
renewable energy output. The load side mainly considers the uncertainty of load
forecast errors. The network side mainly considers the characteristics of equipment
under variable conditions, equipment failures, and the uncertainty of the coupling of
multi-energy flow systems. The energy storage side mainly considers the uncertainty of
mobile energy storage grid connection and virtual energy storage participation in demand
response. The multi-energy trading market mainly considers the uncertainty of market
trading methods and market operation mechanisms. Then, various integrated energy
system uncertainty modeling techniques and solving methods are summarized. Finally, it
looks forward to the future research directions and challenges faced by the optimal
operation of the integrated energy system under the influence of uncertainty.
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methods

1 INTRODUCTION

With the increasing energy crisis and environmental pollution, it is an inevitable trend to make full use
of renewable energy. The 2019 World Energy Outlook issued by the U.S. Energy Information
Administration (EIA) mentioned that the proportion of new energy power generation will increase
from 18 to 31% between 2018 and 2050 (U.S. Department of Energy, 2019). However, the randomness
and volatility of renewable energy have brought huge challenges to the safe operation of traditional
power systems and market supervision. In order to achieve the long-term goal of a safe, reliable and
economical operation of the renewable energy access system, the flexibility of system operationmust be
improved. In order to solve this problem, domestic and foreign scholars have successively proposed the
concepts of Energy Internet (EI) (Sun et al., 2015) and integrated energy system (IES), and strive to
build a future energy system that is interconnected, interactive, and equally shared.

As the physical carrier of EI, IES relies on advanced information and communication (ICT),
energy conversion and optimized control technology to establish a corresponding coupling
relationship between different energy subsystems such as electricity, gas, heat, and cold. It has
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broken the traditional energy system planning and operation
limited to a single energy form, maximized the multi-energy
synergy and complementary benefits, and improved the energy
utilization efficiency and the level of renewable energy
consumption (Clegg and Mancarella, 2016; Hong et al.,
2018).At present, the optimization research of IES is mainly
divided into the following aspects: the optimized operation
model that considers the difference of energy flow, the
optimized operation model that considers system flexibility,
and the optimized operation model that considers the
influence of uncertainty. Reference (Li et al., 2020a; Xu et al.,
2021) summarized a dynamic optimization method that
considers the multi-energy flow of the Energy Internet under
the time scale and space scale. Reference (Chen et al., 2020a; Dai
et al., 2021) summarized that the resources such as demand
response and energy storage are used to improve the operational
flexibility of IES. With the continuous increase in the penetration
rate of renewable energy, the diversification of user electricity
demand and the increase in network complexity, IES is inevitably
affected by uncertainty. Uncertainty can be defined as any
deviation from the ideal state of the actual system operating
with complete deterministic knowledge (Roldán et al., 2019). The
randomness of renewable energy power generation, load forecast
errors, equipment failures and the characteristics of equipment
variable conditions, the impact of environmental changes, market
rules, and the evolution of energy prices make uncertain factors
critical. Although in some cases, a large amount of data can be
obtained to reduce the impact of uncertainty, it is difficult to
completely eliminate all its manifestations. Therefore, it has
important practical significance to optimize the operation
based on the uncertain factors. However, due to the
complexity of the model, the intensity of calculation and the
time pressure to generate the corresponding strategy, most IES
operate in a deterministic manner.

There are still some challenges in considering uncertain
factors to achieve optimal operation of IES. Firstly, IES
introduces more sources of uncertainty and increases the
complexity of scheduling. Edenhofer et al. (2006) divided the
uncertainty into two types: model parameter uncertainty and
model structure uncertainty. Model parameter uncertainty is
caused by the lack of experience related to model parameters,
and model structure uncertainty refers to the uncertainty of the
model equation itself. The uncertainty of model parameters is the
focus of this paper. For example, the uncertainty of renewable
energy, electricity prices and heat demand cannot be ignored in
IES. Secondly, with the transition to a fully renewable energy
system, it is more challenging to optimize operation under
uncertainty in terms of uncertainty modeling. Through
systematic investigations, we have identified several major
uncertainty modeling methods that have been applied,
including probabilistic methods (Fang et al., 2020), robust
optimization (Wang et al., 2019a), interval analysis/probability
methods (Shahidinejad et al., 2012; Liu et al., 2021), information
gap decision-making theory (Zhao et al., 2017a), and hybrid
optimization methods (Guo et al., 2019). Thirdly, there are many
IES coupling devices, and the characteristics of the devices,
complex network constraints, and multiple uncertain factors

lead to highly nonlinear terms in the model. For example, the
variable working condition characteristics of the coupling
equipment, the dynamic constraints of the heating network,
and the maximum-minimum operator in the uncertainty
optimization all bring challenges to the optimization
operation. In order to facilitate model solving, relaxation and
convexification techniques can be used. However, some non-
linear optimizations are still difficult to solve and need to rely on
intelligent optimization algorithms such as machine learning (Xi
et al., 2020).

Focusing on the above-mentioned difficulties, this paper
conducts a systematic and critical review of existing research
from three aspects: source-network-load-storage and multi-
energy market uncertainties, IES uncertainty modeling, and
model solution methods. It focuses on the main principles,
applications and limitations of various uncertainty modeling
methods of IES. And according to the processability,
calculation efficiency, convergence speed and optimality and
other indicators to select the appropriate solution algorithm.
In addition, this article can be used as a basis for future
research to solve the uncertainty in IES optimization design.

The paper is organized as follows: Section 2 discusses the
structure of a typical IES and introduces a basic optimal operation
model. Section 3 discusses the uncertainty of intermittent new
energy power generation, the uncertainty of equipment operation
status and the system, the uncertainty of load forecasting, the
uncertainty of electric vehicle integration, the uncertainty of
market rules and energy prices. Various uncertainty modeling
methods and solution methods for IES are discussed in Section 4.
Sections 5, 6 provide brief discussions and conclusions.

2 OPTIMAL OPERATION OF INTEGRATED
ENERGY SYSTEM
2.1 The Structure of Integrated Energy
System
Typical structure of IES as shown in Figure 1, Contains a variety
of energy resources such as electricity, gas, heat, cold. Different
energy subsystems achieve dynamic balance of energy through
various energy conversion equipment. Among them: combined
heat-power (CHP) is converted into electric energy and heat by
burning natural gas; P2G (Power to Gas) equipment converts
electric energy into natural gas, electric refrigerator (EC) can
convert electrical energy into cold energy to meet the cooling load
needs of users. Electric boilers can convert electrical energy into
heat energy, and absorption chillers (AC) can further convert
excess heat energy into cold energy. When the energy on both
sides of the source load is unbalanced, it can be adjusted by
storing or releasing energy through different energy storage
devices. It can be seen that mastering the characteristics of
each energy subsystem and various coupling devices in IES is
the basis for IES’s optimized operation.

2.2 Basic Optimization Operation Model
According to different modeling ideas and methods, the IES
optimized operation model can be divided into two types: general
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FIGURE 1 | Typical structure of IES.

TABLE 1 | General model for optimal operation of IES.

System Constraint Description

Objective function — Optimal operating cost, maximum social welfare, maximum utilization of RES.
Power System Power balance Load demand should be balanced with unit output

Branch trend Power grid branch power flow should satisfy constraints
Ramp limitation The climb of the units is limited by the rate of climb
Reserve capacity The upward/downward reserve capacity is coupled with the outputs of units, and it is constrained by the

ramping rate
Capacity limitation for each
component

Each component is limited by the maximum and minimum output or power

Natural Gas
System

Nodal flow balance equation The flow into the natural gas node is equal to the outflow
Nodal pressure The natural gas node should meet the maximum and minimum pressure limits
Air source output The output of the air source should meet the maximum and minimum limits
Escrow characteristic equation The pipeline injection flow rate is different from the output flow rate, and the difference is stored in the pipeline
Pipeline flow dynamic model Described by the partial differential equations of conservation of mass, Newton’s second law, and conservation

of energy
Heat System Mass flow balance equation Continuity of mass flow at nodes.

Loop pressure drop equation The pressure drop in a loop is zero
Nodal power balance equation The thermal dynamic process includes the heat balance in heat sources and heat exchange station
Temperature drop equation Calculate the temperature at the outlet of the pipe
Propagation delay equation The delay of temperature changes at both ends of the heating pipe can improve the accuracy of the model
Pipe heat conduction The partial differential equations of temperature kinetics and time delay in the thermodynamic process describe

the pipeline Temperature distribution
Nodal temperature mixing equation The outlet temperature of the pipeline injected at the junction is mixed at the node, and the temperature out of

the node is the mixed temperature
Coupling Element CHP The relationship between heat and power production of CHP units

P2G Including two steps of water electrolysis and hydrogen methanation
HP, EB The relationship between heat production and power consumption for HPs/EBs
EC, AC The relationship between the cold production and power consumption for ECs/ACs
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model and unified model. The general model is to model each
energy subsystem and coupling components separately. Unified
modeling uses theories of energy hubs or circuits to uniformly
express the process of energy transmission, conversion, and
storage.

2.2.1 General Model
The general model of IES optimization operation is composed of
objective function and constraint conditions, as shown inTable 1.
The objective function is usually the lowest system operating cost,
the highest renewable energy consumption rate, and the lowest
carbon emissions. According to the number of optimization
goals, it can be divided into single-objective optimization and
multi-objective optimization. Among them, when considering
multi-objective optimization, dispatchers need to weigh different
optimization objectives to make optimal decisions. The
constraint is the feasible region of each device and the entire
system. It should be noted that the formula in Table 1 is only a
basic form, which can be adjusted according to specific research
scenarios and system operating modes.

2.2.2 Unified Model
At present, the unified model includes the energy hub model and
the unified energy path model (Wang et al., 2019b). The theory of
energy hubs was put forward by Goran Anderson and others of
ETH Zurich. The energy concentrator summarizes the energy
form of IES on both sides of energy supply and energy demand,
and describes the energy coupling characteristics through the
elements in the coupling matrix, and realizes the functions of
coordinated transmission, conversion, storage, and distribution
of multiple energy sources. The structure of the energy hub is
shown in Figure 2.

The unified energy path theory (Chen et al., 2020b) was
proposed by the team of Tsinghua University. Based on circuit
theory, a unified energy circuit including power network, gas
circuit, water circuit, and heat circuit is derived. The energy
network is represented as an energy path diagram composed of a

number of branches containing energy path elements such as
resistance, capacitance, and sense connected according to a
certain topological relationship. By analyzing the branch
characteristics and topology constraints in the energy path
diagram, the network matrix and network equations of each
energy network can be derived, which reduces the amount of
calculation. It provides a unified theory and efficient method for
the modeling, analysis and optimization of multi-energy
networks, and has broad application prospects in the planning
and operation of IES.

3 UNCERTAINTY FACTORS FOR
OPTIMIZATION OF IES

The uncertain factors in the optimal operation of the integrated
energy system can be roughly divided into the uncertainty of
intermittent new energy power generation, the uncertainty of the
equipment operating state and the system, the uncertainty of load
forecasting, the uncertainty of electric vehicle grid connection,
and the uncertainty of energy prices and market rules correspond
to the uncertainties of source-network-load-storage and multi-
energy trading markets, respectively.

3.1 Uncertainty on the Source Side
The uncertainty on the source side mainly considers the volatility
of renewable energy output and the forecast error of renewable
energy output. On the one hand, the output of renewable energy
is easily affected by environmental factors, and the randomness of
weather factors will affect the power of wind turbines. Similar to
wind speed, the total horizontal solar irradiance, temperature,
humidity, cloud cover, air pressure, etc. have a great influence on
the photovoltaic output power (Dai et al., 2011). It is generally
believed that the wind speed obeys the Weibull distribution, and
the light intensity obeys the beta distribution. The strong
randomness and volatility of renewable energy generation
power will inevitably affect the stable operation and optimal
control of the distribution system (Tuan et al., 2020; Doan et al.,
2021). In view of the smoothing effect of the energy storage
system on the grid-connected power of renewable energy
generation, through the coordinated dispatch of “source-grid-
load-storage”, the distribution system can be actively controlled
and managed to improve the consumption of renewable energy
and ensure safety economic operation. On the other hand, in the
intra-day optimization scheduling process, the data of the
previous day’s renewable energy output is usually used as a
benchmark. There is usually a certain error between the actual
value and the predicted value of renewable energy output. The
day-ahead forecast error of renewable energy output is as high as
25–40% of installed capacity. High-precision forecasting is an
effective means to alleviate the negative impact of renewable
energy grid connection on the system (Zhang et al., 2016).
According to existing research, the forecasting models of
renewable energy output can be divided into physical models
and statistical models. Commonly used statistical forecasting
methods include time series method, artificial neural network
method and support vector machine (Liu et al., 2017a).

FIGURE 2 | The structure of the energy hub.
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3.2 Uncertainty on the Grid Side
3.2.1 Equipment Operating Status
At present, the uncertainty research on the equipment operating
status includes two types: equipment variable operating
conditions and equipment failure. The variable-condition
characteristics of the equipment means that the efficiency of
the energy conversion equipment is not constant, it is related to
power, load rate, environmental factors, etc. (Wang et al., 2018).
At present, certain researches have been carried out on the
characteristics of equipment under variable conditions. Chen
et al. (2020c) established an RIES optimal scheduling model
based on dynamic EH considering the characteristics of
equipment under variable conditions, which improves the
accuracy of the equipment model and reduces the cost
prediction error of the scheduling scheme. Wei et al. (2015),
Deng et al. (2017) proposes an economic optimization model that
considers the characteristics of the equipment under variable
conditions for small internal combustion generator sets, CHP,
and energy production equipment. Considering the
characteristics of equipment under variable conditions will
make the model have nonlinear constraints. Using polynomial
fitting for linearization or piecewise linearization can preserve the
linear coupling relationship between the input and output of the
device, but there are still large errors (Huang et al., 2020). At
present, the optimized operation of IES takes less consideration of
the characteristics of equipment under different conditions.
Existing research mainly focuses on the impact of a single
factor on equipment efficiency. In the future, more influencing
factors should be considered to further refine the equipment
efficiency characteristic model. The equipment with obvious
variable operating conditions in IES is shown in Table 2.

Equipment failure is another important uncertainty factor in
equipment modeling. The failure of a certain device in the IES
may cause a subsystem or even the entire system to fail. At
present, the fault model of equipment in IES is generally built as a
two-state or multi-state model (Zhong et al., 2013; Ding et al.,
2014a; Ding et al., 2014b), and its normal operation time and
failure duration are simulated by exponential distribution. Ding
et al. (2014a) pointed out that the random failure or aging of the
traditional generator set will cause the complete or partial failure
of the generator set, which will affect the output of the generator
set. Ding et al. (2014b) uses a universal generating function to
represent a multi-state model of wind speed, and considers the
failure rate of wind turbines, and establishes a wind farm output
Markov process model that comprehensively considers wind

speed and wind turbine failures. Zhong et al. (2013) analyzes the
physical structure of the grid-connected energy storage system, and
based on the state spacemethod, carries on the reliabilitymodeling of
the battery energy storage system.When a fault occurs in the IES, the
mutual influence of the coupled energy systems will expand the scope
of the fault and increase the difficulty of handling the fault. Therefore,
it is necessary to predict equipment failures. DawnAn et al. divide the
failure prediction methods into three categories: mechanism-based
methods, data-driven methods, and methods that combine
mechanism and data-driven. But most data-driven methods lack
the support of mechanism. Therefore, it is necessary to combine
the above two methods to improve the performance of fault
prediction.

3.2.2 System Uncertainty
In addition to considering the uncertainty of energy demand and
supply in each energy subsystem, the inherent uncertainty of
natural gas and heating pipeline parameters and outdoor
temperature cannot be ignored. First of all, the parameters of
the pipeline are not constant values and are affected by the
operating status of the system. As there is not enough
monitoring device installed, the deviation of the actual value
of the pipeline parameter from its normal value is difficult to be
observed. Secondly, the cooling and heating requirements and
energy comfort of end users are affected by building parameters
and outdoor temperature. Therefore, the thermal inertia of the
building and the prediction error of outdoor temperature should
be considered when modeling the uncertainty of cold and heat
demand (Li et al., 2020b; Lu et al., 2020; Li et al., 2021).The
uncertain factors contained in each energy subsystem will affect
the actual operation of IES through the coupling of multiple
energy flows and multiple time scales. In addition, IES is a typical
application of in-depth integration of cyber-physical systems. Its
uncertainty is not only related to the energy physical system itself,
but also closely connected to the information system. The
uncertain factors of the information system, such as
measurement abnormalities, information transmission errors,
random failures of the information system, and human
information attacks, will directly affect the physical system. Lei
et al. (2014) studied the impact of information system
components and their failure modes on physical systems. Lei
and Singh (2017) uses non-sequential Monte Carlo simulation to
sample the state space of devices with different dependencies, and
analyzes the reliability of the corresponding cyber-physical
system.

TABLE 2 | The equipment with obvious variable operating conditions in IES.

Equipment Formula Description

— �η � f( �N) The conversion efficiency �η varies with the change in the actual load rate �N

CHP �η � 3.18 �N − 4.69 �N
2 + 3.69 �N

3 − 1.18 �N
4 The performance of the CHP unit is associated with a variety of factors such as operating temperature,

humidity, pumping coefficient and load rate. Assuming that other parameters are constant, the efficiency
values of the CHP unit gradually decrease as the load rate decreases

GB/WHB
�η � {0 �N < 0.05

0.82 + 0.19( �N − 0.05) 0.05≤ �N ≤1
The conversion efficiency of the GB, WHB in the variable condition can be approximated by segmentation
linearization

AC
�η � { 1 0.65≤ �N <1.0

0.5 + 0.83( �N − 0.05) 0.05≤ �N <0.65
There are two types of coolants commonly used by AC, and lithium bromide is widely used in Asia and the
United States. Europe should have more water/ammonia
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3.3 Uncertainty on the Load Side
3.3.1 Analysis of Influencing Factors
IES comprehensively covers electricity, gas, heat (cold) and other
energy forms, many influencing factors, such as: building indoor
conditions, building parameters, climate, social economy, etc.,
will increase the uncertainty of the load.

1) Building indoor conditions: mainly including energy-using
equipment, users’ own energy-using behavior, indoor
environmental quality requirements (temperature,
humidity, air quality), etc., in which indoor environmental
quality requirements affect the load most influential.

2) Building parameters: Building materials affect the heating/
cooling load of a building, and factors such as building
location, size, height, shape, and window-to-wall ratio will
affect building lighting, solar radiation intensity and
ventilation conditions.

3) Climate: Mainly includes outdoor temperature, humidity,
solar radiation, extreme weather (fog, dew, frost, etc.).
Climatic factors will directly affect the energy demand of
users (Lu et al., 2019; Wu et al., 2021).

4) Socio-economic factors: mainly including education level,
energy price, economic level, etc., which will affect the
user’s energy consumption habits, equipment configuration
and other factors, thereby affecting the end user’s load.

3.3.2 Load Forecasting
Compared with renewable energy, the uncertainty of output is
mainly related to its own characteristics. The uncertainty of load
is regular, so the accuracy of load forecasting is often much higher
than that of renewable energy (Mamun et al., 2020). At present,
IES load forecasting methods can be divided into macro-type
forecasting methods, micro-type forecasting methods and
artificial intelligence methods. According to the specific object,
suitable forecasting method or combination forecasting method
can be selected. Macro forecasting methods use statistical
methods to find the relationship between energy consumption
and economic, natural environment, population and other factors
from a macro perspective. The classical forecasting methods
generally used include time series method, regression analysis
method, elasticity coefficient method, load density method, and
trend extrapolation method, etc. (Wang et al., 2011; Si et al.,
2020). The micro forecasting method uses a non-aggregated
model to analyze the energy consumption of each user and
add up to get the total load demand in the area. Compared
with the macro-type forecasting method, the results reflect energy
consumption characteristics and the forecast results are more
accurate, but the preliminary data collection process is
complicated. In recent years, artificial intelligence technologies
represented by machine learning and deep learning have been
widely used in the field of load forecasting, making full use of the
measurement data in smart meters to study the energy demand
and behavior of different types of users and groups, based on
massive energy data establishes self-learning models for different
types of users (Kong et al., 2018). It is not restricted by load
components and characteristics, and has certain advantages in
describing complex dynamic behavior characteristics. It is

foreseeable that the theory of artificial intelligence based on
big data will be an effective way to solve IES multiple load
joint forecasting in the future.

3.4 Uncertainty on the Energy Storage Side
Energy storage systems are mainly divided into three categories:
fixed energy storage, mobile energy storage and virtual energy
storage. Most of the existing studies use energy storage as a
flexible resource to participate in the optimal scheduling of IES.
The installation of different types of energy storage equipment
can change the distribution of load in the space and time
dimensions, and minimize the difference in the distribution of
electricity, heat, and gas load as much as possible (Fang et al.,
2018). However, the uncertainty of energy storage itself is rarely
considered.

Mobile energy storage has the characteristics of good mobility
and easy installation, and can be configured in different spaces
and time periods. As a typical representative of mobile energy
storage, the actual charging load of electric vehicles fluctuates
randomly due to the influence of vehicle operation, traffic,
environment and other factors, showing strong uncertainty.
The commonly used modeling methods for uncertainty
analysis of electric vehicles include Monte Carlo simulation,
fuzzy methods and a mixture of the two. Rassaei et al. (2018)
uses fuzzy technology to divide the important factors in EV load
modeling into several groups to calculate EV load demand and
charging time. The hybrid fuzzy-MCS method can consider the
spatial and temporal uncertainty of EV at the same time.

Virtual energy storage is to achieve load peak reduction and
valley filling by integrating controllable resources on the user
demand side. More and more users are participating in market
supervision activities. However, when users participate in
demand response, they will be affected by market prices,
policy incentives, energy usage habits, communication delays,
environmental conditions and other factors (Rassaei et al., 2018).
Therefore, the uncertainty is stronger and it is difficult to
accurately predict. In addition, with the popularization of
advanced measurement devices, more and more scattered
users have the opportunity to participate in power grid
dispatch, especially some small and medium-sized users, which
greatly aggravates the uncertainty of demand response.

3.5 Uncertainty on the Multi-Energy Trading
Market
3.5.1 Trading Methods
Market transactions are divided into three types: bilateral
transactions, centralized transactions, and peer-to-peer
transactions. Bilateral transaction means that both parties to
the transaction sign a contract through negotiation to ensure
that a certain amount of a certain subject matter is bought and
sold within an agreed time according to a pre-agreed price and
method (Farzin et al., 2019). The scale of the transaction is related
to market rules and transaction costs. Due to the influence of
various uncertain factors such as IES load, equipment failure,
network transmission capacity, etc., there is a certain error
between the transaction volume specified in the bilateral
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contract and the actual demand volume. Therefore, it is necessary
to set up centralized transactions. Centralized trading means that
market participants make quotations to the market organizers
according to the quotation rules, and the market organizers
uniformly clear the market in accordance with the bidding
rules (Farzin et al., 2019), determine the bid amount and bid
price of each market participant. With the liberalization of the
trading market, a peer-to-peer distributed energy trading method
has emerged. For example: Distributed renewable energy
operators can directly sign contracts with users or energy
storage operators to reduce users’ energy costs and increase
the revenue of energy storage operators. The liberalization of
transactions has made the energy flow of regionally distributed
markets more complicated, changing from a single direction to an
uncertain direction. At the same time, the development of
ancillary services, financial derivatives, carbon trading, and
green certificate markets will further enrich the trading
varieties of diversified entities. The increase in trading
methods and trading entities makes the operation of IES full
of more uncertainties.

3.5.2 Market Operation Mechanism
The operating mechanism ensures the optimal allocation of
resources in the multi-energy market, and consists of
mechanisms such as price, supply and demand, competition,
settlement, and incentives. In the multi-energy market, the price
mechanism is full of uncertainty. The transaction price is affected
by the supply and demand of multiple energy sources, the degree
of network congestion, and is also related to the different
development stages of the transaction model. In addition, in
the multi-energy trading market, the trading cycles of different
energy sources are different on the time scale, which is prone to
information delay. At the same time, users have different
sensitivity to different energy prices, the participation response
is random and lagging. Chen et al. (2018) established a consumer
decision model based on the utility function of constant elasticity
of substitution (CES) according to the impact of consumers’
decision-making behavior on energy prices. It also analyzes the
game relationship among consumers, heat market and electricity
market. Adopting end-to-end energy trading in (Xu et al., 2018)
can realize the equal and free trading of multiple energy sources.
The introduction of the carbon trading market makes the IES
system not only participate in the competition in the energy
market, but also in the competition in the carbon trading market.
At the same time, carbon market prices and energy market prices
will affect each other, increasing the uncertainty of market
operation mechanisms. In the carbon trading market, the
competitive advantage of renewable energy power generation
has gradually increased, and the competitive advantage of
traditional thermal power units has declined significantly,
which has changed the competitive landscape of the energy
market. Big data analysis, data mining and other technologies
can improve the core competitiveness of market players.
Hannan et al. (2018) uses artificial intelligence methods to
analyze multi-energy trading equilibrium and bidding
strategies through sample learning, breaking through the
barriers of a single energy market.

4 UNCERTAINTY MODELING METHOD
OF IES

The current methods for optimal operation of integrated energy
systems that consider uncertain factors are divided into Stochastic
optimization, robust optimization, interval optimization,
possibility method, information gap decision theory (IGDT),
and hybrid optimization method. The optimization objectives
can be divided into: Economy, environmental protection,
reliability, flexibility or their combination.

4.1 Stochastic Optimization
4.1.1 Principle
Stochastic optimization uses the probability density functions
(PDFs) of random variables to characterize the uncertainty of the
system, and uses different probability strategies to deal with it,
such as: scene method, Monte Carlo simulation, point estimation
method, chance constrained programming, etc. Usually, the
probability distribution of random variables needs to be
assumed first, but the assumed probability distribution may
not be accurate enough to describe the uncertainty, and a
trade-off between calculation accuracy and calculation
efficiency is required.

The scenario method is a common strategy for dealing with
uncertain parameters based on scenario analysis. The current
scene generation methods mainly include Monte Carlo sampling,
Latin hypercube sampling and probability sampling. The scale of
the basic scene obtained by the scene generation method is large,
and a reasonable reduction is required to screen out typical scenes
that meet the statistical characteristics of uncertain variables.
Scene reduction methods mainly include backward/forward
reduction methods, scene tree division and cluster division.
The scenario method usually divides uncertain parameters into
countable limited scenarios with specific probabilities. That is, a
series of scenes are generated through the PDF of each uncertain
parameter, and the expected value of the output variable y is
obtained. The calculation is as follows:

E(y) � ∑
s

πs × f(xs) (1)

Where ∑
s
πs � 1, π is the probability of scene S. f(xs) is the

probability density function under scene S.
MCS is used for highly nonlinear, complex or systems with

many uncertain variables. Three different types of MCS
techniques are used for uncertainty analysis in practical
applications: Sequential Monte Carlo, Non-sequential Monte
Carlo simulation and Pseudo-sequential Monte Carlo
simulation (Aien et al., 2016). MCS is an iterative method, the
calculation process is shown in Figure 3.

The point estimation method is based on the moment of
uncertain input parameters, and the output variable is described
as a Gaussian probability density function. The point estimation
method concentrates the statistical information provided by the
first few central moments of random variables on the
concentrated point of each variable. The point estimation
method is divided into km scheme and km + 1 scheme (K is a
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parameter). The km + 1 scheme is more accurate than the km
scheme because it counts variable peaks. Chance-constrained
programming (CCP) allows a constraint to be violated with a
predetermined small probability. Taking into account the
uncertainties of load and photovoltaic output, as well as the
correlation between these uncertainties, in some extreme cases,
violation of inequality constraints is allowed. Therefore, control
measures for extreme situations that rarely occur can be avoided.
The general model of CCP is as follows (Wu et al., 2020):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min∑m
j�1
Pj∑n

i�1
(Uijd

+
i + Vijd

−
i )

s.t. Pr{fi(x, η) − bi ≤ d+
i }≥ δ+i

Pr{bi − fi(x, η)≤ d−
i }≥ δ−i

d+
i , d

−
i ≥ 0

(2)

Where fi is the objective function; m is the number of priorities;
n is the number of target constraints; pj is the target priority
factor, bi is the i-th target value; uij, vij are respectively the
positive deviation weighting factor and the negative deviation
weighting factor of the i-th target of the j-th priority. d+i , d−i are
respectively the optimistic positive deviation and the optimistic
negative deviation of the i-th target from the target value.

4.1.2 Application
Stochastic optimization was originally proposed by Danzig
(1955). We summarized the application of stochastic
optimization in IES. The multi-stage stochastic optimization
model of the electricity-gas integrated energy system
considering the uncertainty of wind power output is proposed
in Qadrdan et al. (2014), it is transformed into a deterministic
optimization model through scenario generation and reduction
technology for solution. Liu et al. (2014) analyzes the uncertainty
of solar energy and heat load in the operation of building energy
system based on the method of multi-stage scenario tree. Yao and
Wang (2020) considers the extreme conditions of the wind and
solar scene set, and establishes a two-level multi-scenario
collaborative optimization configuration model for the IES.
The scenario analysis method is complex and time-consuming,
it is not suitable for large-scale systems. The MCS method is
intuitive and relatively easy to implement. The Chen et al. (2017)
uses the Monte Carlo method to analyze the probabilistic energy
flow of IES. Oh et al. (2020) considers the relative changes in
energy demand and wind power output, generates random
samples for uncertain inputs through MCS, and uses a multi-
linear method to solve them. As the degree of freedom of the
solution space increases, the number of simulations required for
MCS also increases, requiring a considerable amount of
calculation. Compared with MCS, the point estimation
calculation is more efficient, easy to implement and has higher
accuracy. The most widely used point estimation method is the
three-point estimation method. Sun et al. (2017a) constructs an
IES day-ahead optimal scheduling probability model, and uses
the second-order cone programming (SOCP) and point
estimation method to solve it. Zhao et al. (2017b) uses a
three-point estimation method to model the uncertainty of the
gas supply capacity, assign corresponding probabilities according

to the actual situation of the system. Since there is a certain
correlation between random variables in IES, the point estimation
method is usually used in conjunction with the correlation
processing methods such as Nataf transform and orthogonal
transform. CCP is actually a stochastic optimization method.
Liu et al. (2017b) uses CCP to describe the uncertainty in the
power system, so that the scheduling results can meet the actual
operation requirements under a certain level of confidence. The
stochastic optimization problem with chance constraints is
transformed and solved by sampling average estimation, scene
approximation and other methods. When the uncertain
parameters obey the normal distribution, it can be
transformed into a deterministic second-order cone
optimization problem (Fang et al., 2020).

4.2 Robust Optimization
4.2.1 Principle
Robust optimization describes the fluctuation of uncertain
parameters through uncertain sets. As long as the values of
uncertain parameters are within the range of uncertain sets,
the feasibility of the solution can be guaranteed.The selection
of the “uncertain set” is the key to robust optimization to deal
with the uncertainty problem. At present, the uncertain set is
often described in the form of box, polyhedron, ellipsoid,
cardinality, etc. With the development of robust optimization
technology, it can be divided into engineering game model, two-
stage robust optimization model, and distributed robust
optimization model according to different modeling ideas.

The engineering game model of robust optimization refers to
the uncertainty factor trying to make the system operation index
worse, while the system decision maker tries to give a strategy to
keep the operation index optimization under all possible
conditions (Mei et al., 2013). The commonly used engineering
models for robust optimization is:

min max J(u, w)
s.t.

⎧⎪⎨⎪⎩
G(x, u, w)≤ 0
u ∈ U
w ∈ W

(3)

Where J(u, w) is the objective function; G(x, u, w) is a constraint
condition, x is a system state variable, U and W are decision
variables and random variables, respectively.

The engineering robust optimization method has strong
pertinence and practicability for engineering game problems,
but the decisions made are too conservative. The two-stage
robust optimization method overcomes the shortcomings of
the engineering robust optimization method that is too
conservative. The main idea is to divide decision variables into
adjustable variables and non-adjustable variables for staged
decision-making. Some of the decision variables make
corresponding decisions before the uncertainty is realized, and
the other part of the decision variables can be adjusted according
to the uncertainty. It is mainly based on affine adjustable robust
optimization and two-stage adaptive robust optimization. Affine
adjustable robust optimization uses an affine function to establish
an affine relationship between an adjustable variable and the
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uncertain parameter it depends on. The two-stage adaptive robust
optimization model is adaptive to uncertainty. Compared with
the affine adjustable robust optimization model, the structure is
more complicated, but it has greater flexibility in adjusting the
day-ahead operating point in the real-time exploration phase.

The two-stage robust optimization model is:

min CTy +max
u∈U

min
x∈F(y,u) b

Tx

s.t. Ay≥ d, y ∈ {0, 1}
F(y, u) � {Ex≥ h − Fu − Gy: λ}

(4)

Where y is the decision variable in the first stage, optimized
according to the prediction information of the uncertain variable,
robust to any uncertain set scenario; u is the uncertain set, x is the
decision variable in the second stage, λ is the dual variable of the
corresponding constraint.

Aiming at the relatively conservative shortcomings of robust
optimization methods, a distributed robust optimization model is
proposed. The distributed robust optimization method
establishes an ambiguity set of probability distribution based
on part of the information of the uncertain variable, and
makes an optimal decision for the worst probability
distribution of the fuzzy set. The construction of the fuzzy set
of probability distribution is the basis of the solution of the
distributed robust optimization model. It mainly uses fuzzy sets
based on statistical moments and distance-based probability
distributions. The general mathematical form of distributed
robust optimization is:

min
x∈X

supp∈Ω{Ep[f(x, z)]} (5)

Where: x is a decision variable, z is a parameter, Ω is a fuzzy set of
parameter distribution constructed based on historical
information. Ep is the expected value of the distribution of
uncertain variables.

4.2.2 Application
The robust optimization method was proposed by Soyster (1973).
We summarized the application of robust optimization in IES. In
(Zugno et al., 2016), considering the uncertainty of electricity
price and heat load, an affine adjustable robust optimization IEHS
model was developed. For the convenience of calculation, it is
assumed that the unit adjustment is a linear function of uncertain
parameters. Zhou et al. (2020) established a two-stage robust
IEHS scheduling model, which imposes fuzzy constraints on the
uncertainty of the heat load of the heating network, the ambient
temperature and the heat dissipation coefficient of the heating
pipe, and is solved by the C and CG algorithm.Although the
robust constraint cannot fully capture the flexibility of the region
to deal with the combination of uncertain scenarios, it can ensure
that the system can cope with the worst case. In the actual
operation of IES, each energy subsystem often belongs to
different operators, and there are industry and information
barriers, which limit the two-stage robust optimization model
of the unified dispatch mode. Later, researchers proposed a
variety of methods such as distributed robust optimization and
data-driven distributed robust optimization. Distributed robust

optimization does not need to set the probability distribution
type, and makes decisions based on the worst probability
distribution in fuzzy sets. Compared with random
optimization, it is more robust. He et al. (2019), Zhang et al.
(2019) establishes a distributed robust optimization model,
constructs a fuzzy set based on wind power error sample data,
and solves it through linear decision-making, which has a high
computational time cost. Zhao et al. (2019) establishes a two-
stage distributed robust optimization model for the energy hub. A
newmulti-modal fuzzy set is proposed to deal with the prediction
error of photovoltaic power generation, and it is compared with
the widely used normal fuzzy set and unimodal fuzzy set. Data-
driven distributed robust optimization constructs fuzzy sets by
mining historical data, which further improves the economics of
the scheme (Xu and Chen, 2021).

4.3 Interval Optimization/Possibility Method
4.3.1 Principle
Interval optimization is similar to robust optimization, only
requires the upper and lower bounds of the uncertainty
without the need for its accurate probability distribution. It
uses interval numbers to describe uncertainty, which is
suitable for situations where there are a large number of
unknown factors and statistical data is difficult to obtain.

The general model used in interval optimization is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minf(x, u)
s.t.gξ(x, u)≥ bIξ � [b−ξ , b+ξ ]
U ∈ UJ � [U−, U+] ξ � 1, 2, . . . , S
Uδ ∈ UJ

σ � [U−
σ , U

+
σ ] δ � 1, 2, . . . , q

(6)

Where X is the u-dimensional decision variable matrix; U is the q
dimensional uncertain variable matrix; gξ(x, u) is the ξ-th
uncertainty constraint; S is the number of uncertain
constraints; bIξ is the interval of the constraint equation; UJ is
the interval matrix of uncertain variables. Uδ represents the δ-th
uncertain variable, which is an element of UJ.

The membership degree of the uncertain variable input by the
possibility method is represented by a suitable fuzzy membership
function (MF). Suppose the original optimization problem can be
expressed as:

{minf(x)
s.t. g(x,ϕ)≤ 0 (7)

Where x and φ denote decision variables and fuzzy variables,
respectively.

When the shape of the membership function is not considered,
the main problem is that the MF of the input variable is known,
how to determine the MF of the output variable? Usually the α-cut
method and defuzzification strategy are used to solve the problem.
The α-cut method is the probability distribution of the known
uncertain input variable X, and the possibility distribution of Y can
be obtained by the α-cut method. The constraint condition
contains fuzzy variables so that the optimization problem
cannot obtain deterministic results, and the defuzzification
strategy can be used to defuzzify the output variables. The
centroid method is a commonly used defuzzification strategy.
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4.3.2 Application
The concept of probability method modeling was first proposed
by Zade (Zadeh, 1999). Considering the uncertainty of wind
power, photovoltaic power generation and light field thermal
power, the IES fuzzy constraint planning model (Dong et al.,
2020) is established. By introducing the confidence level α, the
problem becomes a form of chance constraint expression, which
is then transformed into solving a deterministic optimization
problem. The uncertainty model of the energy conversion
efficiency of natural gas network pipeline parameters and P2G
equipment is established using the ladder fuzzy membership
function (Sun et al., 2017b). Using fuzzy technology,
important factors in EV load modeling can be divided into
several groups to calculate EV load demand and charging time
(Shahidinejad et al., 2012). The quality of the results obtained by
the possibility method depends to a large extent on the selection
of fuzzy membership functions. Due to the lack of criteria for
selecting membership functions, the results obtained are highly
subjective. Interval optimization can obtain optimistic and
pessimistic solutions that meet the requirements of system
operation. The calculation is relatively simple and can
highlight the impact of uncertain parameters on the system.
The fuzzy predictive range model is used as a predictive
model, and a robust energy management system (REMS) is
established. The model considers the nonlinear dynamic
behavior and the uncertainty of renewable energy (Valencia
et al., 2016). Considering demand response and wind power
uncertainty, a coordination operation strategy based on interval
optimized integrated energy systems is proposed (Su et al., 2017).
Liu et al. (2021) From the perspective of source load synergies,
consider the uncertainty of supply and demand, proposing a new
multi-target interval optimization framework for energy hub
planning issues.

4.4 Information Gap Decision Theory
4.4.1 Principle
IGDT is a method to deal with uncertainty in the absence of
available historical information and unable to use PDF or MF
modeling. When uncertainty occurs, the operator needs to adopt
a risk aversion strategy or a risk seeking strategy to deal with the
situation caused by the uncertainty. Risk aversion strategy refers
to making robust decisions about the errors that may be caused by
the prediction of uncertain input parameters. In the case of the
largest level of uncertainty, the objective function of the system
should avoid exceeding the set value. Expressed with equations as:

α̂(fr) � maxα{α: max(f(x, c))≤fr} (8)

Where fr is a predetermined cost that the system’s maximum
total cost cannot exceed. Robust Function α̂(fr) is understood to
exceed the allowable deviation of the set value.

The risk seeking strategy is that the minimum cost of the
system cannot exceed the specified cost when the predicted
uncertain parameters are slightly error (minimum uncertain
radius).

β̂(f0) � minβ{α: min(f(x, c))≤f0} (9)

Where f0 is the specified cost that the minimum total cost of the
system cannot exceed. The chance function β̂(f0) is expressed as
the minimum level of uncertainty acceptable to achieve a profit
target as large as f0.

4.4.2 Application
IDGT can be used to deal with issues such as market price, power
generation and load uncertainty in IES optimized operation.
Vahabzad et al. (2020) applies the IGDT method to multi-energy
systems to manage load uncertainty risks. Zhao et al. (2017a)
proposed a scheduling method for EV aggregators, using IGDT
to deal with the uncertainty of electricity market prices. Cao et al.
(2018) proposed a chance constrained-IGDT model for multi-
period microgrid expansion planning considering both random
and non-random uncertainties. Dolatabadi et al. (2019) proposes an
energy hub system scheduling strategy based on hybrid stochastic-
IGDT optimization. Energy hub operators choose strategies to avoid
and seek risks under price uncertainty.

4.5 Hybrid Optimization Method
4.5.1 Principle
The previous method is mainly used to solve a single uncertain
variable. There are many uncertain factors in the optimal
operation of the IES. When considering multiple uncertain
factors, a combination of the above methods is required.
Among them: possibility-stochastic optimization method,
interval-stochastic optimization method, fuzzy-chance
constrained programming, etc. are more applications.

Probability-Stochastic Optimization: Combine the probability
method and the probability method through the following two
main loops.

Outer loop: Probabilistic method, which analyzes the
uncertainty of probabilistic variables.

Inner loop: possibility method, which evaluates the
uncertainty of the possibility variable.

The general form of the interval-stochastic optimization
model is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min[f] � [C][X]
s.t.Pr{[D][X]≤ [G] + Δp}≥ β

[U][X]≤ [Q]
[X]≥ 0
δq ∈ {0, 1}

(10)

Where [f] represents the operating cost of the system;
[C], [D], [U] represents the coefficient matrix; [X] represents
the decision variable, [G] and [Q] represent uncertain parameter
interval, β represents the given confidence level, and β ∈ [0, 1], δq
represents the binary variable in the constraint condition.

Fuzzy-chance constrained programming refers to an
optimization method in which when fuzzy variables appear in
the optimization problem, the decision result makes the
possibility of the constraint condition not less than a given
confidence level.

{minf(x)
s.t.Cr{g(x,ψ)≤ 0}≥ α (11)
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Where x, φ represents the decision variable and the fuzzy variable
respectively; f(x), g(x,φ) represents the optimization objective
function and the constraint condition containing the fuzzy
variable respectively. Cr{g(x,ψ)≤ 0}≥ α represents the
credibility of g(x,ψ)≤ 0.

4.5.2 Application
The hybrid optimization method solves the difficulty of solving
multiple uncertainties, and makes the optimization strategy of
IES meet the needs of real-time scheduling. Based on fuzzy and
Monte Carlo simulation technology, the effect of intermittent
renewable power generation on the active power loss of the
distribution system is studied in (Soroudi, 2012). Dong et al.
(2019) proposed a fuzzy-scenario hybrid method, taking into
account the uncertainty of intermittent renewable power
generation and variable load demand. In (Baghaee et al.,
2017), a random-possibility method was proposed, using fuzzy
set theory to manage the uncertainty in reliability input data, such
as failure rate, maintenance time, and operation of protection
devices. In (Jiang et al., 2020), considering the multiple uncertain
characteristics of renewable energy generation and load forecast
errors in the system, a hybrid optimization scheduling strategy
based on interval-stochastic was proposed.

Each of the above uncertainty optimization methods has its
focus, advantages and limitations. How to choose an appropriate
uncertainty modeling method is shown in Figure 4. The

characteristics of various uncertainty optimization methods are
summarized in Table 3.

4.6 Solution Method
The uncertainty optimization model of the IES is more
complicated. The main difficulties in solving the model are: 1)
It is difficult to judge that the obtained solution is the global
optimal solution; 2) The decision variables include integer
variables and continuous variables; 3) The nonlinearity of the
problem. The corresponding solving algorithms mainly include:
analytical method, model reduction method, intelligent
optimization algorithm, simulation software, etc.

4.6.1 Analytical Method
In order to make the model easy to solve, many studies use
relaxation, convex optimization, dual theory, big M method,
ADMM distributed algorithm and other technologies to
approximate the original optimization problem to a linear
programming (LP) problem or a mixed integer linear
programming (MILP) problem. Alipour et al. (2015) divides
the original non-convex feasible region of CHP into two
independent convex regions, and realizes the convexity of the
feasible region by adding binary variables and constraints. The
coefficient of performance of the heat pump will change with
changes in temperature. The second-order cone constraint and
polyhedral constraint are used for linearization, and then solved
by a commercial solver (Huang et al., 2019). The AC model used
in the modeling of the distribution network will have nonlinear
constraints. The branch-flow model is widely used, and slack
variables are introduced to transform the original optimization
problem into a second-order cone programming problem. The
mass flow in the hydraulic process and the temperature of the
supply and return water in the thermal process are variable, and
the convexity technology can be used to deal with the nonlinear
term according to the adopted thermal regulation mode. In
addition, for minimax problems, Jiang et al. (2012), Zeng and
Zhao (2013) use strong and weak duality theory to transform the
original problem into an equivalent KKT condition or dual
optimization problem with complementary constraints. The
bilinear term generated by weak dual optimization is
processed by the global optimal big-M method and the local
optimal external approximation method. Zhang et al. (2021)
established an IES optimal scheduling model based on two-
stage robust optimization, and used the ADMM algorithm to
eliminate the non-convergence caused by binary variables.

4.6.2 Model Reduction Method
Model simplification and order reduction methods refer to the
use of lower-order models to simulate higher-order models,
which can maintain basic consistency with higher-order
models in performance such as dynamic response. The
commonly used reduction methods can be divided into the
following categories: model simplification methods based on
aggregate equivalence classes, model simplification methods
based on time constants, and model reduction methods based
on mathematical theories. The simplification method based on
the aggregate equivalent class model is to convert a large number

FIGURE 3 | The calculation process of MCS.
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of distributed power sources with close electrical distances into
one or several equivalent models according to the similarity of
their dynamic characteristics. Liao et al. (2018) proposed a
coherence criterion based on the generalized Hamiltonian
action. The equivalent model of this method still has a clear
physical meaning and is suitable for highly electronic power
systems. The simplified modeling method based on time

constant analysis refers to combining components with similar
time constants to form a simplified model of the time scale by
analyzing the differences in the time constants of different
equipment and loads. Xiao et al. (2015) analyzed the inertial
time constants and system eigenvalues of some components in
the inverter microgrid, and established its simplified model.
Model reduction methods based on mathematical theory, such

FIGURE 4 | How to choose uncertainty modeling method.

TABLE 3 | Summaries of uncertainty modeling attributes.

Group Main idea Advantages Disadvantages

Stochastic
optimization

Use probability density functions. such as: scene
method, Monte Carlo simulation, point estimation
method, chance constrained programming

Accurate, Simulation of the real world,
Good for big and complex problems

Time consuming, High computational burden,
Execution time depends on the number of uncertain
variables

Robust
optimization

Using uncertain sets, such as: engineering game model
two-stage robust optimization model and distributed
robust optimization model

Useful when just an interval exists Conservative decision, difficult to use in nonlinear
problems

Interval
optimization

Using intervals Useful when just an interval exists Cannot model the correlation between intervals

Possibilistic
method

Using fuzzy membership function Can obtain the membership function
of output variable

Time consuming, Cannot model correlation

IGDT Using forecasted values Useful for decision making in severe
uncertainties

Complexity

Hybrid
optimization

Modeling multiple uncertainties Can model the real world conditions,
model different uncertainties

Time consuming
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as: singular perturbation method, balance realization method,
Krylov subspace method, etc. Zhu et al. (2016) proposed a large-
scale distribution network model simplification method based on
the linear system simplification theory of Krylov subspace, which
can improve the speed and efficiency of simulation calculation.
The advantages and disadvantages of the main reduction method
are shown in Figure 5.

4.6.3 Intelligent Optimization Algorithm
Intelligent algorithms can be used to solve the uncertain
optimization operation problems of IES with nonlinear and
non-convex characteristics, including genetic algorithm,
particle swarm algorithm, simulated annealing algorithm, etc.
The solution performance of the algorithms is usually compared
according to indicators such as economic benefit, number of
iterations, and calculation time. The use of traditional intelligent
algorithms is more sensitive to initial conditions and controllable
parameters, but still has the disadvantages of slow convergence,
inability to meet online calculation requirements, and inability to
guarantee the stability of the solution. With the development of
artificial intelligence technology, machine learning methods such
as reinforcement learning and deep learning are used to
characterize the uncertainty of parameters. Such methods
usually require a lot of historical data, and offline training
takes a lot of time. At present, the related research of machine
learning methods in IES decision-making is still in its infancy.

4.6.4 Simulation Software
In addition to using mathematical models to process uncertain
factors, the actual engineering application is inseparable from the
support of the simulation tools and platforms. Choosing suitable
simulation tools is of great significance to the planning and
optimization of IES. In order to facilitate the researcher to
choose the appropriate simulation software, Table 4
summarizes the seven commonly used IES simulation tools.

5 SUMMARY AND FUTURE WORK

1) Uncertainty analysis: IES comprehensively covers various
energy forms such as electricity, gas, heat, and cold. Its
uncertainty and complexity far exceed any single system,
and it may exist in all links of energy production,
transmission, conversion, and consumption. Therefore, in
addition to the uncertain factors mentioned in this article,
other influencing factors, such as policy, political and social
factors, need to be considered.

2) Uncertainty modeling method: There are many uncertain
factors in IES, and a single uncertainty modeling method is
often not accurate enough to deal with the impact of multiple
uncertainties. A combination of different models should be
considered for a comprehensive analysis to improve economic
benefits.

FIGURE 5 | The advantages and disadvantages of the main reduction method.
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3) Solution method: The nonlinear term or non-convex
optimization of the uncertainty optimization problem can
be dealt with by appropriate simplification or equivalent
transformation. In addition, the dimensionality of the
model is relatively high, and it is necessary to adopt a
reduction method or develop a decomposition scheme that
adapts to complex coupling constraints to improve the
convergence speed. The intelligent optimization algorithm
based on machine learning is still in its infancy and still
needs further research.

6 CONCLUSION

In this article, we have conducted a comprehensive review of the
main uncertainty categories and uncertainty modeling methods
of IES optimization operations. First of all, the uncertainty
categories are roughly divided into the uncertainty of
renewable energy output, the uncertainty of equipment
operating status and system status, the uncertainty of load
forecasting, the uncertainty of mobile/virtual energy storage,
the uncertainty of market rules/energy prices. Secondly, a
comprehensive review of the main uncertainty modeling
methods: probabilistic methods, robust optimization, interval
optimization/probability methods, IGDT theory, and hybrid
optimization methods, etc. One of the key points of this
review is to find that the five uncertainty optimization
methods have their respective focuses, advantages and
limitations. Therefore, it is particularly important to choose a
suitable uncertainty modeling method. First, we need to

determine the availability of data and the uncertainty space
covered. It is worth noting that the proposed modeling
methods are not independent of each other, and a
combination of different methods can be used for a more
comprehensive analysis. Although it is generally believed that
uncertainty is the key issue for IES optimization operation, our
reference review results show that most optimization models are
still deterministic. Therefore, when dealing with IES uncertain
optimization problems, you can try to retain the key uncertain
factors and ignore the less influential uncertain factors, thereby
reducing the number of random variables in the uncertain
optimization problem, reducing the difficulty of solving, and
improving the solution Speed and efficiency. Future research
on uncertainty modeling should also consider broader
uncertainties, such as considering model structure, policy,
political and social factors, etc., and exploring new methods to
deal with these uncertainties.
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